
Computational Intelligence, Volume 20, Number 2, 2004

EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS
FOR CP-NETWORKS

RONEN I. BRAFMAN

Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

YANNIS DIMOPOULOS

Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Preference elicitation is a serious bottleneck in many decision support applications and agent specification
tasks. Ceteris paribus (CP)-nets were designed to make the process of preference elicitation simpler and more
intuitive for lay users by graphically structuring a set of CP preference statements—preference statements that most
people find natural and intuitive. Beside their usefulness in the process of preference elicitation, CP-nets support
efficient optimization algorithms that are crucial in most applications (e.g., the selection of the best action to execute
or the best product configuration). In various contexts, CP-nets with an underlying cyclic structure emerge naturally.
Often, they are inconsistent according to the current semantics, and the user is required to revise them. In this
paper, we show how optimization queries can be meaningfully answered in many “inconsistent” networks without
troubling the user with requests for revisions. In addition, we describe a method for focusing the user’s revision
process when revisions are truly needed. In the process, we provide a formal semantics that justifies our approach
and new techniques for computing optimal outcomes. Some of the methods we use are based on a reduction to the
problem of computing stable models for nonmonotonic logic programs, and we explore this relationship closely.

Key words: preference elicitation, knowledge representation, CP-nets, answer-set programming, non-
monotonic logic programs, graphical models.

1. INTRODUCTION

Ceteris paribus (CP) preference statements are among the most natural and most intuitive
preference statements that people make. Thus, it is not surprising that they have drawn the
attention of many researchers in philosophy and AI (e.g., Doyle and Wellman 1994; Hanson
1996). CP statements indicate a preference for one value over another in the context of a
fixed background. For example, the statement “I prefer an apple pie to a chocolate cake as a
dessert, ceteris paribus” expresses the fact that given two identical contexts—i.e., meals—
that differ only in their dessert, the one containing an apple pie is preferred to the one
containing a chocolate cake. Finer distinctions can be made using conditional CP statements.
For example: “I prefer red wine over white wine if the main course is beef.” In this case, the
preference for red wine to white wine is restricted to comparisons between identical meals
in which the main course is beef.

CP-nets are a graphical tool for representing and for structuring a set of CP statements
(Boutilier et al. 1999). They were motivated by the need to provide a tool that would support
a simple preference elicitation process that does not require the presence of a decision analyst
and could be used for various online applications, among other things. A CP-network consists
of a graph describing the preferential dependency relationship between different domain
variables. Each node is annotated by a conditional preference table (CPT) that describes
how the user’s preference over the different values of the variable associated with this node
depends on the variables associated with the parents of this node. Although CP-nets are
quite a recent development, they play a key role in a number of recent applications (e.g., see
Domshlak, Brafman, and Shimony 2001; Gudes, Domshlak, and Orlov 2002; Brafman and
Friedman 2003).

Cyclic CP-nets emerge naturally when there is a set of interdependent variables, none
of which is more important than the other. For example, Domshlak et al. (2001) note that
such dependency can emerge among web-page components in their web-personalization tool.

C© 2004 Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington Road, Oxford OX4 2DQ, UK.



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 219

Cyclic CP-network raise some conceptual and computational problems to which we still do
not have satisfactory answers. Even worse, according to the standard semantics of CP-nets,
most cyclic CP-nets are inconsistent. For example, it was shown that the preference ordering
induced by any simple cycle (i.e., a cycle that does not contain smaller cycles) with more
than two nodes is inconsistent (Domshlak and Brafman 2002). That is, there will be at least
two outcomes, o1 and o2, such that one can show that o1 is strictly preferred to o2 and o2 is
strictly preferred to o1.

The fact that many cyclic networks are inconsistent raises a serious practical concern.
When a user specifies an inconsistent cyclic network, we must ask him to revise his network.
To do so, we need to provide information that will help him obtain a consistent network. In
this paper, we make two practical contributions aimed at improving this process. First, we
show that various optimization queries can be answered naturally even when the network is
“inconsistent” according to the standard semantics. In such cases, no additional burden is
placed on the user. Second, when revision is required, we show how the notion of a partial
model, studied in the area of logic programming, can be used to identify those aspects of a
model that require revision.

While pursuing our more practical goals we make a number of technical and semantic
contributions. First, we provide a more flexible semantics for CP-nets that is identical with the
current semantics on those networks the latter considers consistent. This semantics justifies
our approach for generating optimal outcomes given networks that are inconsistent under
the standard semantics. Second, we show how to answer optimization queries using various
approaches that include reduction to SAT, the use of cycle cut-sets, and reduction to logic
programs. This extends current method, which are restricted to acyclic nets, and helps us
define the notion of a partial outcome. It also provides an interesting link between work on CP-
nets and other nonmonotonic formalisms. We take a particularly close look at the relationship
between the stable models semantics for nonmonotonic logic programs, also referred to as the
answer set semantics, and CP-networks. Finally, we compare CP-networks and the closely
related formalism of Answer Set Optimization (Brewka, Niemelä, and Truszczynski 2003).

The paper is structured as follows. In Section 2, we provide the necessary background
on CP preference statements and CP-nets. In Sections 3, we take a closer look at the notion
of consistency in CP-nets and the problem that cyclic networks introduce. We suggest an
extension of the current semantics and a natural definition of an optimal model as one that
cannot be improved. In Section 4, we discuss a number of techniques for computing optimal
models according to our semantics. In Section 5, we discuss an alternative translation into
nonmonotonic logic programs and some of its implications. In Section 6, we continue to
explore the relationship between the stable model semantics and CP-nets and examine the
problem of credulous and skeptical reasoning with CP-nets. In Section 7, we discuss related
work, in particular, Answer Set Optimization. We conclude in Section 8.

2. CP-NETS

We start with a review of CP preference statements and preferential independence, fol-
lowed by the definition of CP-nets.

2.1. CP Preference Statements

CP-nets are a tool for specifying preference relations. Formally, a preference relation
over a set S is a binary relation over S, i.e., a subset of S × S. We can interpret the fact that
(o, o′) belongs to this subset in two ways. The first is that o is at least as preferred as o′
(a.k.a. o is weakly preferred to o′). This is denoted o � o′. Alternatively, we can interpret this



220 COMPUTATIONAL INTELLIGENCE

as indicating that o is strictly preferred to o′, and this is denoted by o � o′. This distinction
plays an important role in the semantics proposed in this paper.

Preference relations are binary relations with some additional properties: the relation �
is a partial preorder, and the relation � is a partial order. A partial preorder is a reflexive
and transitive binary relation. That is, o � o holds, and o � o′, o′ � o′′ imply o � o′′. A
(strict) partial order is a transitive and anti-symmetric binary relation. The relation � is
anti-symmetric if o � o′ implies o′ �� o. Notice that anti-symmetry implies, in particular,
irreflexivity.

Given a partial preorder �, we can define the induced strict partial order as follows:
o � o′ iff o � o′ and o′ �� o. It is easy to see that this relation is, indeed, transitive and
anti-symmetric.

All the above definitions extend to the case of a total preorder by requiring that for every
o, o′ ∈ S, at least one of o � o′ or o′ � o holds. A total (strict) order is an (strict) order in
which for every distinct o, o′ ∈ S exactly one of o � o′ or o′ � o must hold.

A total preorder is often referred to as a ranking because it induces a natural total order
over equivalence classes of elements of S. o, o′ ∈ S belong to the same equivalence class iff
o � o′ and o′ � o. The rank of o is then the level of its equivalence class. Notice, though,
that the fact that � is a total preorder does not imply that the strict relation � that it induces
is a total order: If o and o′ are equally preferred according to �, i.e., o � o′ and o′ � o, then
neither o � o′ nor o′ � o holds. Thus, the strict binary relation induced by a total preorder
may be partial, but must be transitive and anti-symmetric.

The types of outcomes we are concerned with consist of possible assignments to some
set of variables. More formally, we assume some given set V = {X1, . . . , Xn} of vari-
ables with corresponding domains D(X1), . . . ,D(Xn). The set of possible outcomes is then
D(X1) × · · · × D(Xn). For example, in the context of the problem of configuring a per-
sonal computer (PC), the variables may be processor type, screen size, operating system etc.,
where screen size has the domain {17 in, 19 in, 21 in}, operating system has the domain
{LINUX, Windows98, WindowsXP}, etc. Each assignment to the set of variables specifies
an outcome—a particular PC configuration. Thus, a preference ordering over these outcomes
specifies a partial order over possible PC configurations.

The number of possible outcomes is exponential in n, while the set of possible total orders
on them is doubly exponential in n. Therefore, explicit specification and representation of
a partial order are not realistic. We must find implicit means of describing this preference
relation. The notion of preferential independence plays a key role in such representations.
Intuitively, X ⊂ V and Y = V − X are preferentially independent if for all assignments to Y,
our preference over X values are identical. More formally, let x1, x2 ∈ D(X) for some X ⊆ V
(where we use D(·) to denote the domain of a set of variables as well), and let y1, y2 ∈ D(Y),
where Y = V − X. We say that X is preferentially independent of Y iff for all x1, x2, y1, y2
we have that

x1y1 � x2y1 iff x1y2 � x2y2.

For example, in our PC configuration example, the user may assess screen size to be pref-
erentially independent of processor type and operating system. This could be the case if,
for instance, the user always prefers a larger screen to a smaller screen, no matter what the
processor or the OS are.

Preferential independence is a strong property, and therefore, less common. A more
refined notion is that of conditional preferential independence. Intuitively, X and Y are
conditionally preferentially independent given Z if for every fixed assignment to Z, the
ranking of X values is independent of the value of Y. Formally, let X, Y, and Z be a partition



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 221

of V and let z ∈ D(Z). X and Y are conditionally preferentially independent given z iff for
all x1, x2, y1, y2 we have that

x1y1z � x2y1z iff x1y2z � x2y2z.

X and Y are conditionally preferentially independent given Z if they are conditionally pref-
erentially independent given any assignment z ∈ D(Z). Returning to our PC example, the
user may assess operating system to be independent of other features given processor type.
That is, it always prefers LINUX given an AMD processor and Windows98 given an Intel
processor (e.g., because he believes Windows98 is optimized for the Intel processor, whereas
LINUX is otherwise better). Conditional preferential independence is a standard notion in
multi-attribute utility theory (Keeney and Raiffa 1976).

