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Abstract. In this article we are interested in the representation of The numerical representation problegoes in the opposite way.
gualitative preferences with the help of 3-points intervals (a vector ofThe preference on each pair of alternatives being known, the problem
three increasingly ordered points). Preferences are crucial when as to check if there exists (and under which conditions) one or more
agent has to autonomously make a choice over several possible aeal valued functions which, when applied to the set of alternatives,
tions. We provide first of all an axiomatization in order to character-will return the preferences of the decision maker. As an example,
ize our representation and then we construct a general framework faonsider three alternatives b and ¢ for which the decision maker

the comparison of 3-points intervals. Our study shows that from theslaims that he is indifferent betweerandb and he strictly prefers
fifteen possible different ways to compare 3-points intervals, seveto a andb to a. There are several different numerical representations
different preference structures can be defined, allowing the mpres which could account for such preferences. One option may be to as-
tation of sophisticated preferences. We show the usefulness of osociate interval$0, 1] to a, [2, 4] to b and |3, 6] to ¢ under the rules
results in two classical problematics: the comparison of alternative$z is preferred tay iff the interval of z is completely to the right of
and the numerical representation of preference structures. @encerthe interval ofy (no intersection) ".

ing the former one, we propose procedures to construct non classica We consider both types of problems with a special attention to an
preference relations (intransitive preferences for example) dwer o interval representation. Comparing intervals is a problem relevant to
jects being described by three ordered points. Concerning the latteseveral disciplines. We need intervals in order to take into account in-
one, assuming that preferences on the pairwise comparisons of otransitivity of indifference due to the presence of one or more thresh-
jects are known, we show how to associate a 3-points interval to everglds, to compare time intervals ([2]), or to represent imprecision or
object, and how to define some comparison rules on these intervalscertainty (the price of lies between A and B, the quality af

in order to have a compact representation of preferences describdids between “medium” and “good” ...). In this article, we make use
with these pairwise comparisons. of a special type of intervals that we cafi-points intervals (inter-

vals with an intermediate point). Such intervals contain only ordinal
information (the distances between points are not important) which
allows us to represent qualitative evaluations. Qualitative approaches
The notion of preference, initially introduced by economists ([3, 6]) become more and more attractive in Al since the only existing knowl-
and researchers on Decision Making (DM) ([13, 11, 18, 17, 158, h edge may be qualitative or it may be easier to get qualitative infor-
recently received an increasing attention in Al where artificial agentgnation from experts or qualitative rules may be easier and faster (see
play the role of automated decision makers ([19, 7]). [4] and [5]).

In DM, preferences are used for two different problematics ([21]) The main contribution of this article is to propose a general frame-
the comparison problenand thenumerical representation problem work for the comparison o$-points intervals. The general advan-
These two problems arise naturally in Al since comparing objectdage of these intervals is their capacity of representation, especially
and establishing preference (or any other order relations) is a kefor sophisticated preferences. Our results are useful for both of the
issue in knowledge representation and elicitation. problematics. Concerning the comparison problem, our work shows

The comparison problenteals with the construction of preference how to compare two intervals having only ordinal information in or-
relations over each pair of alternatives. In such a case evaluations der to fit some desired properties such as transitivity of preference,
alternatives are known and may have different nature: numbdrs, cointransitivity of indifference etc. Concerning the numerical represen-
ors, symbols, figures, intervals, fuzzy numbers, etc. The conigtnuc  tation problem, there are two main advantages. First of all the use
of relations may not be an easy task even with quantitative evaluasf 3-points intervals allows to represent complex preferences. For
tions. For instance, consider a maximization problem with three alinstance, the use of simple numbers remains inefficient in the major-
ternatives ¢, b andc) evaluated by numberg(a) = 25, g(b) = 11 ity of cases (only total orders and weak orders have a representation
andg(c) = 9). Depending on the context and/or the decision makerwith numbers), such a reason has led to the use of intervals for dif-
we may have different relations. One solution may be to say that therterent preference structures ([12, 8, 20, 16]). There are mesults
are only strict preferencea {s strictly preferred td andc (aPband  concerning the classical intervata-goints intervals), however such
aPc) andb is strictly preferred ta: (bPc)) while in a different con-  intervals may appear insufficient face to more complex preferences
text the alternatives andc may be considered as indifferet ¢) (for example when the preference is intransitive). For that reason we
since the difference between their evaluation is not significant. It isare interested i8-points intervals for which there is a limited num-
clear that the relations obtained in the two different contexts do nober of research ([10]). Another advantage is related to the cardinality
have the same properties and they do not lead to the same model. of the set of alternatives. When there are too many alternatives (let
be the number of alternatives), it can be preferable to stock only the
3-points interval representation of each alternati¥e: (» informa-

