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Abstract

The use of positive and negative reasons in inference and decision aiding is a recurrent issue of investigation as far as the type of
formal language to use within a DSS is concerned. A language enabling to explicitly take into account such reasons is Belnap’s
logic and the four valued logics derived from it. In this paper, we explore the interpretation of a continuous extension of a four
valued logic as a necessity degree (in possibility theory). It turns out that, in order to take full advantage of the four values, we have
to consider “sub-normalised” necessity measures. Under such a hypothesis four valued logics become the natural logical frame for

such an approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The design and implementation of Decision Support
Systems requires, besides appropriate computer inter-
faces, the use of formal languages in which the
information about decision problems and preferences
of the decision makers and of the users have to be coded.
A language regularly used (some times implicitly) for
such a purpose is classic logic. For instance preference
statements of the type “x is better than y” become binary
predicates to apply in a universe of discourse repre-
sented by the set of potential actions a decision maker
could undertake. Classic logic is sufficiently powerful to
allow elegant and concise representations besides fitting
the mathematical dimension of most of the decision and
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evaluation models used within Decision Support
Systems [see Refs. 6,10].

On the other hand classic logic is not always suitable
to formalise real life problem situations since it is unable
to handle incomplete and/or inconsistent information. In
decision aiding such situations are regular and indeed
classic logic has often been criticised as a language used
for decision support models formulation [see
16,17,27,32,39]. Both in decision theory and in logic,
a recurrent idea is to separate positive and negative
reasons supporting a decision and/or a logical inference
[for some early contributions the reader can see
7,8,15,29,30]. Under such a perspective we study the
possibility to extend a four valued logic [see 37] in
situations where it is possible to make continuous
valuations on the presence of truth.

The best known formal language explicitly designed
to take into account positive and negative reasons for
inference purposes is Belnap’s four valued logic. The
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four values (#, £, k, u) introduced by Belnap have a clear
epistemic nature. Given a proposition o, four situations
are possible:

— true (¢): there is evidence that o holds (presence of
positive reasons) and there is no evidence that o
does not hold (absence of negative reasons);

— false (f): there is no evidence that o holds (absence
of positive reasons) and there is evidence that o
does not hold (presence of negative reasons);

— contradictory (k): there is evidence that o holds
(presence of positive reasons) and there is
evidence that o does not hold (presence of
negative reasons);

— unknown (u): there is no evidence that o holds
(absence of positive reasons) and there is no
evidence that o does not hold (absence of negative
reasons).

However, the sources of uncertainty are not limited to
pure unknown and/or contradictory situations. The
evidence “for” or “against” a certain sentence might
not be necessarily of a crisp nature. In this case, we can
consider continuous valuation of “positive” and “nega-
tive reasons” [see 38]. This continuous extension may
help us to deal with uncertainty due to doubts about the
validity of the knowledge; imprecision due to the
vagueness of the natural language terms; incomplete-
ness due to the absence of information; apparent
inconsistency due to contradictory statements. Such
situations are all the more relevant in decision aiding
and preference modelling.

Indeed Belnap’s logic has already been studied and
extended [in Refs. 14,36,39] as a language for
preference modelling purposes (the DDT logic). Such
a (first order) language allows to take explicitly into
account crisp positive and negative reasons for which a
preference statement of the type “x is better than )”
holds, thus allowing the construction of more flexible
preference structures [see Ref. 40]. In this paper, besides
presenting the DDT logic [37] we study the continuous
extension of Belnap’s logic suggested in Ref. [28]. Of
course Belnap’s logic is not the only way to consider
paraconsistency [see Refs. 12,31]. However, it has the
simplest semantics allowing to create easily extensions
for several different purposes. The reader can see other
types of extensions in the work of Arieli [see Ref. 2—5].

The aim of the paper is to verify whether it is possible
to associate to the DDT logic an uncertainty distribution,
possibly of the possibility/necessity type and if so, under
which conditions. Section 2, introduces the basic
concepts of the four valued logic and its continuous

extension through the concept of positive and negative
membership. Two examples of their use in decision
aiding are also present in this section. In Section 3, we
try to establish a first relation between four valued logic
and possibility theory. Some related problems are
discussed. In Section 4, we suggest the use of “sub-
normalised” necessity distributions and we show why
four valued logic can be considered a language to which
we associate such a type of uncertainty distributions.

2. Four valued logic and its continuous extension
2.1. Syntax

Belnap’s original proposition [see Refs. 7,8] aimed to
capture situations where hesitation in establishing the
truth of a sentence could be associated either to
ignorance (poor information) or to contradiction (excess
of information). In order to distinguish these two types
of uncertainty, he suggested the use of four values
forming a bi-lattice (see Fig. 1). Intuitively, the four
values are partially ordered on the basis of two relations:
“more truth” relation and “more information” relation. It
is easy to remark that # and k are incomparable on the
first dimension of the bi-lattice while ¢ and f are
incomparable on the second one. It has been shown that
such a bi-lattice is the smallest nontrivial interlaced bi-
lattice [see Refs. 21,24].

DDT logic [for details see Ref. 37] extended
Belnap’s logic in a first order language endowed with
a weak negation (+). DDT is a Boolean algebra. This
logic allows a distinction between the strong negation
(—) and the complementation (~) (see Table 1). It is easy
to check that ~ o =—~+ —~+a. One can remark that strong
negation swaps positive and negative reasons, comple-
mentation reverses the existence of negative and
positive reasons while weak negation reverses only the
existence of negative reasons.

4 truth ¢

information

Fig. 1. The bi-lattice suggested by Belnap.
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Table 1
The truth tables of the negations and the complement

Table 3
The truth table of example 1

o *0, —o ~o. Case (o) V(—a) Ao A—a Value

t k f ya 1 75 20 1 0 True

k t k u 2 48 40 0 1 False

u f u k 3 60 40 1 1 Contradictory
f u t t 4 41 25 0 0 unknown

The truth values of some basic binary operators are
introduced in Table 2 where the conjunction (resp.
disjunction) is constructed as the lower bound (resp.
upper bound) of the truth dimension.