2.2. CP-nets

CP-nets were introduced in Boutilier et al. (1999) as a tool for compactly and intuitively
representing qualitative preference relations. This graphical model exploits conditional pref-
erential independence in structuring a decision maker’s preferences under the CP (all else
being equal) semantics. CP-net is the first graphical model based on the notions of purely
qualitative preferential independence, and bears a surface similarity to Bayesian nets (Pearl
1998). However, the nature of the relationship between nodes within a CP-net is generally
quite weak compared with the probabilistic relations in Bayes nets.

During preference elicitation, for each variable X in the variable set V, the decision
maker is asked to specify a set of parent variables Pa(X ) that can affect her preferences over
the values of X . That is, given a particular value assignment to Pa(X ), the decision maker
should be able to determine a preference order over the domain of X (denoted as D(X )), all
other things being equal.

The above information is used to create the graph of the CP-net in which each node
X has Pa(X ) as its immediate predecessors. Given this structural information, the decision
maker is asked to explicitly specify her preferences over the values of X for each instantiation
of Pa(X ). This conditional preference over the values of X is captured by a CPT, which is
annotated with the node X in the CP-net. That is, for each assignment to Pa(X ), CPT(X )
specifies a total order (denoted �) over D(X ), such that for any two values xi , x j ∈ D(X ),
either xi � x j , or x j � xi . Note that if the same total order is associated with a number of
assignments, a representation of the CPT that is more compact than one enumerating all
assignments is possible. For instance, we can associate total orders with boolean formulas
over the parent variables.

Formally, a CP-net N over variables V = {X1, . . . , Xn} is a directed graph G over
X1, . . . , Xn and a set of conditional preference tables CPT(Xi ) for each Xi ∈ V. Each condi-
tional preference table CPT(Xi ) associates a total order � j (u j ) over the domain of Xi with
each instantiation u j of Xi ’s parents Pa(Xi ) = U.

The semantics of CP-nets is defined as follows. A model for a CP-net is a total order over
the set of possible outcomes that satisfies every CPT within the CP-net. Intuitively, a total
order satisfies CPT(X ) if it orders every two outcomes o, o′ that differ only in the value of
X appropriately. That is, it prefers the outcome in which X is assigned a better value. Recall
that this is precisely the information specified in CPT(X ), and that whether one value of X
is better than another value of X depends on the values assigned to the parents of X . But
since o and o′ differ only in the value of X , they agree on the value of Pa(X ), and this is well
defined.

Formally, a total order satisfies CPT(X ) if for every pair of X -values xi , x j and every
assignment c to Pa(X ) such that xi � x j given c according to CPT(X ), the following holds:



222 COMPUTATIONAL INTELLIGENCE

FIGURE 1. A CP-net and its corresponding preferential order.

Let o, o′ be two outcomes that differ only in their assignment to X and satisfy c, and suppose
that o assigns xi to X and o′ assigns x j to X , then, o � o′ holds in the model. We say that
o � o′ is valid according to the CP-network if o � o′ holds in all models of the CP-net. A
CP-net is said to be consistent if it has a model.

The CP-net semantics implies the following set of conditional independence assumptions:
every node is conditionally independent of all variables other than its parents, given the value
of its parents.

As an example, consider the network in Figure 1(a), in which all variables are boolean.
This network has three variables, A, B, and C . The preferences over A and B are uncondi-
tional, whereas the preferences for C’s values depend on the values of A and B. In Figure 1(b),
we see the preference order induced by this CP-network. For every pair of outcomes o, o′,
we have that o � o′ is valid iff there is a path from o′ to o in this graph.

3. THE WEAK PREFERENCE SEMANTICS

According to the standard semantics, the preferences expressed in the CPT of a CP-net
are strict preferences. We suggest viewing them as weak preferences using preorders instead
of strict orders. As we show, this leads to a semantics that is only slightly weaker than the
standard semantics. In fact, it leads to identical orderings on CP-nets that are consistent
according to the standard semantics. More formally, we define a model for a CP-network
as a total preorder over the set of outcomes that satisfies every CPT within the CP-net. A
total preorder satisfies CPT(X ) if for every pair of X -values xi , x j and every assignment
c to Pa(X ) such that xi � x j given c according to CPT(X )1 the following holds: Let o, o′
be two outcomes that satisfy c and differ only in their assignment to X , such that o assigns
xi to X and o′ assigns x j to X . Then, o � o′ holds in the ordering. We say that o � o′ is
valid according to the CP-network if o � o′ holds in all models of the CP-net. Finally, we

1In the standard semantics we would write xi � x j instead of xi � x j .



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 223

say that o � o′ is valid according to the CP-network if o � o′ is valid but o′ � o is not valid.
Thus, if o � o′ holds in all models and there is a model in which o � o′ holds, we say that
o � o′ is valid. Had we required o � o′ to hold in all models for o � o′ to be valid, no strict
preference would be valid. This is because the preference relation in which all outcomes are
equally desirable is a model for every CP-network according to the above semantics. Thus,
all CP-nets are “consistent” according to our semantics.

The above semantics can be related to a more syntactic notion of a proof of preference,
or a flipping sequence (Boutilier et al. 1999). Let o be an outcome, and suppose that o assigns
to X some value x j that the user ranks lower than xi in parental context c satisfied by o.
Then, we can improve o by flipping the value of X from x j to xi . An improving flipping
sequence o1, o2, . . . , ok is a sequence of outcomes such that oi is obtained from oi−1 via a
single improving flip. Naturally, these definitions are with respect to some CP-network N ,
which we take to be fixed by the appropriate context.

Theorem 1. o � o′ is valid (with respect to a CP-net N ) iff there is an improving flipping
sequence from o′ to o (with respect to N ).

Proof. First, suppose that there is an improving flipping sequence from o′ to o. If this
sequence consists of o and o′ alone, then o and o′ differ in the value of a single variable, say
X . This means that the CPT for X specifies that X has a better value in o than in o′. Thus
o � o′ must hold because every model must satisfy every CPT. For longer flipping sequences
a simple inductive argument based on the transitivity property of a preorder yields the desired
result.

The other direction will follow if we can show that if there is no improving flipping
sequence from o′ to o then there exists a model of the CP-net in which o′ is ranked higher
than o.

To describe our model, we must define a total preorder over the set of outcomes, i.e., a
ranking of the outcomes. We proceed as follows: Let O denote the set of all outcomes. Let
O ′ contain o′ and the set of outcomes reachable via an improving flipping sequence from o′.
Let O ′′ denote all other outcomes. Note that according to our assumption o ∈ O ′′. First, we
provide an inductive definition of the rank of the elements of O ′′. The lowest rank (denoted
by 0) contains every outcome o1 ∈ O ′′ such that for every o2 ∈ O ′′ such that o1 is reachable
(via an improving flipping sequence) from o2, we also have that o2 is reachable from o1.
Notice that this rank cannot be empty: any outcome ō that is not reachable from any other
outcome belongs to rank 0. If every outcome is reachable from some other outcome, there
must be at least two outcomes in this rank. Rank k contains all outcomes o1 such that k − 1
is the maximal rank of any item o2 such that o1 is reachable from o2, but o2 is not reachable
from o1.

Next, we rank the elements of O ′: Let K denote the highest rank of an element in O ′′.
Rank the elements of O ′ using the algorithm used above for O ′′, but with O ′′ replaced by O ′
and starting at rank K + 1 instead of 0. By construction, we get that the rank of o′ is higher
than the rank of o.

It remains to be shown that the ranking we constructed is indeed a model of the CP-net.
First, recall that a ranking defines a total preorder as follows: o � o′ iff o is ranked at least as
high as o′. Next, suppose that o1 and o2 are two outcomes that differ only on some variable
X , and o1 assigns X a more preferred value than that assigned by o2 according to the CPT
for X . This means that there is an improving flipping sequence from o2 to o1. There are two
cases to consider. If both o1 and o2 belong to O ′ or O ′′, our construction guarantees that o1
will be ranked at least as high as o2. Otherwise, it must be the case that o2 ∈ O ′′ and o1 in



224 COMPUTATIONAL INTELLIGENCE

O ′ (if o2 ∈ O ′ then o2 is reachable from o′ and thus o1 is reachable from o′ as well). Thus,
again, by construction o1 is ranked higher than o2. �

An immediate consequence is the following.

Consequence 1. o � o′ is valid iff there is an improving flipping sequence from o′ to o but
no improving flipping sequence from o to o′.

Another interesting theorem relates the standard, stronger semantics, and our semantics.

Theorem 2. Let G be a CP-network that is consistent according to the standard semantics.
Then, G satisfies o � o′ according to our semantics iff G satisfies o � o′ according to the
standard semantics.

Proof. Suppose that G satisfies o � o′ according to the standard semantics. This implies
that there is an improving flipping sequence from o′ to o according to the standard semantics.
However, this is exactly a flipping sequence according to our semantics, and it follows that
o � o′ according to our semantics. Since the CP-network is consistent according to the
standard semantics, there cannot be a flipping sequence from o to o′, and the result follows.
The converse is immediate. �

This theorem shows that our semantics is a direct extension of the standard semantics.
To understand it better, we will soon take a look at networks that are inconsistent according
to the standard semantics.

Finally, we define the notion of optimality in the context of a CP-network. There are
two possible definitions: An outcome o is said to be strongly optimal iff there is no other
outcome o′ such that o′ � o holds. An outcome o is said to be weakly optimal iff there is
no other outcome o′ such that o′ � o holds. Thus, in the first case, o is either strictly better
than any other outcome or incomparable. In the second case, there may be other outcomes
that are as preferred as o, but no outcome that is strictly preferred to o. In networks that are
consistent according to the standard semantics, there is a unique best outcome that is strictly
better than any other outcome. However, when we move beyond this class of networks, we
can have more than one optimal outcome, and it can be either strongly or weakly optimal.
The latter class is computationally more challenging to identify, and so here we concentrate
on strongly optimal outcomes.

4. OPTIMALITY IN CYCLIC NETWORKS

The semantics of CP-nets allows for cycles. But only the consistency of acyclic CP-nets
is guaranteed according to the standard semantics (Boutilier et al. 1999). Moreover, such
networks have a unique optimal outcome. This remains true even if we introduce evidential
constraints, i.e., constraints that fix the value of some variables.