1 Introduction

1 LAMSADE - CNRS, Universié¢ Paris Dauphine , email:
{ozturk,tsoukias@lamsade.dauphine.fr



tion) instead of stocking all the pairwise comparisons of alternatives We present an example showing how we define a “stronger than”

(”("’1) information). From this point of view we can say that  relation.

points interval representation proposes a compact representation for

complex preferences. Example 2 Let p(z,y) and o(z, ) be two relative positions of the
We organize the paper in the following way: in section 2 we intro- 19ure 2. We haves(z,y) = (1, , ,0), p(z,t) = (2,1,0). We get

duce basic notations, we propose an axiomatization for the character¥ (%: ¥) is stronger thanp z,1) smcel <2 1<1land0<0.

ization of the3-points interval representation. A general type of rep-

resentation satisfying such axioms are also presented in this section. filz) fa(z) fs()

In section 3 we propose an exhaustive analysis of all the preference I

structures having 8-points interval representation and in section 4 g (:y) F2(y) . fSI(y)

we conclude with some future research directions. fi(t) £2) f3(b)

2 Basic notions and 3-points interval Figure 2. Examplex(1,1,0) > (2, 1,0)
representation

In this paper we study complete preference structures with two biThe “stronger than” relation satisfies some classical properties:
nary relations: the strict preference relatiBrwhich is an asymmet-

ric relation and the indifference relatiohwhich is the symmetric  Proposition 1 > is a partial order (reflexive, antisymmetric and
complement ofP. We introduce first of all some notions that we will transitive) defining a lattice on the set of possible relative positions.
use in the axiomatization.

We call a 3-points interval an intervalz = [fi(x), f3(x)] with
an intermediate poinfz(z) (i.e. fi(z) < fa(z) < f3(z)).

Then, we introduce a new notion that we call thelative posi-
tion” and that we denote by. The notationp(x, y) represents the
position of the interval: with respect to the interva} (p(z,y) #

(Y, z))-

Definition 1 (Relative position) The relative positiorp(z, y) is the

3-tuple (p1(z,v), v2(x,y), p3(z, y)) wherep; (z, y) represents the
number ofj such thatf;(z) < f;(y).

Proof. t> is a partial order since it is induced from the relation™
which is reflexive, antisymmetric and transitiui.

Let us remark that the relatian is not complete: for example we
have(2,0,0) ¥ (1,1,0) and(1,1,0) ¥ (2,0,0). We present in
figure 3 the graph of the relatian.
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Intuitively, ¢ represents to what extend the position of two inter-
vals is close to the case of two disjoint intervals, case which guaran-
tees a strict preference. The following example illustrates the previ-
ous definition.
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Example 1 Letz andy be two 3-points intervals represented in fig-

ure 1, thenp(z,y) = (1,0,0). p1(z,y) = 1 since there is only ( 1[
f3(y) being greater thary; (z) and<p2(x,y).: ws3(z,y) = 0 since (3,3,0) (3,2, 1)/(2’ 2
f2(z) and f3(x) are greater than all the points of.
(3,5,1 e
f1lx) leff) f3!96) 3,3,2
|
fy) f2(y) fs(y) (3,3,3)
Figure 1. Relative positions(z,y) = (1,0,0) Figure 3. Graph of the stronger than relation

We are ready now to define the strict preference relat@nd the
indifference relatiorf. We will defineP as a set of relative positions,
satisfying some constraints, and constrlies the complement d?.