One can remark that the implication is defined as
follows:

a—=p=~aVp

This is a strong implication of the type used in classic
logic. The purpose of such an operator is to be a
representation of inclusion. However, other weaker
implications can be defined within this language.

Besides ordinary four valued sentences, in DDT it is
possible to formulate bivalued sentences such as:

Ao (there is presence of truth in o);
A—o (there is presence of truth in —a);
To (o is true);

Ko (o is contradictory);

Uo (o is unknown);

® [o (o is false);

through the following formulas:

— Ao=(aA"~a) V (= o/ »"0)
— Ta=aA~a
It is easy to see that:
— Aa=T(a) VK(x)
— Toa=Ao/A A0,
Example 2.1. Why the above is a relevant language in

decision aiding problems? Let us take the example of a
Parliament which is preparing to vote for a new proposal

Table 2

The truth of tables conjunction, disjunction and implication

At ko ou f v t k u f —> t k u f
t t k u f t tt ot ot ot t k u f
k k k f f k t k t k k t t u u
u u f wu f wu t t u u u t k t k
S f f f f f t k u f f t t t t

((r)) concerning an ethical issue. Members of the
Parliament (MPs) can vote “for” or ‘“against” this
proposal or can “not vote”.

Suppose that the Parliament has the following rule
for adopting laws concerning ethics: a “strong” majority
has to vote “for” (more than 51%) and no more than 1/3
can vote “against” (the last one is used in order to defend
minorities)."

This kind of voting can be captured by the four
valued logic as in the following:

. V(o)
Aw=1 iff =X >051
o 1 N
Ao =1 iff V(;“)zoss

where N: number of MPs (let’s suppose the parliament
having 100 Mps) V(a): number of MPs voting for o, V'
(—o): number of MPs voting against o.

Four different cases are presented in Table 3. In the
first two cases there is no hesitation since in the first one
the bill is clearly accepted, while in the second it is
clearly rejected. In the third case, the majority of MPs
are for the acceptance of the proposal but at the same
time the number of MPs against (r) is remarkable too;
the proposition will not be accepted, but it is clear that
we are facing a conflict, a contradictory case. Finally, in
the fourth case, the votes for and against (r) are
insufficient to make a decision which is expressed here
with the unknown value. From a decision aiding point of
view, it is clear that the recommendation of an analyst
towards a decision maker facing any of the above
situations will be different. In the third case it is
necessary to work towards the opposants (perhaps
negotiating in order to meet some of their claims), while
in the fourth case it is necessary to convince the “non
voters” (perhaps strengthening the contents of the law).
The reader can see further literature on similar voting
schemes in Ref. [19].

' The reader can see the Nice Treaty establishing the decision rules
of the enlarged European Union for more complicated similar
examples.



M. Oztiirk, A. Tsoukias / Decision Support Systems 43 (2007) 1512-1526 1515

Until this point we gave a brief presentation of DDT
in terms of a propositional language. However, what we
really need is a first order language (which DDT indeed
is). We therefore need to go more in details with the
relevant semantics for this purpose.

2.2. Semantics

The introduced logic deals with uncertainty. A set A
may be defined, but the membership of an object a to the
set may not be certain either because the information is
not sufficient or because the information is contradictory.

In order to distinguish these two principal sources of
uncertainty, the knowledge about the “membership” of a
to A and the “non-membership” of a to A are evaluated
independently since they are not necessarily comple-
mentary. From this point of view, from a given
knowledge, we have two possible entailments, one
positive, about membership and one negative, about
non-membership. Therefore, any predicate is defined by
two sets, its positive and its negative extension in the
universe of discourse. Since the negative extension does
not necessarily correspond to the complement of the
positive extension of the predicate we can expect that
the two extensions possibly overlap (due to the
independent evaluation) and that there exist parts of
the universe of discourse that do not belong to either of
the two extensions. The four truth values capture these
situations. More formally: Consider a first order
language L. A similarity type p is a finite set of
predicate constants R, where each R has a finite arity
ng <. Every alphabet uniquely determines a class of
formulas. Relative to a given similarity type p, R(x1,...,
X,,) 1s an atomic formula iff xi...., x,, are individual
variables, R € p, and nz=m. In this paper, formulas are
denoted by the letters o, f3, 7,--, possibly subscripted.

A structure or model M for similarity type p consists
of a non-empty domain |M| and, for each predicate
symbol RE p, an ordered pair R™=(RM* R™") of sets
(not necessarily a partition) of ng-tuples from [M|. In
fact, an individual can be in the two sets or in neither of
them. A variable assignment is a mapping from the set
of variables to objects in the domain of the model.
Capital letters from the beginning of the alphabet are
used to represent variable assignments.

Example 2.2. Consider a language about preference
statements using binary predicates (the preference
relations) and a universe of discourse being the Cartesian
product of a set A of candidates with itself. Traditionally
when we write p(x,y) we read “x is preferred to y”” and the
semantics associated to this sentence is constructed

taking pairs of candidates (instances of x and y, let’s say a
and b) and checking whether it is indeed the case that “a
is preferred to b”. All instances, for which it is the case,
define the set of models of p(x,y). Automatically the
complement of this set with respect to the universe of
discourse is the set of models of —p(x,y). The negation of
a sentence coincides with its complement.

Let’s use the DDT language in the above example.
There might be pairs of instances of x and y (let’s say a
and b) for which we have information that “a is preferred
to b”. There might also be other instances of x and y (let’s
say ¢ and d) for which we have information that “c is not
preferred to d”. The set of all (a,b) will define the set of
models of p(x,y), while the set of all (¢,d) will define the
set of models of not p(x,y). If we accept (that due to our
imperfect knowledge) these two sets do not form a
partition of the universe of discourse, then it is easy to
note that there will be in the universe of discourse pairs
for which we have both positive and negative informa-
tion and pairs for which we have none.If we call the set of
models of p(x,y) its positive extension, denoting it as P+
and the set of models of not p(x,y) its negative extension,
denoting it as P—, in the case of classic logic it is
sufficient to know one of the above to completely know
also the other (since one is the complement of the other).
In the case of the DDT logic (and other four valued
logics) we need to explicitly know both of them. In other
terms the semantics of a sentence have to be defined
through two sets (the positive and negative extension in
the universe of discourse).