Cyclic networks often induce an inconsistent (i.e., cyclic) preference order according to
the standard semantics. For example, consider the network in Figure 2 which contains a cycle
of size 4, called a simple cycle in Domshlak and Brafman (2002). The web-personalization
applications described in Domshlak et al. (2001) give rise to such cyclic structures. There,
variables correspond to articles, ads, and other content element in an online newspaper. The
value of each variable indicates whether it is currently displayed or not. The CP-net captures
the preferences of the editor regarding the presentation of different elements on the user’s
current screen. These preferences together with user-generated content constraints lead to



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 225

FIGURE 2. A simple 4-cycle CP-network.

a personalized view that takes into account the user’s interests and the editor’s expertise on
preferred combinations of news items. For example, in the CP-net in Figure 2, A could be a
review of a new Toyota 4 × 4 vehicle, B a test-drive of a new BMW series 7 car, C a story about
a recent Manchester United match, and D a story about Manchester City’s recent success.
Suppose that Manchester United is sponsored by Toyota, and Manchester City by BMW, and
the editor would prefer not to display stories about competing teams and/or companies on
the same screen. This is expressed in the CP-net in Figure 2 by stipulating that if A is present
then B should not, if A is not present then B should be present, etc.

Domshlak and Brafman (2002) have shown that such a network is not consistent, i.e.,
there is no total order of the set of outcomes that satisfies all the preferences embodied in
this network. It is easy to see why this is so when we examine Figure 3, which describes
the relationships among different possible outcomes. The nodes in that figure correspond to
outcomes and the edges correspond to legal improving (single) flips. For example, consider

FIGURE 3. Outcome space for the 4-cycle network.



226 COMPUTATIONAL INTELLIGENCE

FIGURE 4. Ordered outcome classes for 4-cycle network.

the outcome āb̄cd̄ in the lower left-hand side of Figure 3. Given that A is assigned ā, we can
see from B’s CPT that b is a more preferred value for B. Thus, there is an edge from āb̄cd̄
to ābcd̄.

We can see that Figure 3 contains cycles, making it impossible to totally order its elements
consistently. However, it is also apparent that it contains two elements, ab̄cd̄ and ābc̄d that,
in some sense, can be viewed as optimal elements, as well as two elements, abcd and āb̄c̄d̄,
that in some sense, can be viewed as the worst elements.

Indeed, according to our semantics, which would replace the � relations in Figure 2
by the � relation, this network induces five classes of outcomes described in Figure 4. The
outcomes within each class are equally preferred, and there is a strict preference between
outcomes belonging to one class c over outcomes belonging to another class c′ such that c
is reachable from c′ in this graph. An important consequence of this is that there are clear
candidates for the set of optimal outcomes: the two outcomes in the two top classes.

We can see that our semantics is more lenient, allowing for specifications that, in some
sense, are cyclic. If the cycle contains all outcomes, then all outcomes are equally preferred.
This is not a very informative specification, and the user will have to be informed of this
fact. However, as we see in the above example, the cycle may contain some, but not all of
the outcomes. Whereas the standard semantics will dismiss this CP-network as inconsistent,
our semantic is more tolerant, and can use this CP-net to determine an optimal outcome.

We now turn to the computation of an optimal outcome via a simple reduction to a CSP
problem (or a SAT problem when the variables are binary). The variables in our reduction
consist of the variables in the CP-network. For every entry in the CP table of every variable
v, we add the constraint φ → v1, where φ denotes the context (i.e., the assignment to the
parents of v) and v1 is the preferred value of v.

As an example, for the CP-network in Figure 1 we obtain the following propositional
formula:

a ∧ b ∧ (a ∧ b → c) ∧ (a ∧ b̄ → c̄) ∧ (ā ∧ a → c̄) ∧ (ā ∧ b̄ → c).

In the case of Figure 2, we get the formula

(d → ā) ∧ (d̄ → a) ∧ (a → b̄) ∧ (ā → b) ∧ (b → c̄) ∧ (b̄ → c) ∧ (c → d̄) ∧ (c̄ → d̄).

Lemma 1. o is a strongly optimal outcome for a CP-net iff it satisfies the above CSP.

Proof. If o is a satisfying assignment to the above formula, we cannot improve it via any
flip. Thus, for any other outcome o′, it is not the case that o′ � o, i.e., o is strongly optimal.

If o is strongly optimal then it cannot be improved via any flip. Thus, it must satisfy the
above formula, which basically says that each variable is assigned the best value given the
current assignment to its parents. �



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 227

FIGURE 5. A network without a strongly optimal outcome.

The above algorithm does not work when we have weakly optimal outcomes, i.e., when we
have a set of outcomes that are equally preferred, but cannot be strictly improved. Figures 5
and 6 show an example of a network giving rise to such a case and the relation over the
outcome space it induces. From now on, our treatment centers on strongly optimal outcomes
only, to which we simply refer as optimal outcomes.

Lemma 1 implies that the problem of finding a single-optimal outcome is in NP. When
the CP-network is acyclic, it is known that an optimal outcome can be found in linear time
(Boutilier et al. 1999). It is easy to understand why: If the network is acyclic, the above set
of implications can be solved much like a stratified propositional logic program, and thus,
be solved in linear time. Our result indicates that there is another class of networks that can
be optimized in linear time: simple-cycle nets containing boolean variables. In that case, the
resulting CSP becomes an instance of 2-SAT, which is solvable in linear time (Aspvall, Plass,
and Tarjan 1979).

It is useful to relate the above optimization algorithm to the standard optimization algo-
rithm of Boutilier et al. (1999), which works on acyclic networks only. That algorithm works
as follows. First, we generate a topological ordering of the variables. Next, we instantiate the
value of each variable to its most preferred value given the values of its parents. Since the
parents appear earlier in this ordering, this procedure is well defined. This algorithm is easily
extended to the case of evidential constraints—we simply take these values to be fixed.

To see how we can generalize this procedure to cyclic networks, consider simple cycles
first. Select some initial node v, and “cut” the cycle at that point. Now, for each possible
value of this node, apply the optimization algorithm for acyclic networks. Finally, go back
to the original network and check whether, given the resulting assignment to the parent of v,
the chosen value of v is most preferred. If this is the case, the resulting outcome is strongly
optimal.

As an example, consider the simple cycle in Figure 2. Suppose we select the cut-set to
consist of A. The resulting network would have A as the top node, B as its only child, C as B’s
only child, and C’s child would be D, which has no children. A can have two possible values:

FIGURE 6. Outcome classes for network in Figure 5.



228 COMPUTATIONAL INTELLIGENCE

a and ā. Consider the assignment A = a. Optimizing the resulting acyclic network, we get
ab̄cd̄. Now, we examine whether the assignment of A in this outcome is optimal with respect
to the original cyclic network. Indeed, given that D = d̄, the assignment A = a is optimal.
Thus, ab̄cd̄ is an optimal outcome. Similarly, when we examine the assignment A = ā, we
generate the self-consistent outcome ābc̄d.

If the network is cyclic, but not a simple cycle, more than one node needs to be removed
to render it acyclic. The set of removed nodes is called a cycle cut-set. The problem of finding
a minimal cycle cut-set is better known in as the minimum vertex feedback set problem. This
problem is NP-hard (Garey and Johnson 1979), but there are polynomial-time-approximation
algorithms (Even et al. 1995), and very good heuristics (see, e.g., Becker and Geiger 1994).
We perform the above process for every possible assignment to the removed nodes. An
assignment obtained this way is strongly optimal iff it is self-consistent, i.e., the values of the
removed nodes are optimal given the resulting assignment. The complexity of this procedure
is linear in the number of possible assignments to the cut-set, i.e., it is exponential in the
number of variables in the cut-set. Note that a self-consistent assignment corresponds to
a node in the preference graph from which no other node is reachable. We formalize this
procedure below:

1. Let G be the CP-network’s graph. Let G ′ be the induced graph whose nodes are the
strongly connected components of G.

2. Topologically sort G ′.
3. From each strongly connected component containing more than one variable, select a

cycle cut-set.
4. For every assignment to the set of nodes selected in the previous step perform the standard

optimization procedure under the assumption that the value of these nodes is fixed. This
is called optimization in the context of evidential constraints, and it is described below.

5. Every assignment obtained in this manner which is self-consistent, is strongly optimal.

Optimization of an acyclic network given evidential constraints is done as follows: We
instantiate variables according to some topological ordering. At its turn, each variable with
a constrained value is assigned that value, and each unconstrained variable is assigned its
optimal value given the value assigned to its parents and based on its CPT.

Lemma 2. The set of assignments generated by the above algorithm is precisely the set of
strongly optimal outcomes.

Proof. First, every self-consistent outcome generated by the algorithm is strongly optimal
by definition, as it is an outcome that cannot be improved in any way. Thus, it remains to
be shown that if o is strongly optimal, it will be generated by the above algorithm. Let oc
denote the value of o on the loop cut-set variables. Since we exhaustively instantiate all values
of these variables, we will consider the assignment oc at some point. We claim when this
assignment is used, our algorithm will generate o. Consider any root node n in the CP-nets
obtained after cycles are removed. Its value is assigned to be optimal with regard to the
assignment oc. Thus, the algorithm must assign it the same value as in o, for otherwise, we
could improve the value of n in o, and o would not be strongly optimal. Using an inductive
argument, we show in this manner that the value assigned by the algorithm to all nodes must
be identical to the value assigned by o. �

It would be nice if we could show that this procedure can be extended to deal with
evidential constraints much like the algorithm of Boutilier et al. (1999), i.e., by fixing the
values of the observed variables. Given evidential constraints, an outcome is optimal if any



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 229

FIGURE 7. Problematic example for evidential constraints.

outcome that is better than it according to the preference order induced by the original CP-
net is inconsistent. This is equivalent to saying that all outcomes reachable from the given
outcome in the (original) preference graph are inconsistent.2

Unfortunately, the cut-set algorithm no longer works in cyclic networks. To understand
this, consider the CP-network in Figure 7. Suppose that C has to be assigned the value c̄.
In that case, ab̄c̄d̄ ē is self-consistent in the following sense: it cannot be improved without
violating the constraint, i.e., the only variable that is not assigned its most preferred value
given its parents is C—which must be assigned c̄ because of the constraint. However, we can
construct a flipping sequence from ab̄c̄d̄ ē to ābc̄de. This latter outcome is self-consistent,
too, and cannot be improved with or without violating the constraint.3

In general, we can say that the modified cut-set algorithm, i.e., where we generate all
self-consistent assignment under the set of constraints, will result in a superset of the set of
strongly optimal outcomes. This follows immediately from the fact that any strongly optimal
outcome must be self-consistent, i.e., it cannot be improved without violating some constraint.

Finally, we note that for most consumer applications, we do not anticipate CP networks
with more than a few dozen variables. Thus, we expect the above methods to be able to
quickly return solutions in practice.