Let us remark that there are 2%(3—2)!) different relative positions 5 L
D) For such a purpose we propose an axiomatization:

when two 3-points intervals are compared.
The strict preference between two intervals depends on their relayjome 1 The relationP U I is complete and is the complement

ative positions and naturally there are some relative positions whiclt p (i.e. 1(x,y) < —P(z,y) A =P(y, z)).

are more suitable for the representation of a strict preference than

others. For example the case where two intervals are disjoint is mor@xiome 2 The relationsP(x,y) and I(x,y) depends only on the

suitable for a strict preference than a case where one interval is inelative position ofc andy.

cluded to another. For such a purpose we introduce a new binary

o ) P then all the relative positions which are stronger tharare also
Definition 2 (“Stronger than” relation) Let¢ and ¢’ be two rel- i the set ofP.

ative positions, then we say thatis “stronger than” ¢’ and note
> ifVie{l,...,n}, ¢; < ¢l Axiome 4 Ifforalli, fi(z) < fi(y) thenP(z,y) is not satisfied.



Axiome 5 The set of relative positions formirfg has one and only  one3-points interval representation. For the sake of clarity, we will
one weakest relative position (relative position which is weak tharfirst of all present the classical definition of these seven structures,
every relative position of the set). then give their equivalent characterization witipoints intervals by
the help of component sets and finally present in table 1 alBthe
Axiom 1 shows thatP and I are exhaustive and exclusive, ax- points interval representations of these preference structures.
iom 2 presents the comparison parameters and axiom 3 guarantiesAn exhaustive study of thg-points intervals shows that weak or-
the monotonicity. Every relative position is not a good candidate toders and bi-weak orders have three differgsoints interval rep-
represent a strict preference. Axiom 4 eliminates some undesired sifesentations while three-weak orders have one, interval orders have
uations in the definition of>. The role of the strongest relative po- three, split interval orders have one, triangle orders have two and in-
sition of a set ofP is very important since we can determine all the transitive orders have two. We present first of all the definition of
other elements of the set by the help of the strongest one. Axiom Bach preference structure that we cited:
guarantees a unique representation for the strict preference relations| et P be a binary relation on a finite sdtand’ be the symmetric
by forbidding the existence of more than one strongest relative posicomplement ofP, then
tions in their set.
It is easy to calculate the number of sets satisfying such axiomse P U I is aweak orderif and only if there exists a real-valued
Since every set has just one strongest relative position, every eelativ  function f defined onA such that
position may present one set, of course except the ones which donotvz,y € A, Py < f(x) > f(y)
satisfy the axiom 4. The number of relative positions with “for all
i, fi(z) < fi(y)"is five (335 (3))- Since there are, in total, twenty | p U Tis abi
relative positions, the number of sets satisfying axioms 1-5 is fifteen.
We can present now tt&epoints interval representation of a pref- fi(z) > fily)
erence structure satisfying axioms 1-5. First of all, let's give a formal VZ,¥y € A, 2Py <~ { fa(z) > faly)
definition of the preference structure induced by the different possi- |t js easy to see that bi-weak orders are defined as the intersection
ble relative positions of 3-points intervals. of two weak orders.

-weak orderif and only if there exist two different
real-valued functiong; and f» defined onA such that

Definition 3 Lety = (p1, v2, ¢3) be a3-tuple in{0, 1, 2,3}, and
x andy two 3-points intervals. The preference relatioRs,, I<,
associated t@ is defined as

e PUI is a3-weak ordeif and only if it is defined as the intersection
of three weak orders.

