

Methods and Models for Decision Making
Alberto Colorni - Dipartimento INDACO, Politecnico di Milano
Alessandro Luè - Consorzio Poliedra, Politecnico di Milano

Methods and Models for Decision Making (MMDM)

Aims:

- introduction to the basics of decision theory
- discussion about decision making in design (and in other fields)
- presentation of risk analysis, multicriteria, group decision, ...
- definition of possible research topics (in design area)

Outline:

- (1) Introduction
- (3) Mental models
- (5) Classification
- (7) Ranking-2, multicriteria
- (9) Seminar
- (11) Group decision
- (13) Research topics
- (15) Conclusions
(2) Tools \& frame
(4) Design \& decision
(6) Ranking-1, risk analysis
(8) A tentative case (discuss.)
(10) Rating problems
(12) Genetic alg. + ...
(14) Case results (if any ...)

Calendar:

METHODS AND MODELS FOR DECISION MAKING			
$\#$	DATA	ORARIO	AULA
1°	$11 / 03 / 2009$	$14.30-18.30$	GIALLA (4 ${ }^{\circ}$ piano Dip. Indaco)
2°	$18 / 03 / 2009$	$14.30-18.30$	AZZURRA (3 ${ }^{\circ}$ piano Dip.Indaco)
3°	$25 / 03 / 2009$	$14.30-18.30$	GIALLA (4 ${ }^{\circ}$ piano Dip. Indaco)
4°	$31 / 03 / 2009$	$14.30-18.30$	$5.4\left(5^{\circ}\right.$ piano Dip. Indaco)
5°	$08 / 04 / 2009$	$14.30-18.30$	GIALLA (4 ${ }^{\circ}$ piano Dip. Indaco)
6°	$15 / 04 / 2009$	$14.30-18.30$	GIALLA (4 piano Dip. Indaco)
7°	$22 / 04 / 2009$	$14.30-18.30$	GIALLA (4 ${ }^{\circ}$ piano Dip. Indaco)

Web site:
Background:
Teacher:
Teaching assistant:
Support:
http://corsi.metid.polimi.it (and after ...)
DOOR (a CD-rom with the basic Oper. Res.)
Alberto Colorni (alberto.colorni@polimi.it)
Alessandro Luè (lue@poliedra.polimi.it)
Center METID (http://www.metid.polimi.it) (gabriele.cristini@polimi.it)

DM introduction

The steps of a decision

Alternatives

elementary actions

Criteria
indicators \& value functions

Evaluation system
what can
(must) be obtained

Results
(see in the following the different procedures)

The different (4) levels of a decision process

i. Information $\rightarrow \quad$ Let's go out for dinner.
ii. Feedback $\rightarrow \quad$ Let's go out for dinner, do you agree ?
iii. Discussion $\rightarrow \quad$ Let's go out for dinner, where can we go ?
iv. Involvment $\rightarrow \quad$ Would you like to go out ? to do what ?

different actors (Decision Makers, DM's)
a (possibly pre-defined) procedure

Decision Theories: a brief introduction

Short history: - 40's \rightarrow Genesis (during the 2° war)

- 50-60's \rightarrow Development [*] (LP probl. \& Combinatorics)
- 60-70's \rightarrow Specialization (non linear, integer, B\&B, ...)
- 70-80's \rightarrow Multicriteria (the importance of trade-off)
- 50-90's \rightarrow Multiple DM (the different points of view)
- 80-00's \rightarrow Decision Aiding (sw supporting the process)
[*] $\max f(x)$, s.t. $x \in X \quad$ (with X finite or infinite set)

Links \& references:

- http://www.informs.org (the INFORMS site)
- http://www.euro-online.org (the EURO site)
- http://www.airo2.org (the AIRO site)
- http://corsi.metid.polimi.it (the site of Center METID)
- A. Tsoukias, From decision theory to decision aiding methodology, EJOR, 2007
- Someone who decides
with respect to one clear objective
with a set of well defined constraints
with all the suitable information

- Examples

Ideal example 1

Combinatorial optimization

Your chorus is defining the storyboard of a concert and you must choose between a set of mottetti (a "mottetto" is a choral musical composition). Each mottetto $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ has a time of execution t_{j} and a level of success $\mathrm{s}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{n})$.
The total time of the exhibition is T min.

What can you do?

If you want, consider this specific instance:
$\mathrm{n}=4 ; \quad \mathrm{t}=(10,22,37,9) ; \quad \mathrm{s}=(60,55,100,15) ; \quad \mathrm{T}=45$
(i) What are the variables?
(ii) How many solutions?
(iii) What is the optimal choice?

Ideal example 2

Linear programming

You must define the week production of a (small) firm that has only 2 products, PA and PB. One item of PA needs 2 units of the resource R1 and 1 unit of the resource R2.
One item of PB needs 1 unit of the resource R1 and 3 units of the resource R2.
The net revenue for each item (PA or PB) is $500 €$.
You have (weekly) 400 units of R1 and 900 units of R2.
You know that the maximum possible sale for PB is 250 items.