5. CP-NETWORKS AND LOGIC PROGRAMS

We start with some background on the semantics of logic programs, followed by a
reduction of CP-net optimization to logic programs. Then, using the notion of a partial stable
model of a logic program, we can define a corresponding notion for a CP-net that captures
those variables for which we have some reasonable candidate for an optimal value.

2We emphasize that we consider outcome o′ to be reachable from o even if the flipping sequence from o to o′ includes
one or more intermediate outcomes that are inconsistent.

3One possibility of handling evidential constraints is to alter the CP-network to reflect them, e.g., in the above network,
we remove the node C and its incoming and outgoing nodes. We alter the CPT of D, the only child of C , to reflect the fact that
C = c̄. Then we optimize the resulting network. Unfortunately, this approach violates the intended semantics of constrained
optimization, e.g., in the above example, it would yield ab̄d̄ē as one of the two optimal outcomes.



230 COMPUTATIONAL INTELLIGENCE

5.1. The Semantics of Logic Programs

A propositional normal logic program P is a set of normal rules. A normal rule
is a rule of the form h ← a1, a2, . . . , an, not b1, not b2, . . . , not bm where h, a1, a2, . . . ,
an, b1, b2, . . . , bm are propositional atoms. The set of atoms of P is denoted by Atoms(P).
Let S be a truth or value assignment on the atoms of Atoms(P). We denote by S+ the set
of atoms of S that are assigned the value true, and S− the set of atoms that are assigned the
value false. The reduct P S of a logic program P with respect to an assignment S is the logic
program obtained from P after deleting:
� every rule of P that has a negated atom not bi , with bi ∈ S+;
� every negated atom from the body of the remaining rules.

The resulting program does not contain negated atoms, and is called a definite logic pro-
gram. Let cl(P) denote the deductive closure of a definite logic program P , which coincides
with its minimal model. A stable model (Gelfond and Lifschitz 1998), also called an answer
set, of a logic program P is an assignment S, such that S+ = cl(P S). In the following a stable
model S of a program P is represented by its subset S+. Therefore, any element of Atoms(P)
that does not appear in a stable model of a program P is assumed to be false in that model.

A normal logic program may have none, one, or several stable models. The problem of
deciding whether a normal logic program has a stable model is NP-complete (Marek and
Truszczynski 1991), but many problems can be solved efficiently in practice by state-of-the
art systems such as smodels (Syrjänen and Niemelä 2001) and DLV (Dell’Armi et al. 2001).

Example 1. Consider the program

a ← not d b ← not a

c ← not b d ← not c.

This program has two stable models, namely M1 = {a, c} and M2 = {b, d}.
Intuitively, a model is stable if using the values it assigns to each atom, we can deduce

all and only the atoms to which it assigns a positive value, using the rules of the program.
In addition to normal rules, we assume that our language has constraints, i.e., rules with

an empty head, in other words, rules of the form ← a1, a2, . . . , an, not b1, not b2, . . . , not
bm . Intuitively, such a rule states that any set of atoms that contains all of the ai ’s and none of
the b j ’s cannot be a solution (i.e., a stable model). Formally, a constraint is a shorthand for a
normal rule f ← not f , a1, a2, . . . , an, not b1, not b2,. . . , not bm , where f is a new atom.

An alternative semantics for normal logic programs is the partial stable model semantics
(Sacca and Zaniolo 1990). This is a three-valued semantics, where each atom may assume the
values: true, false, or undefined. In the context of a three-value semantics, a value assignment
is represented by a set of literals. Given such an assignment S, S+ denotes positive literals of
S (i.e., the set of atoms of S that are assigned the value true) and S− the negative literals of
S (i.e., the set of atoms of S that are assigned the value false). An atom A such that A �∈ S+
and ¬A �∈ S−, is an undefined atom (i.e., no value is assigned to A).

Given a three-valued assignment S of Atoms(P), we say that S is a partial model of P
if for each ¬A ∈ S−, every rule with head A contains at least one literal B in its body, such
that ¬B ∈ S. The reduct P S of P with regard to a partial model S is defined as the program
that is obtained from P after deleting:
� every rule of P that has a negated atom not bi , with bi ∈ S+;
� every rule where an undefined atom occurs;
� every negated atom from the body of the remaining rules.



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 231

A partial model S such that S+ = cl(P S) is called a founded model of P . A maximal
(with respect to set inclusion) founded model is called partial stable model of P . It is not
hard to see that every program has a partial stable model.

Example 2. Consider the following program:

a ← not c b ← not a c ← not b

d ← not e e ← not d.

This program has two partial stable models, namely M1 = {d} and M2 = {e}, but no stable
model.

The intuition behind a founded model is similar to that behind a stable model, except
that we are willing to ignore certain variables and the rules that they participate in. A partial
stable model is one where we try to ignore as few variables (with respect to set inclusion) as
we can.

5.2. CP-nets Optimization Using Logic Programs

In this section we translate CP-nets into nonmonotonic logic programs, and show that
there is a one-to-one correspondence between the optimal outcomes of the network and the
stable models of its corresponding logic program. Naturally, the semantics of CP-nets we
assume is the weak-order semantics introduced earlier in this paper.

In order to simplify the presentation of our results, and without loss of generality, we
assume that the values of the variables are all distinct. This allows us to view outcomes as
sets of values, rather than as assignments of values to variables. This considerably simplifies
the proofs.

The translation for networks without constraints is rather straightforward. In fact, the
translation could be obtained simply by translating the constraint satisfaction problem for-
mulated in Section 4 into a logic program, as described in Niemelä (1999). We present this
formulation here for the sake of completeness, and as a tool in understanding the relation of
CP-nets to a large body of work on modeling preferences in logic programming. Moreover,
later on, we shall discuss the extension of this translation in the context of networks with
constraints—a problem of which we know of no translation to CSP.

Given a CP-network N , we construct its corresponding logic program PN as follows.
For each value xi in the domain of a variable X of N , we introduce in PN the atom xi . A
preference p1 ∨ p2 ∨ · · · ∨ pk : q1 � q2 � · · · � qn , of N , where each pi is a conjunction of
values, translates into the set of rules

q1 ← p1 q1 ← p2 · · · q1 ← pk .

Note that values other than the most preferred value, do not play any role here. Additionally,
for every variable X of the network with dom(X ) = {v1, v2, . . . , vn} a set of rules of the
form vi ← not v1, not v2, . . . , not vi−1, not vi+1, . . . , not vn , for each 1 ≤ i ≤ n, is added to
the program. We call this set choice rules set. Finally, for each variable X , with dom(X ) =
{v1, v2, . . . , vn} we add the set of uniqueness constraints ← vi , v j , for every pair of values
such that i �= j .

Theorem 3. o is a strongly optimal outcome for a CP-net N iff it is a stable model of its
corresponding logic program PN .



232 COMPUTATIONAL INTELLIGENCE

Proof. Assume that N is a CP-net and let S be a stable model of PN . Then, S is a cor-
rect outcome (assigns exactly one value to every variable) since it satisfies the uniqueness
constraints and choice rules set. Furthermore, (the outcome corresponding to) S cannot be
improved via any flip, and therefore S is a (strongly) optimal outcome. Conversely, assume
that S is an optimal outcome. Since it cannot be improved, it will satisfy all the rules of
PN . �
Example 3. Consider the CP-net N :

a1 : b1 � b2 a2 : b2 � b1 b1 : a1 � a2 b2 : a2 � a1

The corresponding logic program PN is

b1 ← a1 b2 ← a2 a1 ← b1 a2 ← b2

a1 ← not a2 a2 ← not a1 b1 ← not b2 b2 ← not b1

← a1, a2 ← b1, b2.

The program PN has exactly two stable models, namely M1 = {a1, b1} and M2 = {a2, b2},
that are exactly the optimal outcomes of N .

5.3. Partial Stable Models and Partial Outcomes

We showed a direct correspondence between the optimal outcomes of a CP-network and
the stable models of its associated logic program. However, some logic programs have no
stable model, much as some CP-nets have no strongly optimal outcomes. We can interpret
the nonexistence of an optimal outcome as an indication that some of the preferences are
not well defined. There are two ways to handle such situations: we can isolate the ill-defined
preferences and reason with the rest of the network, or we can try to revise the ill-defined
preferences. In both case, we require the ability to identify the problematic parts of the
network. Here we show how partial stable models can provide valuable assistance in this
task.
Example 4. Consider the network defined as follows:

a1 : b1 � b2 a2 : b2 � b1 b1 : a2 � a1 b2 : a1 � a2

c1 : d1 � d2 c2 : d2 � d1 d1 : c1 � c2 d2 : c2 � c1.

Its corresponding logic program is

b1 ← a1 b2 ← a2 a2 ← b1 a1 ← b2

c1 ← d1 c2 ← d2 d1 ← c1 d2 ← c2.

together with the corresponding choice rules set and uniqueness constraints. This program
has no stable model, but it has two partial stable models, M1 = {c1, d1} and M2 = {c2, d2}.
These partial stable models do not assign a value to variables a1, a2, b1, b2 because the
corresponding subnetwork does not possess an optimal outcome.

We call the outcomes of a CP-network that correspond to the partial stable models of its
associated logic program, partial optimal outcomes.

To understand partial optimal outcomes, recall that a partial stable model corresponds to
a stable model of a subprogram that is obtained by ignoring some subset of variables and all
rules that mention them. Recall that our translation of CP-nets to logic programs associates
a variable in the program with every variable value in the CP-net. In what follow, we will
abuse the term value and use it to denote variables in the logic program that correspond to
values of a variable in the CP-net. We claim that the following proposition holds.



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 233

Proposition 1. Given a partial stable model, there is a variable in the program representing
the value of a CP-net variable X which is unassigned in this model iff no variable representing
a value of X is assigned true.

Proof. Let x j be (a variable representing) a value of X , and suppose that x j is unassigned in
the partial stable model under consideration. Suppose to the contrary that some other value
of xi corresponds to a value of (CP-net variable) X is assigned the value true. In that case,
we claim that the model is not maximal, since x j can be assigned the value false. To see this,
note that this assignment will not violate any of the choice or uniqueness rules. In addition,
any rule in which x j occurs, corresponds to a preference for some child of X in the context
X = x j (where here we abused notation and use x j to denote a value of X as well), would
only involve a positive assignment to x j , and thus would not be active if x j is assigned false.

For the other direction, suppose no variable-value is assigned the value true. This violates
our choice rules, and consequently, to inactivate them, one of the variable-value of X must
be unassigned. �

Thus, for example, it is not possible for a partial stable model to assign true to two
variable-values of the same CP-net variable X by making some other values of X unassigned.
This seems to justify a view of partial stable model as describing partial assignment to the
variables of a CP-net: Those variables with some value assigned true in the model can be
viewed as the assigned variables, and variables for which no value is assigned can be viewed
as unassigned variables.