Pey(z,y) = ¢(z,y)>¢ e PUI is aninterval orderif and only if there exist two real-valued
I<o(zy) <= —P<y(z,y) AN —P<y(y,x) functions f; and f2, defined onA such that
{ Vo,y € A, Py <= fi(z) > fa(y)
Now, consider the preference relatiorP<(2 ). Then Vo € A, fa(z) > fi(x)
Peioo0(z,y) it fily) < filz), fsly) < fe) and

fs(y) < fs(z). We can remark that the third inequality is re- o p ) 1 is asplit interval orderif and only if there exist three real-
dundant. This motivates the definition of the component set of a 31yed functionsf;, f» andf; defined onA such that

triple . fi(z) > fa(y),

- . oy € Aeby = { f2(2) > f(y),
Definition 4 Lety = (¢1, 2, ¢3) be a3-tuple in{0,1,2,3}. The Vi€ A, f5(z) > folz) > filz)
component sef'p<, associated te is the set of couple@ — ¢;, i) ’

such that there is nd < i with ;s < ;. ) ) . e . .
= e P U is atriangle orderif and only if it is defined as the intersec-

For instanceCp< (2,0,0) = {(1,1),(3,2)}. Hence Cp<,, repre- tion of one weak order and one interval order.
sents the set of couples of points that are sufficient to be compared.
Conditions on the elements @'p<, guarantees the minimality e P U I is anintransitive orderif and only if P is intransitive.
of the representation. The sétp<, contains all the information
concerning the preference structure. From these seven structures weak orders are the most used ones.

Their difference from linear orders (total orders) comes from the fa

It is easy to verify that the preference structure associated to that weak orders may have equivalence classes (two differentsbjec
triple o verifies axioms 1,2,3 and 5. Following definition 4, one can may be considered as indifferent) which is forbidden in the case of
show that axiom 4 is verified b¥<, iff Cp<,, contains at least one linear orders. Bi-weak orders are also known structures, especially
(4,7) with ¢ > 5. for the researchers of DM. They are equivalent to bilinear orders (in
terested reader may find more details in [9]). Three-weak orders wer
born from the generalization of bi-weak orders (for more details see
[14]). Interval orders have been introduced by Fishburn ([8jg Te-
In this section we analyze in details the fifteen set®dfatisfying  laxation of the coherence condition of semiorders (semiorders have
our axiomatization. Let us remind that each set represents a striein interval representation where each interval has the same length)
preference relation which has a 3-points interval representation anldas led to interval orders which are especially used in the presence of
the component sef'p<,, has the whole information about this rep- discrimination thresholds in order to represent intransitive indiffer-
resentation. ence. Split interval orders are especially studied by mathematicians

Our study shows that from the fifteen setsf seven different  ([10]) and allow the representation of very sophisticated preferences
preference structures can be defined, some of them having more thaihe name of triangle orders comes from their classical representa-

3 3-points interval comparisons



tion: an object is preferred to another one if and only if the triangle cases are contradictory with the transitivityof,..
representing the first object is completely to the right of the trian-
gle representing the second one (no intersection)(more details can lse Weak order
found in [14]). Intransitive orders are marginal orders, howdley -If Cp<, = {(¢,1)} thenP<, U I<,, is a weak order: we prove
are used in some special domains (such as the biology in the casethat/<, and P<, are transitive and’<, U I<,, is reflexive and
of cellule comparison or the chemistry in the case of molecular con- complete.
nection [1]). Circles are used in order to represent such structmes: - If P<, U I<,, is a weak order the@'p<, = {(¢,4)}: the key
object is preferred to another one if and only if the circle representing idea is the transitivity of <,,. If P<, U I<,, is a weak order then
the first object is completely to the right of the circle representing the 1<, is transitive and iff <, is transitive thetCp<, = {(4,7)}.
second one (circles may have different diameters). Unfortunately, w
can not give here more details about these seven structures, inderesie Bi-weak order the proof follows directly from the one of weak
reader may find more information in the cited references. orders.