What can you do?

(i) What are the variables ?
(ii) How many solutions ?
(iii) What is the optimal choice? (solve with Excel ?)

- Uncertainties (non-deterministic context, data mining)
- Complexity (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- Different rationalities (criteria and preferences)
- Various time horizons (often)
- Use of simulation models
what ... if ...

Tools

A formal decision process needs instruments for:
i. abstraction
ii. analysis
iii. synthesis
(and more ...)

Tools for abstraction / 1

- 1736
- Konigsberg

- The 7 bridges
- A riddle
- Euler
- Graph theory

- The Euler model
- The answer (similar to ...)

Tools for abstraction / 2

The death of count Kinskij

- The count drunk poisoned water (from one of his 7 lovers)
- All 7 lovers were in the castle the day of his death
- The murderer should have come to the castle twice (one for..., one for...), while the others only one.
- Statements of the 7 women:

Alice saw	B C E F	
Barbara saw	ACDEG	
Clara saw	ABD	
Diana saw	B C E	Elementary,
Elena saw	ABD G	my dear Watson !
Francesca saw	A G	(said Sherlock H.)
Gloria saw	B E F	

The solution

The death of count Kinskij

$\left.\begin{array}{l}\text { AEDC } \\ \text { AEGF } \\ \text { ABGF }\end{array}\right\} \nexists$ (so Alies)

Impossible !

Graph theory \& decision problems

- General reports
- http://teoriadeigrafi.altervista.org/teoria dei_grafi.pdf (a tutorial)
- http://en.wikipedia.org/wiki/Graph theory
- http://en.wikipedia.org/wiki/Route inspection_problem
- Applications
- http://bla...
- http://bla...
- http://www.ratp.info/orienter/cv/cv en/carteparis.php (the Paris metro)
- A famous problem - TSP
- http://www-e.uni-magdeburg.de/mertens/TSP/index.html
- http://www.tsp.gatech.edu/index.html
- http://www.densis.fee.unicamp.br/~moscato/TSPBIB home.html

Tools for analysis / 1

- Sudoku (Corriere della Sera, 3 Sept. 2006)

		4				9		
	1	6	2		4	3	8	
	8						5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	
		2				8		

- Branching rules \rightarrow a tree
- A lot of (small) subproblems

Tools for analysis / ...

Step 2

		4				9		
	1	6	2		4	3	8	
	8					4	5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	
	4	2				8		

Step 6

		4				9	1	
	1	6	2		4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	x
	4	2				8		

Step 4

		4				9	1	
	1	6	2		4	3	8	
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	
	4	2				8		

What number in position X ? 2 or 9
branch (a) $\rightarrow X=2$
but if $X=2$, there is no place for a 2 in the right-high block;
so $X=2 \rightarrow N O$
branch (b) $\rightarrow X=9$
in this case ...

Tools for analysis / ...

Step 8

		4				9	1	
	1	6	2		4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
8	6	7	3	2	5	1	4	9
	4	2				8		

What in the position Y ?
branch (b1) $\rightarrow Y=5$
in this case ...

Open situations (to be explored) are (b1) with $Y=5$, and (b2) with $Y=9$

Tools for analysis / ...

Step 13 (of b1)

		4				9	1	
9	1	6	2	5	4	3	8	7
	8	3				4	5	
4			6		2			1
			5					
3			9		8			4
	3	9				2	6	
8	6	7	3	2	5	1	4	9
	4	2				8		

Step 53 (of b1)

7	5	4	8	3	6	9	1	2
9	1	6	2	5	4	3	8	7
2	8	3	7	9	1	4	5	6
4	9	8	6	7	2	5	3	1
6	2	1	5	4	3	7	9	8
3	7	5	9	1	8	6	2	4
1	3	9	4	8	7	2	6	5
8	6	7	3	2	5	1	4	9
5	4	2	1	6	9	8	7	3

	5	4	8			9	1	
9	1	6	2	5	4	3	8	7
	8	3	7			4	5	
4			6		2			1
6			5					
3			9		8			4
1	3	9	4	8	7	2	6	5
8	6	7	3	2	5	1	4	9
5	4	2	1			8	7	3

Step 26 (of b1)

Stop !

(the solution is unique)
so branch (b2) \dagger

The solution (visualization)

Tools for synthesis

Who is the all time world's best boxeur ?

Indicators:

- strength
- speed
- n. of victories
- years of premiership

We need a common framework
to compare the alternatives!