Existing knowledge on partial stable models (e.g., Dimopoulos, Nebel, and Toni 2002)
implies that a total partial optimal outcome (i.e., one that assigns a value to every variable)
is an optimal outcome, and that deciding whether a logic program has a partial stable model
other than the empty set is NP-complete. Discovering whether a variable appears in some
partial optimal outcome is NP-complete, whereas deciding whether a variable appears in all
partial optimal outcomes is �

p
2 -complete.

Since problems in NP can be typically dealt with efficiently, this suggests that we can
quickly supply the user with useful information about consistency. We can choose one of two
options: generate some partial stable model and inform the user about variables that do not
appear in that model, or check which variables are not assigned in any partial stable model.

6. STABLE MODELS AND CONSTRAINTS

CP-net optimization is much more interesting and challenging given constraints on the
set of outcomes. In this section we try to understand some properties of stable models in
this context. First, we consider what can be obtained using the basic idea of a stable model
in the case of outcome optimization. Then, we consider a standard reasoning problem for
nonmonotonic formalisms: whether a particular partial assignment is credulously implied by
a CP-network.

6.1. Optimization Given Constraints

The semantic notions behind stable models and self-consistent outcomes are closely
related. In both cases, we look for an assignment that will, in some sense, support itself.
Moreover, we would like these models to be optimal—i.e., they cannot be improved. This is
reminiscent of the notion of a fix-point.

When there are no constraints, only strongly optimal outcomes cannot be improved.
However, when constraints are introduced there can be non-optimal outcomes that cannot



234 COMPUTATIONAL INTELLIGENCE

be locally improved without violating some constraint. Such outcomes can be viewed as
“local maxima.” This was illustrated in the case of consistent outcomes for the network of
Figure 7. It appears that stable models correspond to such local maxima, rather than to global
maxima. Recall that the problem of computing a stable model is in NP. Below we show
that the problem of checking the optimality of an outcome is coNP-hard. This indicates that
(unless NP = coNP) global optimization probably cannot be captured by the stable models
of a polynomial-sized logic program induced by a CP-net.

Theorem 4. Let O be an outcome of a CP-network N . Deciding whether O is an optimal
outcome of N is coNP-hard.

Proof. Let S be a 3-CNF formula. We construct a CP-network NS such that some outcome O
is an optimal outcome for NS iff S is unsatisfiable. The variables of NS consist of one binary
variable for each atom in S and one additional binary variable s. For each clause l1 ∨ l2 ∨ l3
of S we add the constraint ¬l1 ∧ ¬l2 ∧ ¬l3 → ¬s to NS . Finally, the only preference is:
s � ¬s. It is easy to see that O = {¬s} ∪ M , where M is any valuation of the atoms of S, is
an optimal outcome of NS iff S is unsatisfiable. Note that this reduction assumes indifference
between the values of the original variables.

A slightly more complicated reduction does not require indifference. Basically, we add
a copy of s for each original variable. The above constraints are repeated for each of these
new copies of s. In addition, each copy of s is a parent of one of the original variables. For
each variable p and its parent sp, the preferences are sp : ¬p � p and ¬sp : p � ¬p. The
outcome in which all s copies are assigned false and all original variables are assigned true is
optimal iff S in unsatisfiable. Clearly, if S is unsatisfiable, then we cannot assign any s copy
the value true. If S is satisfiable, then any assignment in which all s copies are true is better
than the above assignment. Here we used a known fact about CP-nets, i.e., that it is always
better to improve a parent node than to improve any of its children. �

The fact that the CP-net used in this proof is completely flat (i.e., there are no edges)
implies that this problem is hard regardless of the network’s structure. However, we expect
the complexity of constrained optimization given more complex structure, and in particular
cyclic structures, to be much harder.

If we wish to use logic programs to generate the local optima (e.g., as candidates for
strongly optimal outcomes), the translation of CP-nets into nonmonotonic logic programs
used in the previous section needs to be modified, as it does not distinguish between prefer-
ences and constraints.

Given a CP-network N , we construct its corresponding logic program PN as follows. For
each variable value xi of N , we introduce in PN a corresponding atom xi . We denote this set
of atoms by AP (N ). Furthermore, for each atom xi ∈ AP (N ) we introduce a variable x ′

i with
the intuitive meaning that x ′

i is true whenever the value xi is impossible. We denote this set
of atoms by A′

P (N ).
A preference of the form p1 ∨ p2 ∨ · · · ∨ pk : q1 � q2 � · · · � qn , where each pi is a

conjunction of values, translates into a set of rules of the following form

qi ← p j , q ′
1, q ′

2, . . . , q ′
i−1, not q ′

i

for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Additionally, the choice rules set, and the uniqueness constraints
are added to the program.

In order to simplify our discussion, we assume that the constraints of a CP-net are ternary.
Extension of the results and discussion to more general constraints is straightforward. Let
lik ∨ l jm ∨ lnp be such a constraint on the values of the variables vi , v j and vn of N . This
constraint translates to the rules:



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 235

l ′i ← not l jm, not lnp for li ∈ Dom(vi ) − {lik}
l ′j ← not lik, not lnp for l j ∈ Dom(v j ) − {l jm}
l ′n ← not l jm, not lik for ln ∈ Dom(vn) − {lnp}.

If S is a set of atoms S ⊆ AP (N ) ∪ A′
P (N ) from the logic program PN corresponding to

a CP-net N , we denote by SN the set of atoms SN = S ∩ AP (N ).

Example 5. Consider the CP-network N , defined on the variables A and B with domains
{a1, a2} and {b1, b2} respectively, with the following preferences:

a1 : b1 � b2 a2 : b2 � b1

b1 : a1 � a2 b2 : a2 � a1

and the constraints a1 ∨ b1 and a2 ∨ b2.
With the new encoding, the preferences translate into the rules

b1 ← a1, not b′
1 b2 ← a1, b′

1 b2 ← a2, not b′
2 b1 ← a2, b′

2

a1 ← b1, not a′
1 a2 ← b1, a′

1 a2 ← b2, not a′
2 a1 ← b2, a′

2.

The constraints translate into the rules

b′
2 ← not a1 b′

1 ← not a2 a′
2 ← not b1 a′

1 ← not b2

The uniqueness constraints and choice rules set are also added to the program. The resulting
program PN has two stable models M1 = {a1, b2, a′

2, b′
1} and M2 = {a2, b1, a′

1, b′
2} such that

M N
1 and M N

2 are exactly the optimal outcomes of the network.

As expected, the set of the stable models of PN is a superset of the optimal outcomes of
the CP-network N . The following example demonstrates this relation.

Example 6. Consider the CP-network N that defines preferences on the values of variables
A, B, and C with domains {a1, a2}, {b1, b2}, and {c1, c2}, respectively:

: a1 � a2 : b1 � b2 : c1 � c2.

The network contains the constraints

a2 ∨ b1 b2 ∨ a1 a2 ∨ c1 c2 ∨ a1.

The preferences are captured by the rules

a1 ← not a′
1 a2 ← a′

1 b1 ← not b′
1 b2 ← b′

1 c1 ← not c′
1 c2 ← c′

1.

The constraints translate into the rules

b′
2 ← not a2 a′

1 ← not b1 c′
2 ← not a2 a′

1 ← not c1

a′
2 ← not b2 b′

1 ← not a1 a′
2 ← not c2 c′

1 ← not a1.

The uniqueness constraints and choice rules set are also added to the program. The logic
program PN has two stable models, M = {a1, b1, c1, a′

2, b′
2, c′

2} and M ′ = {a2, b2, c2, a′
1,

b′
1, c′

1}. However, only the first corresponds to an optimal outcome.
If we transform the above the program, by embedding the constraints into the preferences,

we obtain the following program

a1 ← b1, c1 a2 ← b2 a2 ← c2

b1 ← a1 b2 ← a2 c1 ← a1 c2 ← a2.



236 COMPUTATIONAL INTELLIGENCE

The stable models of this program are identical to those of PN . The above logic program
corresponds to the following CP-network N ′, that does not contain constraints

b1, c1 : a1 � a2 b2 : a2 � a1 c2 : a2 � a1

a1 : b1 � b2 a2 : b2 � b1 a1 : c1 � c2 a2 : c2 � c1

Therefore although N and N ′ have a different meaning they are translated into equivalent
logic programs.

The following result explains the relation between the outcomes of a CP-network N with
constraints and the stable models of its corresponding logic program PN .

Theorem 5. Let N be a CP-network and PN its corresponding logic program. A set of atoms
M is a stable model of PN iff M N is an outcome such that all immediate successors of M N

are outcomes that violate some of the constraints of N .

Proof. We first prove that if M is a stable model of PN then all immediate successors of
M N violate some constraint of N . Assume that M is a stable model of PN and there is
some outcome M ′ obtained from M N by an improving flipping of some variable V , and M ′
satisfies all constraints of N . Assume that vi is the value of V in M N and v j its value in
M ′. Since flipping V from vi to v j is improving, there must be a preference of the form
p : v1 � · · · � v j � · · · � vi � · · · in N such that p is true in M N . Therefore there will
be a rule in PN of the form vi ← p, v′

1, . . . , v
′
j , . . . , not v′

i . Assume that v′
j is true in M .

Therefore, there must be a constraint C in N that involves value v j such that the constraint
is satisfied by M by setting v j to false. Then the outcome M ′ is not correct since it violates
C , a contradiction. Therefore v′

j is false in M . Then, the rule that has vi in its head cannot
be applied; therefore M is not a stable model. Hence, there can be no outcome M ′ as defined
above.

Now assume that M is an outcome such that all immediate successors of M violate
some constraint of N . Let M ′ be the set of atoms of PN defined as M ′ = M ∪ M ′′, where
M ′′ ⊆ A′

P (N ) such that v′ ∈ M ′′ iff there is some constraint of the form l ∨ x ∨ y in N , such
that l is a (different from v) value from the same domain as v (i.e., both are possible values
of the same variable) and x, y �∈ M . We shall prove that M ′ is a stable model of PN . In order
to do so, we show first that for an arbitrary variable V that has been assigned the value vi
in M , there is a rule that entails vi according to the stable model semantics. If there is a
preference of the form p : vi � · · ·, and p is true in M , then vi is the optimal value for V
and vi will be included in every stable model that contains p and satisfies all constraints on
V by setting vi to true. Suppose that p is true in M and there is a preference of the form
p : v1 � · · · � vi � · · ·. Changing the value of V to any more preferred value violates some
constraint of N . Therefore, there must be some constraint C in N of the form k1 ∨ l2 ∨ vi
such that all variable values of C , except for vi , are assigned false. The program PN contains
a set of rules of the form v′

j ← not k1, not l2 that assign true to all v′
j for j �= i . Additionally,

the rule vi ← p, v′
1, v

′
2, . . . , not v′

i is used by the stable model semantics to provide support
for vi .