The truth definition for DDT is defined via two
semantic relations, =, (true entailment) and =, (false
entailment), by simultaneous recursion as in the
following definition (due to the structure introduced,
the case of “not true entailment” ¥, does not coincide
with the false entailment and the case of “not false
entailment” W, does not coincide with the true
entailment). Each formula is univocally defined through
its model which is however, a couple of sets, the
“positive” and “negative” extensions of the formula.

Definition 2.1. Let M be a model structure and 4 a
variable assignment.

— M=, R(xy,, x,)[A] iff (A(xy),, A(x,)) ERM™.

— ME=£R(xy, 7, x)[A] ff (A(x)),~, A(x,)) ERM.

— M, R(xy,, X )[A] iff (A(xy),~, A(x,)) €M) RM™.
— MY R(x1,, x,)[A] iff (A(x),~, A(x,)) €M RM.
— M=~ a[A] iff M=, a[A].

— ME=~alA] iff M=, afA].

— Mol A] iff M o[A].

— M ~o[A] iff M, a[A].
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— M+ alA] iff M=, o[A].

— ME+a[A] iff M, o[A].

— M+ oA] iff M, afA].

— M+ o[A] iff M=, olA].

— M=,V xa[A] iff M=, o[A] for all 4" differing with 4
at most at x.

— M,V xalA] iff M, a[4’] for all A’ differing with A4
at most at x.

— M=,V xa[A] iff M=, o[A] for an A" differing with 4
at most at x.

— MV xalA] iff M, o[A'] for an A" differing with 4
at most at x.

It is now possible to introduce an evaluation function
v(o) mapping L in to the set of truth values {z,k,u.f} as
follows:

— (o) =t iff M=, a[A] and M, o[A]
— v(o)=k iff M=, a[A] and M=, a[A]
— V(o) =u iff M, a[A] and M, a[A]
— Vo) =f1iff M, a[A] and M=, a[A]

Given any two subsets of formula o and f3, we can
now extend Definition 2.1 as follows:

— ok, piff, for all variable assignments, if M=, a[A]
then M=, fA]

— ok, B iff, exists a variable assignment for which,
M=, B[A] and M o[A]

— ok, B iff, exists a variable assignment for which,
Mk, o[A] and M, B[A]

— alt,Biff, for all variable assignments, if M=, fB[A]
then ME,a[A]
We get:

Proposition 2.1. Given a non empty domain jMj and
two sets of formula o and

akE, B iff AM C BM*

akE= B iff B &AM

o, Biff AM & BM*

ok Biff BY < AM

Proof. Straightforward applying Definition 2.1.
Finally we can introduce the concept of strong
consequence:

Definition 2.2. (Strong consequence.)

A formula o is true in a model M iff M=, o[A] and
M ofA] for all variable assignments A and we write
ME o [A]. A formula o is satisfiable iff o is true in a
model Mfor some M. A set of formulas /s said to has as

strong consequence or to strongly entail a formula o
(written I'Eo) when for all models Mand variable
assignments A4, if MEB[A], for all B;< I, then MEo[A].

Translating the above in set notation we get the
following: consider a set 4 and a predicate S of finite
arity n. Such a universe is partitioned into four subsets:

S'=8stn~ss=s"ns (1)

St=~StN~5S§ =~s"ns (2)
where ~ S"(~ S7) is the complement of S*(S”) and 5,
skosu S, represent the true, the contradictory, the
unknown and the false extensions of the predicate S
within the universe 4”. Hence (—S)", (=S) ", (~ S)" and
(~ S) are defined as follows:

CS) =5 (08 =(sT)

(=8)"=~(s") (=8 =~(5)

Obviously the following hold:

Sust=stsust=5" (3)
SUS =~ S uUst=~s* (4)
St =8 = (~8Y
$t=(08) = (~5)"
St = (28)" = (=)
§ = (8) = (~9)

StUSFUS US = 4"
- Snst =8NS =0
SN =5nskF=5ns =5nNs“=0

2.3. Continuous extension

For the continuous extension of the previously
introduced four valued logic, S and S can be
considered as fuzzy subsets and two membership
functions can be introduced (for a fixed domain M):
dse :M=00,1] g s M—[0,1]

Such functions can be considered for instance as
degrees representing to what extent we believe in S(x)
and in non S(x) respectively (X representing a universe
of discourse). Such an interpretation can be represented
by the following notation:

psi(x) = B(o)  pg(2) = B(T2)
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We then have to define the fuzzy subsets S', S¥, §*, 5.
The membership functions of such subsets can be
respectively denoted by:

ps (o) = 1(a)  pse (o) = k(e)
psu(o) = u(o) pgr () = 1 (2)

2.3.1. Basic operators on B(a)

We have to make explicit the intersection, the union
and the complementation to fuzzy subsets of X in order
to establish relations between the positive and negative
reasons (B(a), B(—a)) and the four fuzzy membership
functions. To define these operators, we introduce a De
Morgan triple (N,7,V) where N is a strict negation on
[0,1], T a continuous #-norm and ¥ is a continuous co-
norm such that V' (x,y)=N(T(N(x),N(»))). Fuzzyfing Eqs.
(1), (2) and (3) we obtain:

B(Ta) = V(N (1(e)), k(2))

As a consequence we should get:
Vo, B(x) = V(T (B(x), N(B(T2))), T(B(a), B(Ta)))

Supposing that B(a)=x and B(—a)=y, the last
equation can be written as follows:

Vx,ye[0,1], x=V(T(x,N(»)), T(x,»))

