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Abstract

Let S be a PQI preference structure on a finite set A, where the relations
P , Q, I stand for “strict preference”, “weak preference” and “indifference”
respectively. Two specific preference structures: PQI semi orders and PQI
interval orders, have been considered and characterised recently in such a
way that is possible to associate to each element of A an interval such that
P holds when one interval is completely to the right of the other, I holds
when one interval is included to the other and Q holds when one interval
is to the right of the other, but they do have a non empty intersection
(Q medelling the hesitation). While the detection of a PQI semiorder is
straightforward, the case of the PQI interval order is more difficult as the
theorem of existence consists in a second-order formula. The paper presents
an algorithm for detecting a PQI interval order and demonstrates that it
is backtracking free. This result leads to a matrix version of the algorithm
which can be proved to be polynomial.

Keywords: Interval Orders, PQI Interval Orders, Detection Algorithm,
Complexity
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Introduction

In preference modelling and decision support we often have to compare
intervals instead of discrete values (see Fishburn, 1985, Pirlot and Vincke,
1997). This is due to the unavoidable lack of precision and certainty in
the evaluation of alternatives. The conventional model adopted in order to
compare two intervals considers that “x is preferred to y” (P (x, y)) iff the
interval associated to x is completely to the “right” (in the sense of the line
representing the reals) of the interval associated to y. In all other cases “x
is indifferent to y”. Such a model (where indifference is not transitive) may
conceal the fact that “x being to the right of y” (the intersection being not
empty) is a situation intuitively different from the case where one interval
(let’s say the one of x) is included in the other (let’s say y). The second
case can be considered a “sure indifference” as much as can be considered as
“sure preference” the case P (x, y). Under such a perspective the first case is
a situation of hesitation between preference and indifference which merits to
be considered separately (see Tsoukiàs and Vincke, 1997). We may denote
such a situation as “weak preference” and represented it as Q(x, y).

The problem is to give the necessary and sufficient conditions for which a
preference structure characterised by the presence of the relations P , Q and
I may admit a representation by intervals as the one previously discussed.
Such a problem was considered open for a long time (see Vincke, 1988) and
has been solved by Tsoukiàs and Vincke, 1999, where an existential theorem
is given. The operational problem is how to detect if a given PQI preference
structure satisfies the conditions of the theorem. The problem is not an easy
one because the theorem consists in a second order formula which could be
undecidable. Actually, while trying to verify the conditions of the theorem
there is space for some arbitrary decisions resulting in a tree defined by the
branches created by each such arbitrary choice. Intuitively, if after such a
choice an inconsistency occurs a backtracking should be done in order to try
a new branch. This may result in a problem at least in NP.

The paper is dedicated to present an algorithm for detecting the satisfac-
tion of the theorem by a given PQI preference structure which is polynomial.
The paper is organised as follows. Section 1 presents the basic definitions
and the problem to solve. Section 2 gives two theorems, the first giving the
necessary and sufficient conditions for a PQI preference structure to have
an interval representation and the second giving a different characterisation,
which is less intuitive, but which will be used in order to build the detection
algorithm. Section 3 gives the algorithm in a procedural way by which it
is possible to demonstrate that it is “backtracking free”. Section 4 presents
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a “matrix implementation” of the algorithm enabling to demonstrate that
it is polynomial. Some conclusions are given at the end of the paper. Ap-
pendix A contains the demonstrations of the propositions used in the proof
of Theorem 3.1 as well as the algorithm 3.1.

1 Problem setting

In the following we will use the following notation for any binary relation
(S, T, · · ·) on a finite set A:
S−1(x, y) =def S(y, x);
(S ∪ T )(x, y) =def S(x, y)∨T (x, y)
(S ∩ T )(x, y) =def S(x, y)∧T (x, y)
(S ⊂ T )(x, y) =def S(x, y)→T (x, y)
(S.T )(x, y) =def ∃z S(x, z)∧T (z, y)

We first give the conventional definition and theorem concerning interval
orders.