Now consider an atom v′ ∈ M ′′. Since there is a constraint of the form l ∨ x ∨ y in N ,
and x, y �∈ M , there must be a rule of the form v′ ← not x, not y in PN that forces v′ to be
included in M .

Finally, it is not hard to see that any set K of atoms of PN such that M ′ ⊂ K cannot be
a stable model of PN . �

We shall use the term locally optimal outcome to refer to an outcome of a CP-net N
that is generated by its corresponding program PN . Therefore, a locally optimal outcome is



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 237

one that cannot be improved without violating a constraint. Furthermore, the set of blocking
atoms of an outcome O is a subset of A′

P (N ) that contains the atoms that appear in the stable
model of PN that corresponds to O . Intuitively, this set, which has been used in the proof
of Theorem 5, contains an atom v′ if the constraints in the network and the other values in
the outcome O render the value v impossible. Formally, this set, denoted by SO , contains an
atom v′ iff v′ ∈ A′

P (N ) and there is some constraint of the form l ∨ x ∨ y in N , such that l
is a (different from v) value from the same domain as v (i.e., both are possible values of the
same variable) and x, y �∈ O .

6.2. Reasoning

Given that stable models correspond to local maxima, to establish that a particular stable
model is optimal, we need to check that it is not dominated by another stable model. One
way to do this is via the idea of a tester program, introduced in Janhunen et al. (2000). We
illustrate this in the context of credulous reasoning.

Given a CP-network N and a variable value v, we call credulous reasoning the problem
of finding an optimal outcome of N that contains v. Skeptical reasoning is the problem of
deciding whether v belongs to all optimal outcomes of N . Note that this is a limited form of
reasoning task—we do not attempt to check whether an arbitrary formula α is satisfied by an
(all) optimal outcome(s).

We start by considering credulous reasoning given the class of flat CP-networks. This
class is not interesting by itself, but we use it to develop the more general class of acyclic
networks. Cyclic networks remain a (tough) problem for future work.

6.2.1. Flat CP-networks. A flat network contains only unconditional preferences of
the form: p1 � p2 � · · · � pn . We start with a basic hardness result.

Theorem 6. Given a CP-network N and a variable value v, deciding whether there exists an
optimal outcome of N that contains v is �P

2 -hard.

Proof. Given a 3-CNF instance S it is �P
2 -complete to decide whether a literal l from S is

true in some minimal model of S (i.e., a truth assignment maximizing the number variables
assigned false). We construct a CP-network NS such that l is contained in an optimal outcome
of NS iff it is true in some minimal model of S. The network NS contains a set of unconditional
preferences: ¬a � a for each atom a of S, and the set of constraints of NS is simply the
3-CNF instance S. It is easy to see that M is a minimal model of S that contains l iff M is an
optimal outcome of NS that also contains l. �

The significance of this result from our perspective is that it points to the need for a
two-tiered approach, as we describe now. This approach adds a tester program on top of the
current logic program. The program tester(PN , M) takes as input some outcome M of a flat
CP-network N , and either generates a new outcome M ′ that is more preferred than M , or
returns failure. In the latter case, the input outcome M is an optimal outcome of N . The tester
is a superset of the logic program PN which additionally contains the following rules.

better ← m(V, D1), m ′(V, D2), D2 > D1
← not better

← m(V, D1), m ′(V, D2), not (D2 ≥ D1).

This tester program generates, whenever possible, a new outcome for N that satisfies
the above rules. Predicate m(V, D) states that in the input model M variable V is assigned



238 COMPUTATIONAL INTELLIGENCE

the value D, while m ′(V, D) declares the same information for the new model M ′. The
comparison predicate > refers to the preference relation defined by the CP-network, while
X ≥ Y means that either X > Y or X and Y are equally preferred.

The first rule assigns true to proposition better iff there is some variable V that is assigned
in M ′ a more preferred value than in M . The second rule, which is a constraint, enforces that
proposition better must be true in the generated stable model. Finally, the third rule, which
is again a constraint, derives a contradiction whenever there is some variable in M ′ that is
assigned a less preferred value than in M . All these rules together ensure that the new model
M ′ generated by the tester will assign a more preferred value to at least one of the variables,
and a less preferred value to none of them.

The following proposition states an important property of flat networks, where M(V )
denotes the value of variable V in outcome M .

Proposition 2. Let M and M ′ be two outcomes of a flat CP-network N . There is an improving
flipping sequence from M to M ′ iff

1. for each variable V of N holds that M ′(V ) ≥ M(V );
2. there exists some variable K for which M ′(K ) > M(K ).

Proof. By induction on the length of the sequence. �

The correctness of the tester is a direct consequence of the previous proposition.

Corollary 1. An outcome M of a flat CP-network N is optimal iff tester(PN , M) returns
failure.

The following algorithm Credulous-Flat(PN , v) returns true if v is a credulous conclu-
sion of N and false otherwise.

Credulous-Flat(PN , v)
While there are stable models of PN that contain v do

Compute a new such model M ;
Use tester(PN , M ∩ AP (N )) to compute an outcome that does not contain v
and is preferred over M ;
if tester fails return true;

end-while
return false;

We can use the above approach to handle skeptical reasoning too. Suppose we need to
determine whether some variable value v is true in all optimal outcomes of an acyclic CP-
network N . We first check whether N has an optimal outcome, which is equivalent to checking
whether the set of constraints of the network is satisfiable. If the check fails (meaning that
the constraints are unsatisfiable), the reasoning task fails as well. If the check succeeds, we
check whether N has an optimal outcome that does not contain v. If the answer is negative
the skeptical reasoning task succeeds, otherwise it fails.

Example 7. Consider the flat CP-network N , defined on the variables A, B and C , with
domains {a1, a2}, {b1, b2}, and {c1, c2} respectively. The preferences are:

: a1 � a2 : b1 � b2 : c1 � c2

and the constraints a2 ∨ b1 ∨ c1, a1 ∨ b2 ∨ c1, a1 ∨ b1 ∨ c2, a2 ∨ b1 ∨ c2, a2 ∨ b2 ∨ c2.
The preferences translate into the rules

a1 ← not a′
1 a2 ← a′

1 b1 ← not b′
1 b2 ← b′

1 c1 ← not c′
1 c2 ← c′

1



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 239

The constraints translate into the rules:

a′
1 ← not b1, not c1 b′

2 ← not a2, not c1 c′
2 ← not a2, not b1

a′
2 ← not b2, not c1 b′

1 ← not a1, not c1 c′
2 ← not a1, not b2

a′
2 ← not b1, not c2 b′

2 ← not a1, not c2 c′
1 ← not a1, not b1

a′
1 ← not b1, not c2 b′

2 ← not a2, not c2 c′
1 ← not a2, not b1

a′
1 ← not b2, not c2 b′

1 ← not a2, not c2 c′
1 ← not a2, not b2.

The uniqueness constraints and choice rules set are also added to the program PN . Assume
that we want to know if a2 is a credulous conclusion of the CP-net N . The call to Credulous-
Flat(PN , a2) may lead to the computation of the stable model M = {a2, b2, c2, a′

1, b′
1, c′

1}. The
call to tester(PN , M) succeeds and generates the stable model M ′ = {a1, b1, c2, a′

2, b′
2, c′

1}
that is preferred over M . The algorithm will then loop and attempt to generate a different stable
model of PN that again must contain a2. The attempt succeeds and the stable model M ′′ =
{a2, b1, c1, a′

1, b′
2, c′

2} is generated. The call to tester(PN , M) now fails (as the outcome a1b1c1
violates a constraint), therefore the call to Credulous-Flat(PN , a2) returns true, meaning that
a2 is a credulous conclusion of PN .

In order to check whether a2 is a skeptical conclusion of N , it is first verified that N has an
optimal outcome, i.e. that its set of constraints is consistent. The call Credulous-Flat(PN , a1)
generates the set M ′ = {a1, b1, c2, a′

2, b′
2, c′

1}, which corresponds to an optimal outcome that
does not contain a2, and the conclusion that a2 is not a skeptical conclusion is derived.

6.2.2. Reasoning in Acyclic CP-networks. In this section we present the algorithm
Credulous-Acyclic that decides whether a value v is a credulous conclusion of an acyclic
CP-network N , and returns an optimal outcome of N that contains v, if one exists. The basic
idea is to traverse N level by level starting from the top, and use a variant of the algorithm
Credulous-Flat at each level. Let 〈L1, L2, . . . , Lm〉 be a partition of the nodes of an acyclic
CP-network N obtained as follows: L1 contains all nodes with in-degree 0. Li contains all
nodes with in-degree 0 in the graph obtained by removing all lower level nodes.

Credulous-Acyclic(PN , v, Oi−1, i)
found:=false;
While (there are stable models of PN that contain v) and (not found) do

Compute a new such model M ;
Use tester-acyclic(PN , M ∩ AP (N ), Li ) to compute an outcome that
does not contain v and is preferred over M ;
if (tester-acyclic fails) and (i < m)

Compute the set Mi = {v | v ∈ M and v is the value of some variable V ∈ Li
or v = u′ for a value u of some variable U ∈ Li };
Oi = Oi−1 ∪ (Mi ∩ AP (N ));
PN = PN ∪ {u ← |u ∈ Mi };
found:=Credulous-Acyclic(PN , v, Oi , i + 1);

end-if;
if (tester-acyclic fails) and (i = m) then found:=true;

end-while
if found return true and the set Om
else return false;

To invoke the algorithm we set the level parameter i to 1 and the set O0 to the empty set.
The algorithm uses the procedure tester-acyclic(PN , M, Li ) which differs from the tester of



240 COMPUTATIONAL INTELLIGENCE

the previous section in that it compares only the values of variables that belong to the set Li ,
i.e., the values of the variables of level i .