Unfortunately, there is generally no De Morgan triple
satisfying such an equation (see Ref. [1]). Thus, we have
to investigate partial solutions relaxing some constraints
of the problem. The idea is to use different -norms for
different quantities [see also Ref. 22]. Following [28]
the four truth values can be defined through B(2) and B
(—a) as follows:

1(2) = Th(B(«), N(B(72))) (5)
k(o) = T2 (B(2), (B(T2))) (6)
u(o) = T3(N(B()), N (B(T))) (7)

f(@) = Ta(N(B(a)), (B(T=))) (8)

where B(a)+N(B(2))=1 and Ty, T,, T3, T, are
continuous f-norms. The following step is to decide
which f-norms will be used for 7y, T», Ts, T4. For this
purpose, we propose a number of conditions:

® the definition of fuzzy partition must be fulfilled:
Vo, t(or) + k(o) +u(o) + 1 (o) = 1 9)

® the fuzzyfication of the definitions of strong and weak
negation and complementation presented in Table 1
must be satisfied:

1) =f (o) =f(~2) = k(+ ) (10)
k(o) = k(o) = u(~ o) = 1(+ ) (11)
(o) = u(Ta) = k(~ o) = f(+2) (12)
fa) = 1t(0a) = 1(~ o) = u(+ ) (13)

® the fuzzyfication of Eqgs. (3) and (4) which represent
relations betweenpositive and negative reasons and four
values must be satisfied:

B(o) =V (t(2), k(=) (14)

B(Ta) = V(£ (), k(=) (15)

® the contradictory and unknown cases must be
exclusive:

Vo, min{u(a), k(a)} = 0. (16)

Proposition 2.2. (T, T>, T3, Ty, T, V, N) is solution of
Eqgs. (9)—(16) if and only if the following conditions
hold:

N=IN, Ty=T;=LT

V:LVQ') T1:T4:min

where (LNy, LTy, LVy) is the Lukasiewicz triple [see
Ref. 33].

Proof. See Appendix A. Similar proofs can be also seen
in Refs. [13,41,42].

For the sake of simplicity we only interpret here the
case where ¢ (x)=x; Vx<[0,1]. We thus get

Corollary 2.1.
(o) = min(B(a), 1-B(7a)) (17)

k(o) = max(B(o) + B(—)—1,0) (18)
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u(o) = max(1-B(o)—B(7a),0) (19)

f(a) = min(1-B(a), B(a)) (20)

Proof. Straightforward from Eqs. (10)—(13) and Pro-
position 2.2.

Corollary 2.2.
B(o) = t(o) + k(o) (21)

B(ma) = f (o) + k(=) (22)
Proof. Applying Proposition 2.2 on Eq. (14) we get:B
(o)=min(#(o) +k(cr), 1). Since #(or)+ k(o) +u(o)+fo)=1
we have that #(a)+ k(o) < 1.Therefore B(o))=t(ct)+ k().
Similarly B(—a)=fo)+k(c).

We can now define some basic operators like
negation, complementation, conjunction, disjunction,
implication and equivalence.

For this purpose we represent each formula o by
(o, (B(a),B(—a))) where (B(a), B(—o)) is an ordered
pair.

In order to define negations and complementation,
we make use of their interpretation in crisp case (see
Subsection 2.1) and we obtain:

(Tot, (B(), B(w))) (23)
(# 0, (B(a), 1-B(7a))) (24)
<~“7(1iB(“)aliB(_'a))> (25)

The conjunction (resp. the disjunction) corresponds
—as in crisp case—to the lower bound (resp. the upper
bound) of o and .

(@B, (T (B(a), B(B)), V1(B(T2), B(7f)))) (26)

(v B, (Va(B(a), B(B)), T2(B(T2), B(7h)))) (27)

where T;=min, V;=max, i=1, 2.

Remark 2.1. We presented here definitions of opera-
tors in terms of belief degrees (B(2),B(—¢c)). The same
definitions are given in terms of four values in Ref. [28].
Let’s remark that Egs. (14), (15) make the passage from
the one to the other easy and provide equivalent

definitions. In order to give an example, we show how
to compute k(o V f):

k(@A) = max(B(zA) + B(2(2A)-1,0)

k(2A\B) = max[min(B(x), B(6))
+ max(B(—w), B(7f))—1,0]
k(a/AB) = max[min(B(a), B(f))
—min(1-B(—a), 1-B(7f)), 0]
k() = max[min(B(x), B(6))
—min(1-B(7a), 1-B(7f)), 0]
k(x/A\B) = max[min(#(e) + k(t), (B)

+ k(B))—min(z(e) + u(2), 1(f) + u(p)), 0]

As far as implication is concerned a simple
“fuzzyfication” of the definition of this operator in the
DDT logic is not sufficient. Remind that in DDT
o— B=~oa A . Although DDT is based on a Boolean
algebra its continuous extension is not. DDT is
established on a four elements set partially ordered
through the bi-lattice introduced in Section 2.1. Its
continuous extension is established on a continuous
space of infinite values and therefore cannot be a
Boolean algebra. Therefore not all operators can be
compositional. Since for the purpose of this paper a
detailed treatment of implication is not necessary, we are
not going to analyse further this issue.

We conclude this part by a generalisation of
inference. One can define modus ponens as in the
following:

((B(x), B(72)))
(0B, (B(~ F;) B((e>h)

(B, (B(B), B(1p)))
where B(B)=min(B(a), B(o— f));B(—f)=max(B(—a),
B(-(a— B).

The interested reader can find more details about
operators in Ref. [28].

How can the continuous extension of the four valued
logic be useful in decision aiding situations? The
following example shows why distinguishing between
continuous positive and negative reasons can be
interesting in decision aiding. Typically it will allow to
provide the client of the decision aiding process with
more operational recommendations.

Example 2.3. We choose again as an example the case
of a Parliament which is preparing to vote for a new
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B(a)

B(—a)

50 80 V(a)

Fig. 2. B(a) and B(—a) for Example 2.

proposal (o) concerning an ethical issue. Members of
the Parliament (MPs) can vote “for” or “against” this
proposal or can “not vote” but this time we are going to
value the positive and negative reasons within the [0,1]
interval. Since a majority is needed, positive reasons
become strictly positive when at least 50% of the MPs
vote “for” and become sure (equal to 1) when at least
80% vote “for”. Negative reasons are used especially in
order to defend minority, that is why they become
strictly positive when at least 15% vote “against” and
become sure (equal to 1) when at least 35% vote
“against”. The model is shown in Fig. 2.