Tools \& frame

Decision processes: a frame

1. Math. programming
2. Risk analysis
3. Multiple criteria
4. Social choice
$5,6,7,8 \rightarrow$ Game theory, \ldots

A real decision process

- Uncertainties (non deterministic context, ...)
- Complexity (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- Different rationalities (criteria and preferences)
- Different time horizons (often)
- Use of simulation models
what ... if ...
- The perception of the problem: differences between
normative approach
cognitive approach

Decision processes in a non-deterministic context

Objectives one more

2. Risk analysis
3. Multi-objective (criteria)
4. Social choice
$5,6,7,8 \rightarrow \ldots$
[*] \rightarrow non-deterministic context
perception \& mental models

Two (opposite) theories
$\underset{\text { (prescriptive) }}{(a) \text { Normative theory } \longrightarrow} \begin{gathered}\text { what the DM } \\ \text { should do }\end{gathered}$
(b) Cognitive theory \longrightarrow what the DM (descriptive) really does
\longrightarrow experimental tests

When they are the same ?

if the (single) DM has all the information (in a deterministic way) and has clearly in mind the (single) criterion of evaluation

optimization

Normative theory: principles \& (counter)exemples / 1

N-1 ${ }^{\circ}$ Principle of INVARIANCE

Equivalent (from the logical point of view) versions
of the same problem must produce the same choice

Examples $>$ Change names or positions for the options
> Change measure units
> Add a constant value for all the results

Counterexamples

Lotteries (A, B, C)
Ellsberg paradox (1961)

Lotteries (case A and case B)

Better A1 or A2 ?

better ...

Better B1 or B2 ?

better ...

Lotteries (case C)

But notice that

Better C1 or C2 ?

$C 1 \rightarrow$ lin. comb. of A1 and B2
$C 2 \rightarrow$ lin. comb. of A2 and B1

$$
\begin{aligned}
& 50(b) \quad \alpha(b) \\
& 50(n) \\
& 100-\alpha(n)
\end{aligned}
$$

White ball win

Better to take from A or B ?

better ...

Now you have a second chance (after the ball is re-inserted)

the same ...

Black ball win

Better to take from A or B ?

Cognitive theory: a first principle

C-1 ${ }^{\circ}$ Principle of NON NEUTRALITY

The aggregation of (decisional) options
is not a neutral operation !

Given the two preferences on A1 and B2, it is not guaranteed that their aggregation (C1) is the preferred one

- Caution: do not combine too easily the options
- Normally, the ambiguity is avoided, "even if this is not rational "
(Ellsberg)

Normative theory: principles \& (counter)examples / 2

$\mathrm{N}-2^{\circ}$ Principle of DOMINANCE

If the DM prefers A with respect to B in every scenario
(or context or state of nature) the choice must be A

Counterexamples
(see in next lessons) \longleftrightarrow Extraction from an urn filled with 100 balls

(Tversky e Kahneman, 1986)
The possible choices in uncertainty conditions
(see "Sindaco di Utopia")

Extraction (in two conditions) / 1

n. of balls	situation A	situation B	n. of balls	situat. C	situat. D	n. of balls
90 white	0	0	90 white	0	0	90 white
6 red	45	45	6 red	45	45	7 red
1 green	30	45	1 green	30	-10	1 green
1 blue	-15	-10	3 yellow	-15	-15	2 yellow
2 yellow	-15	-15				

Better A or B ?

better ...

Better C or D ?

Extraction (in two conditions) / 2

	w 1	w 2	w3	w4		
I nvest	0	45	30	-15	Better	
p(w)	. 90	. 06	. 01	. 03		
Build	0	45	-10	-15		
p(w)	. 90	. 07	. 01	. 02		

Cognitive theory: three more principles

C-2 ${ }^{\circ}$ Principle of EVIDENCE

The dominance among options should be obvious

C-3 ${ }^{\circ}$ Principle of ASYMMETRY

The possibility of losing \mathbf{K} is more important than that to win K

C-4 ${ }^{\circ} \quad$ Principle of COMPACTNESS

An aggregated option (A) has an importance less than the sum of the importances of the single sub-options ($\mathrm{A}_{1} . \mathrm{A}_{2}$)

$$
\pi(A)<\pi\left(A_{1}\right)+\pi\left(A_{2}\right)
$$

Normative theory: principles \& (counter)examples / 3

$\mathrm{N}-3^{\circ} \quad$ Principle of TRANSITIVITY

If the decision prefers A over B and B over C,
then A must be preferred over C

Examples: > Since V. Rossi is better than Stoner, and Stoner is better than Melandri, ...
> Buying emission units (Kyoto protocol) is better than cutting the production, and cutting the production is better than not respecting the constraints on emissions, so ...

Cognitive theory: progression vs. crash

C-5 \quad Principle of CRASH

The decision-maker is (relatively) indifferent to small progressive changes, but at some point become aware of the (large) gap and ...

Cognitive theory: estimation

C-6 ${ }^{\circ}$ Principle of OVER/ UNDER-ESTI MATION
\rightarrow There is an inclination to

Asymmetry in dealing with subjective probability