A high-level description of the algorithm is as follows. It is a backtracking algorithm
that traverses the input CP-net level by level, extending at each level a partial solution, i.e.,
an outcome that is optimal only with respect to some of the variables, to a more complete
partial solution, i.e., one that assigns optimal values to more variables. More precisely, a call
to Credulous-Acyclic(PN , v, i) represents an attempt to extend an outcome that is optimal
with respect to all variables that appear at levels j , for 1 ≤ j ≤ i − 1, to an outcome that is
optimal for all variables down to level i . Indeed, after the completion of the computation at
a level i − 1, the algorithm has computed an outcome Oi−1 that contains v, is optimal with
respect to all variables at levels j , where 1 ≤ j ≤ i − 1, and it is only locally optimal with
respect to all other variables, i.e., those at levels j > i − 1. The recursive call to Credulous-
Acyclic(PN , v, i) leads to extending outcome Oi−1 to Oi , which contains v, is optimal with
respect to all variables at levels j , where 1 ≤ j ≤ i , and it is locally optimal with respect to
all other variables, i.e., those at levels j > i . If the extension of Oi−1 to Oi is not possible,
the algorithm backtracks to level i − 1 and computes some other outcome O ′

i−1. If this is
not possible the algorithms backtracks further to level i − 2 and so on. When the algorithm
successfully completes the computation at level m, the deepest level of the input CP-net, it
has computed an outcome that contains v and is optimal with respect to all variables of the
input CP-net.

The level partitioning 〈L1, L2, . . . , Lm〉 of the nodes of an acyclic CP-net N , induces
a level partitioning 〈O1, O2, . . . , Om〉 on every outcome O of N , where Oi is the set of
values assigned to the variables of N that belong to Li . Moreover, it induces a partitioning
〈S1, S2, . . . , Sm〉 on the set of blocked atoms SO , such that u′ ∈ Si iff the value u belongs to
the domain of some variable of Li . We denote by Si

O the set S1 ∪ S2 ∪ · · · ∪ Si .

Definition 1. Let N be an acyclic CP-net, O an outcome of N with level partitioning
〈O1, O2, . . . , Om〉. The program Pi

N ,O is defined as Pi
N ,O = PN ∪ {p ← |p ∈ O1 ∪ · · · ∪

Oi−1 ∪ Si−1
O }.

The following lemma states two properties of acyclic CP-nets that will be used in the
correctness proof of algorithm Credulous-Acyclic.

Lemma 3. Let O and O ′ be two outcomes of an acyclic CP-net N such that O ′ � O , and
let 〈O1, O2, . . . , Om〉 and 〈O ′

1, O ′
2, . . . , O ′

m〉 be their level partitionings. If k is the smallest
index such that some value of O ′

k is preferred over some value of Ok , the following hold:

a) O j = O ′
j , for 1 ≤ j ≤ k − 1.

b) If O ′ is a locally optimal outcome, it is also a possible answer to the call tester-
acyclic(Pk

N ,O , M O,k, Lk), where M O,i is an outcome that assigns the same values as
O to all variables V ∈ L j , for 1 ≤ j ≤ i .

Proof. (a) Since O ′ � O , there must be an improving flipping sequence from O to O ′.
Assume that there is some value vi in Od , with d < k, that is replaced by some other value
v j in O ′

d . Since the sequence is improving, the value v j must be preferred over the value
vi . Therefore, k is not the smallest index such that some value of O ′

k is preferred over some
value of Ok , a contradiction.
(b) We show first that O ′ ∪ A, where A ⊆ A′

P (N ), is a stable model of the program Pk
N ,O .

Since O ′ is a locally optimal outcome of N , from Theorem 5 we know that O ′ ∪ Sm
O ′ is a

stable model of PN . From (a) above we know that the level partitioning of O ′ is of the form



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 241

〈O1, O2, . . . , Ok−1, O ′
k, O ′

k+1, . . . , O ′
m〉. From this it follows easily that O ′ ∪ A is also a

stable of the program PN ∪ {p ← |p ∈ O1 ∪ · · · ∪ Ok−1 ∪ Sk−1
O } = Pk

N ,O .
Apart from the rules of the program Pk

N ,O , the acyclic-tester program contains a set of
rules of the form better ← m(V, D1), m ′(V, D2), D2 > D1 and a set of constraints of the
form ← m(V, D1), m ′(V, D2), not (D2 ≥ D1) that both refer to variables V ∈ Lk . Finally
it contains the constraint ← not better. As in the case of the tester for flat networks, the
predicate m(V, D) states that the variable V ∈ Lk has been assigned the value D in M O,k .
We shall show that if the predicate m ′(V, D) is instantiated with the values assigned to the
variables V ∈ Lk by M O,k , the proposition better is derived. Given that O ′ � O , we know
that there can not be a value of M O,k

k that is more preferred than some value of O ′
k . Therefore

the body of none of the constraints ← m(V, D1), m ′(V, D2), not (D2 ≥ D1) is satisfied.
Moreover, we know that there is some value of O ′

k that is preferred over some value of M O,k
k .

Hence, the body of the rule better ← m(V, D1), m ′(V, D2), D2 > D1 will be satisfied by
some variable V ∈ Lk , and therefore the proposition better is derived. �

We now can prove the correctness of algorithm Credulous-Acyclic, which is formally
stated in the following theorem.

Theorem 7. If N is an acyclic CP-network, the procedure Credulous-Acyclic(PN , v, {}, 1)
returns a set of variable values O iff O is an optimal outcome of N that contains v.

Proof. We first prove that if the call to Credulous-Acyclic(PN , v, {}, 1) for a CP-net N
returns true and a set of values O , the set O is an optimal outcome of N that contains v.
Note that O contains v by construction. Moreover, the partition 〈O1, O2, . . . , Om〉, for Oi
as computed by the algorithm, is a level partitioning of O . It suffices to prove that O is
a consistent outcome and there is no other outcome, more preferred than O , that does not
contain v. By construction, O satisfies the choice rules and uniqueness constraints. Therefore,
O is a consistent outcome of the CP-network N . Assume that there is some other outcome O ′
of N such that O ′ � O holds, O ′ does not contain v and it is consistent. Furthermore, assume
without loss of generality, that O ′ is an locally optimal outcome of N ′. Let 〈O ′

1, O ′
2, . . . , O ′

m〉
be a level partitioning of O ′, and let k be the smallest index such that there is a variable at
level k, which is assigned a more preferred value in O ′ than in O . Consider the execution of
the algorithm Credulous-Acyclic at its recursive call at depth k. It is not hard to see that the
input logic program for this call is Pk

N ,O , and the input outcome Ok−1. The algorithm will first
compute an outcome M O,k and the procedure tester-acyclic(Pk

N ,O , M O,k, Ok−1, Lk) will be
invoked. By Lemma 3(b), we know that the call to tester-acyclic(Pk

N ,O , M O,k, Ok−1, Lk) will
succeed and therefore O cannot be an outcome computed by the algorithm, a contradiction.

Assume that the acyclic CP-network N has an optimal outcome O that contains v. We will
show that Credulous-Acyclic(PN , v, {}, 1) can return the outcome O . Let 〈O1, O2, . . . , Om〉
be the level partitioning of O . Since O is an optimal outcome of N , from Theorem 5 we
know that O ∪ Sm

O is a stable model of the program PN . From this it follows easily that
O ∪ Sm

O is a stable model of the program PN ∪ {p ← |p ∈ Sm
O} but also of the program

PN ∪ {p ← |p ∈ Sm
O} ∪ {p ← |p ∈ O1 ∪ · · · ∪ Om}=Pm

N ,O . Therefore, O can be generated
by Credulous-Acyclic provided that procedure tester-acyclic(Pi

N , M O,i , Li ) fails for all
i ≤ m. Assume that tester-acyclic(P j

N , M O, j , L j ) succeeds, for some j ≤ m. This means
that there is an outcome O ′ that does not contain v and assigns some variable at level j a
value that is more preferred than the value assigned to that variable by O . Therefore, there is
a improving flip from O to O ′, hence O cannot be an optimal outcome, a contradiction. �



242 COMPUTATIONAL INTELLIGENCE

Skeptical reasoning can be solved by an algorithm similar to the one described for flat
networks.

7. RELATED WORK

There are several approaches to embedding/expressing preferences in logical languages
and more specifically logic programming (see e.g., Delgrande, Schaub, and Tompits (2003)
for a non exhaustive review). In most of these frameworks preferences are defined on the set
of rules of the program (with a few exceptions, e.g., Sakama and Inoue (1996)) in contrast
to CP-networks where preferences are defined on the values of the variables.

Most closely related to CP-nets is the Answer Set Optimization (ASO) framework
(Brewka et al. 2003) that builds on and extends previous work on Logic Programs with
Ordered Disjunction (Brewka, Niemelä, and Syrjänen 2002). Interestingly, this independent
work, also attempts to create a link between logic programming and CP-nets. In this section,
we take a closer look at ASO, and compare it to the work presented here.

Similarly to a CP-net with constraints, an ASO program is a pair of programs (Pgen, Ppref).
The program Pgen, called the generation program, produces answer sets that represent the
possible solutions, whereas the program Ppref, called the preference program, expresses the
user preferences. The program Pgen corresponds to the constraints, whereas the program Ppref
to the CP-net itself.

An ASO preference program is a set of preference rules of the form

C1 > · · · > Cn ← A1, . . . , Ak, not B1, . . . , not Bm ,

where Ai and B j are literals and Ck is a boolean combination over the atoms of the preference
program. Boolean combinations allow us to express rules of the form a > (b ∨ c) > d ← f
meaning that in the case where f holds, b and c are equally preferred. For the purposes of
this paper it is sufficient to restrict ourselves to rules that contain only atoms. The intuitive
reading of such a rule is that, if the body is true, then C1 is preferred over C2, C2 over C3,
etc.

The preferences expressed by the rules of the preference program, induce an order on
the answer sets of the generation program. This order is defined in terms of the satisfaction
degree of the rules in the preference program. The satisfaction degree can be any integer
value greater or equal to 1, or the special value I which is used to denote the irrelevance of
a rule with regard to an answer set. Formally, the satisfaction degree of a rule is defined as
follows.

Definition 2. Let M be an answer set of Pgen of an ASO program (Pgen, Ppref). Then M
satisfies the rule

C1 > · · · > Cn ← A1, . . . , Ak, not B1, . . . , not Bm

� to degree I if A j �∈ M for some j ∈ {1, . . . , k} or Bi ∈ M for some i ∈ {1, . . . , m}
� to degree I if A j ∈ M for all j ∈ {1, . . . , k}, Bi �∈ M for all i ∈ {1, . . . , m}, and Cl �∈ M

for all l ∈ {1, . . . , n}
� to degree j if all A j ∈ M , no Bi ∈ M , and j = min{r | Cr ∈ M}

The satisfaction degree of rule r in M is denoted by vM (r ). The preorder ≥ is used to
compare satisfaction degrees, and is defined by 1 ≥ 2 ≥ 3 · · ·. Moreover, the values I and 1
are regarded as equally preferred, i.e., 1 ≥ I and I ≥ 1. The notation x > y is used to denote
that x is strictly better than y.