In Table 4 we show the simulation of a number of
votes on a set of issues. How can the decomposition in
positive and negative reasons help a decision maker?

First of all it is easy to observe that (with that precise
decision rule) negative reasons grow faster than positive
ones.

After a deep analysis of Table 4 we can make the
following comments: Cases 1 to 3 show that convin-
cing two non voters to vote “for” will not improve
acceptability (#(a)), while convincing two opponents to
not vote will do. Cases 4 and 5 show how acceptability
and opposition will change due to opinion shifts from
“for” to “against” when there are no “non voters”.
Cases 6 to 10 show the appearance of hesitation due to
ignorance or conflict. The analysis of the positive and
negative reasons helps in showing to a decision maker

Table 4
The truth table for example 2

Case Wa) V(ma) B(a) B(—a) ta) k@) u@ fla)

75 20 0.83 0.25 075 0.08 0 0.17
75 18 0.83 0.15 083 0 0.02 0.15
77 20 0.9 0.25 075 015 0 0.1
82 18 1 0.15 085 015 0 0
78 22 093 035 065 028 0 0.07
58 26 026 0.55 026 0 0.19 0.55
58 17 026 0.1 026 0 0.64 0.1
58 35 026 1 0 026 0 0.74
68 26 0.6 0.55 045 015 0 0.4
0 68 17 0.6 0.1 0.6 0 0.3 0.1

— 0 0 3 R W=

in what direction he should concentrate his efforts in
order to pursue his policy.

2.3.2. Other approaches about B(2)

The idea of having two separate measures for beliefs
and disbeliefs is not new. Ref. [34] talks about
confidence and diffidence measures as two separable
components of a belief function. However, in his
approach these components are commensurable (thus
computable through a generalised Dempster rule). This
is not the case of B(a) and B(—o) which do not need such
an assumption. Ref. [18] introduce the concept of
guaranteed possibility as a further uncertainty measure,
different with respect to the usual possibility measures.
These two distributions can be seen as upper and lower
approximations of a not well known possibility
distribution. They do not represent though independent
positive and negative reasons concerning the belief to a
sentence. Nearest to our approach can be considered the
Transferable Belief Model [see Ref. 35] which allows
measures of contradiction.

On the other hand our continuous extension of a four
valued logic is not the unique approach followed in the
literature. Ref. [23] have also presented a different
extension within the context of preference modelling.
The major difference between these two approaches is
the fact that Fortemps and Slowinski’s one does not
provide a fuzzy partition of the universe of discourse.

In their approach, positive an negative reasons are
presented by two independent necessity degrees, Nrand
N which they call degrees of truthfulness and falsity
respectively. Using our notation (o, (N7(2),N{(a))), we
can mention that N7 (resp. NV) corresponds to our fuzzy
membership function pg.(resp. ps-).

Their interpretation of negations, complementation,
conjunction and disjunction is very similar to ours:

(7ot (N (o), N ()
(= o, (N7 (), 1=Ng ()
(~o, (1-Nr(2), 1=-Nr(2)))
(@B, (min(N7 (o), N7(B)), max(Nr(a), N (B)))
(v B, (max(Nr(a), N7 (B)), min(Nr (o), Ne(B))))
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They define four values in an ordinal way:

#(2) = min(N 7 (e), 1-N'r(2)) (28)
k(o) = min(N'r (o), Np(a) (29)
u(e) = min(1-Nr(x), 1-Np(2)) (30)
f(2) = min(1-N7(2), N () (31)

The use of purely ordinal definition for the four
values has some advantages, especially in the case when
only ordinal data are needed, but presents some
drawbacks. Some of the properties that we think
interesting for decision aiding purposes are not satisfied:

e the four values defined as in Egs. (28)—(31) do not
provide a fuzzy partition of the domain:

o, (o) + k(o) + u(a) +f (a)~1
® contradictory and unknown cases are not exclusive:
Jot, k(o) > 0 and u(ax) > 0

Supposing that unknown case represents a lack of
information and contradictory case an excess of
information, it is difficult to interpret a case where the
unknown and contradictory values are both different
from zero.

® it is not possible to rebuild the value of Nror Ny from
four values, for example:

Nr(2)#4(2) + k(=)
N ()7 (o) + k(o)

2.3.3. Nature of B(x)

What do B(«) (and B(—)) intuitively represent? First
of all they can be seen as membership functions. Since
for any sentence o we consider that there exist two
extensions, the positive and the negative one, we can
imagine that to any such sentence it is possible to
associate two fuzzy sets, one representing its member-
ship to the positive examples and the other representing
its membership to the negative examples.

We can see these two membership functions as the
fuzzy counterpart of the A(a) (respectively A(—a)) in
DDT logic. These formulas represent the presence of
truth in sentence o (respectively :a). In other terms these
formulas can be considered as the positive (negative)
reasons for which o holds.

To some extend B(o) and B(—a) try to “measure” how
strong are such positive and negative reasons. Intui-

tively B(o)—0 should be interpreted as “there are no
positive reasons at all”, while B(—a)—1 should be
understood as “negative reasons are the strongest
possible”. The reasons, for which the strength of
positive and negative reasons can be continuous, are
twofold:

— either because of the quality of the available
information (reliability of our information sources,
quantity of information, presence and dimension
of measurement errors, etc.);

— or because of the use of ill-defined concepts
(through linguistic variables) such as “young”,
“heavy”, etc. [the reader can see more in this issue
in Ref. 17].