Definition 1.1 (see Roubens and Vincke, 1985)
Given P an asymmetric binary relation and I a reflexive and symmetric
relation, P ∪ I being complete, the preference structure 〈P, I〉 is an interval
order iff there exist two real valued functions l and r, such that ∀ x, y ∈ A:
- i. r(x) > l(x);
- ii. P (x, y)⇔l(x) > r(y);
- iii. I(x, y)⇔r(y) > l(x) and r(x) > l(y);

In conventional interval orders when comparing two intervals two situa-
tions are considered:
- one interval is completely to the right of the other (strict preference);
- there is a non empty intersection of the intervals (indifference).

Theorem 1.1 A 〈P, I〉 preference structure on a finite set A is an interval
order iff P.I.P ⊂ P .

Proof See Roubens and Vincke, 1985.

We now give the definitions of PQI preference structure and PQI interval
order.

Definition 1.2 (see Roubens and Vincke, 1985)
A PQI preference structure on a finite set A is a triple of binary relations
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〈P,Q, I〉, such that:
- i. I is reflexive and symmetric;
- ii. P and Q are asymmetric;
- iii. I ∪ P ∪Q is complete;
- iv. P,Q, I are mutually exclusive.

Intuitively, in a PQI preference structure, P represents “sure prefer-
ence”, I represents “sure indifference” and Q (weak preference) represents
“hesitation between preference and indifference” (see Tsoukiàs and Vincke,
1997 for related issues).

Definition 1.3 (see Tsoukiàs and Vincke, 1999)
A PQI preference structure on a finite set A is a PQI interval order iff
there exist two real valued functions l and r, such that ∀ x, y ∈ A:
- i. r(x) > l(x);
- ii. P (x, y)⇔r(x) > l(x) > r(y) > l(y);
- iii. Q(x, y)⇔r(x) > r(y) > l(x) > l(y);
- iv. I(x, y)⇔r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y).

A PQI interval order extends conventional interval orders in the sense
that, while comparing two intervals three possibilities are considered:
- one interval is completely to the right of the other (strict preference);
- one interval is to the right of the other, but they have a non empty inter-
section (weak preference);
- one interval is included in the other (indifference).

Our problem is double: define the necessary and sufficient conditions
for which a PQI preference structure is a PQI interval order and define an
algorithm which operationally verifies if the conditions of the theorem are
satisfied by a given PQI preference structure.

2 PQI interval orders

The basic theorem which gives the necessary and sufficient conditions for a
PQI preference structure to be a PQI interval order is the following.

Theorem 2.1 A PQI preference structure on a finite set A is a PQI in-
terval order iff it exists a partial order Il such that:
i) I = Il ∪ Ir ∪ Io where Io = {(x, x), x ∈ A} and Ir = I−1

l ;
ii) (P ∪Q ∪ Il).P ⊂ P ;
iii) P.(P ∪Q ∪ Ir) ⊂ P ;
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iv) (P ∪Q ∪ Il).Q ⊂ P ∪Q ∪ Il;
v) Q.(P ∪Q ∪ Ir) ⊂ P ∪Q ∪ Ir;

Proof See Tsoukiàs and Vincke, 1999.

It is easy to see that the theorem is a formula in a second order logic
(a formula where predicates can be variables). Generally the satisfaction of
second order formula can be undecidable. Moreover the theorem does not
give a constructive procedure for verifying its satisfaction. In the following
we give a second theorem, equivalent to theorem 2.1, which enables to define
an algorithm detecting if a PQI preference structure is a PQI interval order.

Theorem 2.2 A PQI preference structure on a finite set A is a PQI in-
terval order iff it exists a partial order Il such that:
i. I = Il ∪ Ir ∪ Io where Io = {(x, x), x ∈ A} and Ir = I−1

l ;
ii. P.Q ∪Q.P ∪ P.P ⊂ P and Q.Q ⊂ P ∪Q;
iii.(P.Q−1 ∩ I) ⊂ Il;
iv.(P−1.Q ∩ I) ⊂ Il;
v. (I.I ∩ P ) ⊂ Il.Ir;
vi. (I.I ∩ (Q ∪Q−1)) ⊂ ((Il.Ir) ∪ (Ir.Il))
vii. Il.Il ⊂ Il;

Proof See Tsoukiàs and Vincke, 1999.
We remind to the readers that a partial order is a reflexive and transitive

binary relation.