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 243

The order on satisfaction degrees is extended to the answer sets of the generation program
by defining M1 ≥ M2, where M1, M2 are answer sets, to be true iff for every rule ri of the
preference program holds that vM1 (ri ) ≥ vM2 (ri ). Moreover, M1 > M2 is true iff M1 ≥ M2
is true, and for some rule ri of the preference program it holds that vM1 (ri ) > vM2 (ri ).

The optimal model of a ASO program (Pgen, Ppref) is a stable model M of Pgen for which
there is no other stable model M ′ of Pgen such that M ′ > M .

At first sight it seems that there is an intuitive translation of CP-nets to ASO. In-
deed, Brewka et al. (2003) proposes a translation of a CP-net N to an ASO program
(Pgen(N ), Ppref(N )), where the constraints of N (together with the suitable choice rules set
and uniqueness constraints) are translated into the generating program Pgen(N ) in the obvious
way. Moreover, each preference of N of the form p1 ∨ · · · ∨ pn : q1 � · · · � qm translates
into the following set of rules of the preference program Ppref(N ):

q1 > · · · > qm ← p1 . . . q1 > · · · > qm ← pn

Although intuitively similar, the two approaches yield different results as illustrated by
the following simple example.

Example 8. Consider the following CP-network N , representing the buying preferences of
John about laptop computers:

: Pentium 4 � Pentium 3

Pentium 4 : XComp � Y Comp Pentium 3 : Y Comp � XComp

John prefers a Pentium 4 computer over a Pentium 3 one. Moreover, among Pentium 4 laptops
brands (assume that XComp and YComp are laptop computer manufacturers) he prefers buying
a XComp laptop over a Y Comp one, whereas among Pentium 3 laptops he prefers a YComp
laptop over a XComp one.

Clearly, John would buy a Pentium 4 XComp laptop, provided that no constraint prohibits
him from doing so. The CP-network N has an optimal outcome that coincides with the
intended result. However, the corresponding ASO program (Pgen(N ), Ppref(N )), yields two
optimal models, M1 = {Pentium 4, XComp} and M2 = {Pentium 3, YComp}.

In order to obtain a more direct correspondence with CP-nets, Brewka et al. (2003)
introduces the concept of ranked ASO programs, which we abbreviate by RASO. A RASO
program is a sequence of the form (Pgen, P1

pref, . . . , Pn
pref), that instead of a single preference

program, defines a sequence of pairwise disjoint preference programs Pi
pref. The rank of a

rule, denoted by rank(r ), is the integer number j for which r ∈ P j
pref. The preference relation

now is defined as follows.

Definition 3. Let (Pgen, P1
pref, . . . , Pn

pref) be a RASO program and M1 and M2 answer sets of
Pgen. Then, M1 ≥R M2 holds if for every preference rule r such that if vM1 (r ) ≥ vM2 (r ) does
not hold, there is a rule r ′ such that rank(r ′) ≤ rank(r ) and vM1 (r

′) > vM2 (r
′).

As noted in Brewka et al. (2003), a possible ordering on the preference rules is the one
that is induced by the standard dependency graph G(P) of an acyclic preference program
P . The ranking is defined recursively by assigning rank(a) = 0 to every atom a that has no
predecessors in G(P), and the maximum of the ranks of the predecessors incremented by
one to all other nodes. The resulting ordering is called canonical in Brewka et al. (2003).

If we look again at Example 8 in the light of the new semantics, we note that under the
canonical ordering the rule that corresponds to the preference: Pentium 4 � Pentium 3 is
ranked higher than the other two rules and the corresponding RASO program derives the



244 COMPUTATIONAL INTELLIGENCE

intended conclusions. In fact Brewka et al. (2003) prove that there is a direct correspondence
between RASO program under the canonical ordering and acyclic CP-nets.

From the above analysis it becomes apparent that, methodologically, ASO (and more
specifically RASO) and the logic programming translation presented here, are two lines of
research that have been pursued independently, moved in different directions, and, not sur-
prisingly, seem to converge. The ASO approach started from a logic programming framework
that has been extended to incorporate patterns of reasoning of CP-nets. On the other hand, the
departure point of our work is the extension of the CP-nets to the cyclic case. The need for
an effective computational realization of CP-net reasoning and the traditionally strong link
between non-monotonic reasoning and preference modeling, has lead us to consider answer
set programming as a possible implementation platform for CP-nets.

However, our work aims at taking further the relation between CP-nets and logic pro-
gramming, by providing

� An extended semantics for cyclic CP-nets. Note that acyclicity is a crucial property in
the definition of RASO programs.

� An extended computational implementation of acyclic CP-nets in logic programming
that tackles the problem of computing with RASO programs, an issue that has not been
addressed in Brewka et al. (2003).

8. CONCLUSION

The current semantics of CP-network is too conservative in its interpretation of user
specification. Thus, a large network containing a small cyclic component could be rendered
inconsistent. This is contrary to the aim of research on preference elicitation techniques,
i.e., reducing the burden on users. This paper suggests a new semantics that supports the
identification of an optimal outcome even in such cases. Moreover, using partial stable models,
it provides an important tool for identifying the problematic parts of the network, allowing
an automated elicitation system to provide useful feedback to a user. Then, it moves to take a
closer look at the relation between optimization and reasoning in CP-networks and the stable
model semantics for nonmonotonic logic programs.

Our results are limited in that they apply to unconstrained optimization and some aspects
of reasoning with acyclic CP-nets. A more thorough computational analysis of this problem
is required, as well as an algorithmic approach for constrained optimization given cyclic nets.
These remain challenging problems for future research. We do hope, though, that for the
moderate sized CP-networks currently discussed in applications, the semantic intuitions and
algorithms provided in this work will be useful in practice.

ACKNOWLEDGMENTS

Thanks to the anonymous referees for their careful reading of earlier versions, and their
many useful suggestions. Ronen Brafman acknowledges the support of the Paul Ivanier
Center for Robotics Research and Production Management.

REFERENCES

ASPVALL, B., M. PLASS, and R. TARJAN. 1979. A linear-time algorithm for testing the truth of certain quantified
Boolean formulas. Information Proceedings Letters 8(3):121–123.



EXTENDED SEMANTICS AND OPTIMIZATION ALGORITHMS 245

BECKER, A., and D. GEIGER. 1994. Approximation algorithms for the loop cutset problem. In Proceedings of
Tenth Conference on Uncertainty in AI, pp. 60–68.

BOUTILIER, C., R. I. BRAFMAN, H. H. HOOS, and D. POOLE. 1999. Reasoning with conditional ceteris paribus
preference statements. In Proceedings of the 15th Conference on Uncertainty in AI, pp. 71–80.

BRAFMAN, R. I., and D. FRIEDMAN. 2003. Presentation adaptation for rich media messages. STRIMM Consortium
Working Paper.

BREWKA, G., I. NIEMELÄ, and T. SYRJÄNEN. 2002. Implementing ordered disjunction using answer set solvers
for normal programs. In Proceedings of the 8th European Conference on Logics in Artificial Intelligence
(JELIA’ 02), pages 444–455, Cosenza, Italy, Springer-Verlag.

BREWKA, G., I. NIEMELÄ, and M. TRUSZCZYNSKI. 2003. Answer set optimization. In Proceedings of IJCAI’03.

DELGRANDE, J. P., T. SCHAUB, and H. TOMPITS. 2003. A framework for compiling preferences in logic programs.
Theory and Practice of Logic Programming, 3:129–187.

DELL’ARMI, T., W. FABER, G. IELPA, C. KOCH, N. LEONE, S. PERRI, and G. PFEIFER. 2001. System description:
DLV. In Proceedings of LPNMR-01.

DIMOPOULOS, Y., B. NEBEL, and F. TONI. 2002. On the computational complexity of assumption-based argumen-
tation for default reasoning. Artificial Intelligence, 141:57–78

DOMSHLAK, C., and R. I. BRAFMAN. 2002. CP-Nets—reasoning and consistency testing. In Proceedings of KR’02.

DOMSHLAK, C., R. I. BRAFMAN, and E. S. SHIMONY. 2001. Preference-based configuration of web page content.
In Proceedings of IJCAI’01.

DOYLE, J., and M. WELLMAN. 1994. Representing preferences as ceteris paribus comparatives. In AAAI Spring
Symposium on Decision-Theoretic Planning.

EVEN, G., J. NAOR, S. RAO, and B. SCHIEBER. 1995. Approximating minimum feedback sets and multi-cuts
in directed graphs. In Proceedings of the Fourth International Conference on Integer Programming and
Combinatorial Optimization, pp. 14–28.

GAREY, M., and D. JOHNSON. 1979. Computers and Intractability—A Guide to the Theory of NP-completeness.
W.H. Freeman and Company, New York.

GELFOND, M., and V. LIFSCHITZ. 1988. The stable model semantics for logic programming. In Proceedings of
ICSLP-88.

GUDES, E., C. DOMSHLAK, and N. ORLOV. 2002. Remote conferencing with multimedia objects. In Proceedings
of the Second International Workshop on Multimedia Data Document Engineering (MDDE’02).

HANSON., S. O. 1996. What is a ceteris paribus preference. Journal of Philosophical Logic, 25:307–332.

JANHUNEN, T., I. NIEMELÄ, P. SIMONS, and J-H. YOU. 2000. Unfolding partiality and disjunctions in stable
model semantics. In Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning, KR’00.

KEENEY, R. L., and H. RAIFFA. 1976. Decisions with Multiple Objectives: Preferences and Value Trade-offs.
Wiley, New York.

MAREK, V., and M. TRUSZCZYNSKI. 1991. Autoepistemic logic. Journal of the ACM, 38:587–618.

NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming paradigm. Annals
of Mathematics and Artificial Intelligence, 25:241–273.

PEARL, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo.

SACCA, D., and C. ZANIOLO. 1990. Stable models and non-determinism in logic programs with negation. In
Proceedings of PODS’90.

SAKAMA, C., and K. INOUE. 1996. Representing priorities in logic programs. In Proceedings of Joint International
Conference and Syposium on Logic Programming, JICSLP’96.

SYRJÄNEN, T., and I. NIEMELÄ. 2001. The Smodels system. In Proceedings of LPNMR-01.