A general approach could be to consider them as
capacities. One can define a capacity on a set Q as
follows [11,25]:

Definition 2.3. (Capacity)

Suppose that v: 22 - R* is a set function, then v is a
capacity if and only if the following conditions are
satisfied (4,B € Q):

1. v(0)=0 (boundary condition), and
2. if A< B then v(4) <v(B) (monotonicity condition)

In addition, if v(2)=1 then the capacity is
normalised.

Let us remark that probabilities are normalised
capacities with additive conjunction. If B(c) is seen as
the probability P(c), we will have B(c)+B(—a)=P(c)+
P(—a)=1 and therefore:

u(@) =0  f(a) = 1-P(x)

It is easy to note that interpreting B(«) as a
probability, although possible in principle, contradicts
the hypothesis that positive and negative reasons are not
complementary and commensurable. Therefore nor-
mally it should not be the case that we can write
something like B(a)+ B(—a)=1. An alternative could be
to consider B(o) as a necessity measure, since this type
of capacity does not impose complementarity with the
negation.

3. B(o) as a standard necessity

In this section we first briefly recall some
definitions of possibility theory which will be useful
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for the rest of the paper (the reader can see more
details in Ref. [16]). Possibility measures are expected
to provide an ordinal representation of uncertainty as
follows:

Definition 3.1. Possibility measure

Given a set of events Q, a possibility measure I1 is a
function defined on the power set 22, (IT : 2 —[0,1])
such that:

1. T1(0)=0,T1(Q)=1
2. ACBE2° 5T1(4)<I1(B)
3. VA,BE 29 11(4 N B)=max(I1(4), TI(B))

The dual of the possibility measure, denoted
necessity measure is defined as N(a)=1—11(—a).

Definition 3.2. Necessity measure

Given a set of events £, a necessity measure Nis a
function defined on the power set 2%, (N : 22 —[0,1]),
such that:

1. N(0)=0, N(Q)=1,
2. ASBE2° 5 N(A)<N(B)
3. VA,BE29, N(4N B)=min(N(4),N(B))

Let’s remark that the disjunction of the necessity
measure and the conjunction of the possibility measure
are not compositional:

N(oV f)=max(N(a), N(f))

11(xAB)<min(I1(x), 11(§)) (32)

As a result, we obtain the following properties:

I (o)=N (o)max (I (a), (7)) = 1 (33)

If  N(a)#0, then ()
If I (o)1, then N(a)

1

: (34)

By definition we can consider a possibility measure
as the upper bound of the uncertainty associated to an
event (or a sentence), the one carrying the less specific
information. Dually the necessity measure will repre-
sent the lower bound: how sure we are about an event
(or a sentence). Clearly three extreme situations are
possible:

— N(a)=1;N(—2)=0, o is the case;

— N(@)=0;N(—a)=1, —a is the case;

— N(a)=0;N(—a)=0, nothing is sure and everything
is possible.

A first attempt to interpret the continuous valua-
tion of “presence of truth in o” and “presence of truth
in —a” could be to consider them as necessity
measures. Coming back to our notation, we consider
B(a), as a standard necessity; as a consequence we
have:

Hence, we obtain the following definitions:

(o) = min(N (21), I1(x)) (35)
Je(er) = max(N () ~I1(x), 0) (36)
u(er) = max(I1()~N (), 0) (37)
(o) = min(II (7o), N (7)) (38)

However, since I1(c)>N(o) we can reformulate the
Egs. (35)—(38):

f(e) =N (7o) = 1-T(x)

We first observe that interpreting B(a) as a
standard necessity measure leads to k(a)=0. This is
not surprising given the semantics of necessity. Let
us study separately the two situations, N(a)>0 and N
(a)=0:

When N(2)>0, we get: When N(a)=0, we get:

H(o)=N(ox) H(o)=k(a)=0
k(a)=f(0)=0 u(o)=1(c)
u(or)=I1(~or) flo)=N(o)

In other terms it appears that, while the necessity
measure represents the “trueness” of a sentence (or,
exclusively, of its negation), the possibility measure
represents the “unknownness” of the same sentence.

There are two different ways to define the usual
logical operators. In order to present them we give an
example. We consider here the case of conjunction for
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which there exist two different ways of definition. Each
way is denoted by index i, i=1,2. Unfortunately the
results in the two cases are different:

® The first one consists in using directly the definition
of conjunction of our continuous extension given in
Eq. (26):

(/1 f, (min(B(a), B(B)), max(B(7a), B(7h))))

(oA B, (min(N (), N(f)), max (N (Ta),
N(p))))= (A1 B, (min(N («), N(B)), max(1-11(a),
1=11(B)))) = («/\iB, (min(N (), N(B)).

1—min(I1(a), I1(8))))

® The second one consists in using the definition of
conjunction and disjunction of possibility theory
presented in Definition 3.2 and in Eq. (32):

(@/2f, (B(aB), B((a/f))))
= (a/af, (N(2Ap), ( (@7\f))))
= (@/af, (N(aAB), 1-TT(2Nf)))
= (@/A2f, (min(N (), N(B))), 1= (a/\f)))

It is easy to check that these two definitions are not
equivalent. Negative reasons of the second definition
are greater than the first one’s. [1(a Vv ) <min(I1(x),
().

Similar results may be obtained for other operators
like disjunction, implication and equivalence. Although
this approach is consistent with possibility theory, it has
some weak points:

— presence of truth and “trueness” are practically
equivalent;

— there is no way to consider contradictory
statements;

— there are several compositional problems.

4. B(o) as a sub-normalised necessity measure

An important feature of four valued logics is the
separation of negation from complementation. Possibi-
lity theory does not make any difference between these
two operators since it has been conceived as an
uncertainty measure to be associated to classic logic.
In this section, we suggest the idea of associating an
uncertainty measure to a formalism such as DDT and
study the consequences. In order to do that we recall the
use of the “weak negation” + (to be read as “perhaps™)
of DDT logic (see Subsection 2.1). We remind that such

a weak negation is conceived so that the complement of
a sentence “~ o ” can be established as “—+—+0”.
Finally we remind that for each sentence o we have the
distribution (o, B(a),B(—a)).