Let us remark that the classical representation of the majority of
these structures do not make use of intervals (intervals can be seen@sThree-weak orderthe proof follows directly from the one of
vectors of some ordered points). For instance weak orders use simple weak orders.
numbers while bi-weak orders (resp. three-weak orders) utilize two,
not necessarily ordered numbers (resp. three points) (for instemce e Interval order. for this proof we make use of the relational char-
can havef; < fs or fo < f1). Triangle orders are represented by  acterization of an interval orde® U I is an interval order if
triangles and intransitive orders by circles. Our study shows that all { PI.PCP,
these seven structures havgpoints interval representation. We will PU lis reflexive and complete
present now the general form of these representations by the help WhereP.I.P C P meansiz, y, z,t, if P(z,y)AI(y,z) AP(z,t)
of component sets. We begin by some propositions concerning the thenP(z, t).
transitivity properties since they are fundamental for some preferenc  We prove firstof all thaf< .. /<. P<, C P<, iff Cp = {(4,j)}

structures : wherei > j:
-If Cp = {(¢,7)} wherei > j thenP<,.I<,.P<, C P<,:
e P, is transitiveif and only if V(4, j) € Cp<y, i > j, obvious. ]
- - -If P<y,.I<,.P<, C P<, thenCp = {(¢, 7)} wherei > j: first
o I, is transitiveif and only if 3i, Cp<, = {(i,4)}, of all if Cp = {(4,7)} with ¢ < j thenP<, is not transitive.
- B In this case it is easy to see that whén, is the identity
o P-, U I, is aweak orderif and only if 3i, Cp<, = {(i,i)}, P<,.I<,.P<, C P<, is not satisfied. We prove then that

if |Cp<yx| > 1thennot (P<y,.I<,.P<, C P<,). We analyze
two cases wher¢Cp<,| > 1: 3(3,5) € Cp<,, ¢ < j and

o Pc, U I<, is a bi-weak orderif and only if |Cp<,|

2andv(i,j) € Cp<,, i = j, V(i,j) € Cp<yp, @ > j. The first one provides an intransitive
- P<,. The key point of the analysis of the second case is the
o Po, U I, is a 3-weak orderif and only if [Cp<,| = definition of /<, when|Cp<,| > 1:let (i, j), (I, m) be e!ements
3andv(i, ) € Cp<y, i =, of Cp<, thenfi(z) > fi(y) A fily) = fm(z) With (i,5) #
- (I,m) = I<,(z,y). It is easy to see that this implication
e P_, U I, is aninterval orderif and only if Cp = {(i,4)} has one part where a point of is greater t.han a point of.
wherei > j, y and another part which inverses such inequality. In this
B case one can always find four elementsz,y,z such that
e P, U I, is a triangle order if and only if Cp<, = Pep(w,2), I<o(2,Y), P<o(y, 2) and=Peg (w, 2).

{(,0),(i,5)}, wherei > j, o :
We can now proof the characterization of interval orders:

e P., U I, is aintransitive orderif and only if 3(i,5) € -1t Op = {(i,j)} wherei > j then P<, U I<, is an interval

C;’<<p7 i <. order: we prove thaP<, U I<, is reflexive and complete and
a Pcyplcy.P<y C Py
- If P<, U I<, is an interval order therCp = {(i,7)}
where i > j: if P<, U I<, is an interval order then
P<,.I<,.P<, C P<,which implies|Cp<,| = 1.

We present how the key-steps of the proofs of these general propo-
sitions.

o The transitivity ofP<,:
-1t V(i,5) € Cp<y, © > j thenP<,, is transitive: obvious.
- If P<, is transitive therv(i,j) € Cp<y,, © > j: We prove
this result by showing that iB8(4,j) € Cp<y, @ < j =
dz,y, 2, Pﬁw(xvy) A PSLP(yv z) andﬁpﬁ%(m72)'

e Triangle order the proof follows directly from the ones of weak
orders and of interval orders.

e Intransitive order the proof follows directly from the transitivity

of PSSP'
o The transitivity of/<,:
- Op<, = {(i,4)} implies I, is transitive: obvious. ~ These propositions give us general representations of structures in
- I<, is transitive impliesCp<, = {(i,i)}: we prove this  the sense that these are also true for intervals having more than 3

result by contradiction. Supposing that, is transitive we  points. We can conclude now this section by presenting al3the

analyze two different casesi(i,j) € Cp<y,i # j, and  points interval representations for the seven preference structures in
Y(i,7) € Cp<e,i = jand|Cp<,| > 1. We show that these two tagple].
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