We denote the dual measure of B as H (H()=1—8
(o)) so that for each sentence oo we have the new
distribution {o.,H(c),H(—)). From Eq. (9) and recalling
that B(—a)=fo)+ k(o) we get that:

H(ot) = t(or) 4 u(r)

Proposition 4.1. Consider two dual uncertainty dis-
tributions on a set Q: B(x) and H(x), applied on the
language DDT, such that Egs. (9)—(16) are satisfied.
Then Yx€Q B(x)=H(—~ x).

Proof. Recall that H(o))=#(o)+u(x).
From Egs. (10)—(13) and the definitions of the DDT
logic we have:

— 10)=f(~ @) =f k)= 1(+ ) =H(~~ )
— (@) =K(~ ) =k~ # =+ o) = k(@) =K(~~ O

Therefore, H(o)=t(—[10)+k(— ] a).

In other terms the dual measure of B is equal to the
measure of the negation of the complement. It is easy to
extend the result of Proposition 4.1 to all formula as
results in Table 5.

Table 5 shows that the introduction of the weak
negation reduces the dual measures of the type
necessity/possibility to a single one. Indeed we just
need to know one of the uncertainty measures of a
sentence and of its negation in order to know all about
the uncertainty associated to this sentence. Let us
remark that in standard possibility theory, there is only
an ordinal relation between necessity and possibility
(Vo, II(2) > N(o)) which does not permit to rebuild one
in terms of the other one.

Further on, let us consider the first column of Table 5.
If we consider that only one uncertainty distribution is
defined (say B) there is no reason to claim that B(—~ o) =
B(+—+a)>B(a) (the uncertainty associated to the
complement of the negation of a sentence is not
necessarily larger than the uncertainty associated to the
sentence itself; they should be unrelated). However,

Table 5

Equivalence between B and H

B (o) =B(+a) =H(+—~+a) =H(+—o)
B(~a) =B(+~0) =H(~+~+a) =H(+o)
B(=+—~+0) =B(—+—a) =H(—o) =H(—~+a)
Blr-wo)  =BC#o)  =H(@) =H(~+~a)
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since B(+—~+o)=H(a), if the relation H(a)>B(o) does
not hold we are practically relaxing the normalisation
principle of uncertainty measures used in the possibi-
lity theory (II(o) # N(2)). Approaches which make use
of such relaxation of possibility measures exist in the
literature and in such cases the necessity degree is
generally called sub-normalised in order to differenti-
ate them for classical possibility measures which are
normalised in the interval [0,1]. [9]. What we see is
that, while it is difficult to justify such distributions in
a pure possibility theory frame, the use of the DDT
logic allows to give a logical justification for their
existence.

Moreover, the use of this sub-normalised uncertainty
distribution has as a consequence that:

B(aV B) = B(~ (~aA~f)) = 1-B(~ 2/~ f)
— 1-min(B(~ ), B(~ )
=max(1-B(~a), |-B(~f))
= max(B(a), B(f)).

This does not solve all compositional problems of the
language, but allows a wider field of interesting
computational results.

Last, but not least, recall once more that in our
language we associate to each sentence o the distribu-
tion: {a,B(a),B(—a)). We can interpret B(c) and B(—o:) as
two functions on the power set of a set of events Q. We
establish the following definition.

Definition 4.1. A DDT distribution on the set of events
Q is a couple of functions f] : 29 [0,11, /5 : 29-10,1]
such that:

— VY AS Q we have (4, fi(4), f>(A));

— /1(0)=/2(0)=0;

— [Q)=H(Q)=1;

— ASB= fi(4) </i(B);

— CSD=f(C) <f(D);

— for 4N B we have (4 N B, min(f;(4), /1(B)), max(f>
(A), (B));

— for 4 U B we have (4 U B, max(f;(4), f1(B)), min
(f2(4), £2(B))).

It has already been noted that uncertainty measures
can be seen as capacity measures. The use of a double
instead of a single function allows to consider the
possibility to compare this type of distribution with the
case of two capacity measures. Such measures, defining
two independent, monotone capacities have recently
been introduced in the literature by [26] and are called
bi-capacities:

Definition 4.2. (Bi-capacity)

Let us denote P(J)={(C,D) : CSJ,DCJ,CND=0},
then v : P(J)—[0,1]x[0,1] is a bi-capacity function if it
satisfies the following conditions:

1. v(0,0)=0, and
2. if C2E and DCF then v(C,D)=> v(E, F).

This definition suggests that two subsets of J have an
empty intersection which is not always the case with
positive and negative reasons. For this reason, we make
use of a more recent definition given by Ref. [20] where
the exclusivity condition on the sets C and D is not
necessary. They called such measures generalised
bicapacities:

Definition 4.3. (Generalised bi-capacity)

Let us denote P* (J)={(C,D): CSJ,DCJ}, thenv :
P(J)—[0,1]1%[0,1] is a generalised bi-capacity function
if it satisfies the following conditions

1. v*(C,0)=(c,0), and v (0,D0)=(0, d), with ¢, d=[0,1]

2. v* (J,0)=(1,0), and v (0,/)=(0,1)

3. Suppose that v* (C.D)=(c,d) and vx (E, F)=(e))
with ¢, d, e, f€[0,1], if C2 E and DC F then, c>e
and d<f

Given (C,D)C P*(J) with v*(C,D)=(c,d), they
define two new relations v* and v+ w*'(c,d)=c and

v*¥ (c,d)=d.

Proposition 4.2. A DDT uncertainty distribution is a
generalised bi-capacity measure.

Proof. Let’s consider P*(J)={(C,D): CSJ,D<J} and
v¥"(c,d)=B(a)=fi(2) and v* (c,d)=B(—a)=f>(r), then
v* (C.D)=(fi(a0), f>(a)). We have

1. v* (C,0)=(c,0), and v* (0,D)=(0,d), with ¢, d<[0,1],
from Definition 4.3.

2. v* (J,0)=(1,0), and v* (0,/)=(0,1), from Definition
4.3.

3. Suppose that v* (C,D)=(fi(2), f>(2)) and v* (E,F)=
(1(B), f2(B)), if C2 E and D C F then, from definition
4.3, fi(e)=/1(P) and fo(2) < /2(P).

5. Conclusion

In this paper we discuss two distinct tools used to
deal with uncertainty: four valued logics and uncertainty
distributions; both extensively used in decision aiding,
the first one in order to take into account positive and
negative reasons in formulating a recommendation, the
second one in order to take into account the poor or
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contradictory information present in the decision aiding
process.

We first show how it is possible to extend a four
valued logic using continuous valuations of positive and
negative reasons. We then interpret such continuous
valuations as standard necessity measures. On the one
hand we obtain a result consistent with possibility
theory, but on the other hand we lose some of the
expressive power of the four valued logic, mainly the
possibility to distinguish contradictory statements from
unknown ones. We then show that by interpreting such
valuations as sub-normalised necessity measures, we are
able to fully exploit the expressivity of the four valued
language, but at the price of losing the possibility to use
two independent dual measures of uncertainty.
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Appendix A

Proof of Proposition 2.2. Before giving the proof of
the proposition, we remind in the following thedefini-
tion of a Lukasiewicz triple:

LNgyx)=¢p (1= ()

LTy(xy)=¢ ' (max(¢p(x)+p()—1,0))

LVg(xy)=¢ ' (min(¢(x)+ (), 1))

where ¢ is an automorphism of [0,1].

The proof will be done in two steps:

i. First of all, we will suppose that

N=LNy, T,=T5=LT,

V=LV, T\=T4=min

and try to prove that Egs. (9)—(16) are satisfied.
Let’s begin with the definitions of four fuzzy values:

t(a) = min(B(a), 1-B()) (39)
k(o) = ¢ 'max(¢(B(2)) + p(B(72))~1,0) (40)

u(o) = ¢ 'max(1-¢(B(x))~p(B(—a)),0) (41)
f(a) = min(1-B(a), B(a)) (42)

in this case,

if ¢(B(ar))+p(B(—a)) =0 thus,

d(B(2) = 1= P(B(~a)),

or ¢ is an automorphism of [0,1], then

B(a)>1—-B(—a), and B(—a)>1—B(a),

as a conclusion

ko)=¢ " (¢(B(@)+¢ (B(-o))— 1) and we get

Ho)=1—-B(~a), k(a)=B(a)+B(—a)— 1, u(o)=0, flor)
=1-B(x)

It is easy to check that Egs. (9)—(16) are satisfied.

if ¢(B(2))+¢p(B(—a)) <0, then ¢(B(a))<1-—¢(B
(),

thus B(a) <1—B(~a), and B(—a)<1—B(a),

as a conclusion

u(@)=¢ ' (1~($p(B(2))+ $(B(~)))) and we get

t(@)=B(a), u(c)=1—(B(2)+B(—a)), k(2)=0, fla)=B
(o);

It is easy to check that Egs. (9)—(16) are satisfied.

As a consequence, if N=LN¢, T,=T5=LT¢p V=LV
T1=T4=min then Egs. (9)—(16) are satisfied.

ii. Let’s analyse now the other direction of the
equivalence:

Suppose that Egs. (5)—(16) are satisfied, then

i. N=LN¢: because B(a)+N(B(a))=1

il. V=LV¢:

B(o)+N(B(2))=1, then V (#(a), k(o)) +V (f{o), u(cr))
=1 (Eq. (14)),

if k(o)=0, then

V (t(),0)+V (flar), u(a))=1

o)+ V (flo), u(ar))=1 (~co-norm property),

then

V (lo), u(o))=fle) +u(a) (Eq. (9))

iit. T1=T,=min: from Egs. (5-8) and (14), (15), we
get:

(o)=T,(V (((e), k(x)), V (t(e0), u(e)))

k(o) =To(V (), k(a)), V (flar), k(1))

u(@)=Tx(V (), u(@)), V (o), u(2)))

R)=TV (), u(@)), V (o), k(@)

if k(o)=0 then

1) =T (t(@), V ((00), u(@)))

V (H(@), u(a)) > t(a), then

T, is the upper bound of #-norms, ie. 7;=min

A)=Ty(V (o), u(2)), fi2))

V (fa), u(cr)) > flo), then

T, is the upper bound of f~-norms, i.e. 7,=min

iv. T2:T3:LT¢

if &(o)=0 then

u(o)=T3(N(V (), k(00))),N(V (flar), k(21))))

u(@)=T5(N(V (1(a0), 0).N(V (fi@), 0))

u(o)=T5(N(1(@)),N(f(@)))

u(@)=T3(1—t(a), 1 =fla)), and u(o)=1—#a)—flor)

thus,
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T5(1 - 10, 1-flo))=1-(e)~f(e),

then, 75 is continuous, Archimedean and has a zero
divisor, i.e. it is nilpotent.

An element x < [0,1] is called a zero divisor of a #-
norm 7 if and only if (Iy<][0,1]7(x,y)=0). A t-norm
without zero divisors is called positive.

A continuous #-norm 7is Archimedean if and only if
Vx & [0,1]17(x,x)<x.

Let’s prove that 75 is Archimedean:

Suppose that T3 is not Archimedean, then

Yo, tlo)=Aa), T5(1 —t(a), 1 —fla))=1—1a), or

Ty(1 = (@), 1—fo)=u()=1—t(a)~f),

as a conclusion, 75 is Archimedean.

Let’s prove that 75 has a zero divisor:

Suppose that 75 does not have a zero divisor, then

Vx,y €[0,117(x,y)#0, or

there exist cases where #(o)#1, fla)#1, u(a)#o,
thus

o5 1(a1), o) E0,1175(1 — (@), 1)) =0),

as a conclusion, 75 has a zero divisor

Moreover, it is known that a nilpotent -norm is ¢-
transform of the Lukasiewicz z-norm, as a conclusion
T5=LT,,

The proof of T, =LT, is similar to the last one where
the condition A(o)=0is replaced by u(a)=0.
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