3 The algorithm

Let S be a PQI preference structure on a finite set A. The algorithm will
first verify condition ii and then construct Il by applying directly conditions
iii to vii of theorem 2.2. By definition, Ir = I−1

l , i.e., the construction of Il

implies that of Ir. If the algorithm is able to build a relation Il satisfying
conditions of the theorem 2.2, then the PQI preference structure under in-
vestigation is a PQI interval order. If on the other hand it fails, then the
PQI preference structure under investigation is not a PQI interval order.
Failure of the algorithm can occur either because condition ii is not satisfied
or because during the construction of Il a contradiction occurs. A contra-
diction is defined as either a violation of the mutual exclusion of P,Q, I
(Il(x, y) is established for (x, y) ∈ P ∪Q ∪ P−1 ∪Q−1) or a violation of the
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asymmetry of Il ( both Il(x, y) and Il(y, x) are established). The demon-
stration of formal correctness of the algorithm is in Appendix A.

Algorithm 3.1
Step 1: if not (P.Q ∪Q.P ∪ P.P ⊂ P and Q.Q ⊂ P ∪Q) then failure;

Il = ∅;
Step 2: ∀ x, y, z ∈ A, if I(x, y)∧P (x, z)∧Q(y, z) then

if (y, x) ∈ Il then failure else Il = Il ∪ {(x, y)};
Step 3: ∀ x, y, z ∈ A, if I(x, y)∧P (z, x)∧Q(z, y) then

if (y, x) ∈ Il then failure else Il = Il ∪ {(x, y)};
Step 4: ∀ x, y, z ∈ A, if I(x, y)∧I(y, z)∧P (x, z) then

if (y, x) ∈ Il∨(y, z) ∈ Il then failure
else Il = Il ∪ {(x, y), (z, y)};

Step 5: I ′l = Il;
repeat

∀ x, y, z ∈ A, if Il(x, y)∧I(y, z)∧(Q ∪Q−1)(x, z) then
if (y, z) ∈ Il then failure else Il = Il ∪ {(z, y)};

∀ x, y, z ∈ A, if Il(x, y)∧I(z, x)∧(Q ∪Q−1)(y, z) then
if (z, x) ∈ Il then failure else Il = Il ∪ {(x, z)};

until I ′l = Il

Step 6: ∀ x, y, z ∈ A, if Il(x, y)∧Il(y, z) then
if (z, x) ∈ Il ∪ P ∪Q ∪ P−1 ∪Q−1 then failure
else Il = Il ∪ {(x, z)};

Step 7: If there is one I(x, y) not yet established as Il or Ir, choose one of
them and set it as Il(x, y). Then return to 5. Otherwise stop.

Steps 1 to 4, are deterministic, in the sense that each Il established is
mandatory. If a contradiction occurs, the algorithm fails. Steps 5 and 6 how-
ever, use already established Il in order to establish further Il. The problem
arises from Step 7 where Il is arbitrarily chosen. When the algorithm goes
back to Step 5 to continue with establishing Il, if a contradiction occurs,
intuitively, it should backtrack to the last Il(x, y) established, reverse it to
Il(y, x) and try again. In other terms the algorithm appears to have to ex-
plore a “tree structure” defined by the branches created by each arbitrary
choice. In such a case the risk is to have to make an exhaustive research of
the whole “tree”.

In the following we will demonstrate that the algorithm previously pre-
sented is “backtracking free”. In other words, any contradiction implies the
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non-existence of a PQI interval order on A and the algorithm can stop im-
mediately without backtracking. Actually any failure in steps 1 to 6 will
induce the algorithm to end with a negative answer. This is the reason for
which the algorithm is presented without backtracking.

Theorem 3.1 The algorithm 3.1 is backtracking free.

Proof We elaborate the demonstration observing how the setting of Il(x, y)
(steps 5, 6) is propagated and analyzing contradictory situations. The
demonstration consists in decomposing the problem in smaller cases and
showing for each of them that when a contradiction occurs there is no back-
tracking necessity and the algorithm fails (the PQI preference structure is
not a PQI interval order).

Before reaching step 7 the first time, the process is deterministic, we can
therefore construct the graph G0 = (A, V0) where A is the usual set of objects
on which the PQI preference structure applies and V0 = P ∪Q∪I∪Il where
I consists of (x, y) which are not yet set. The undirected graph associated
to G0 is complete and all its arcs can be directed except the ones in I. In the
following we denote as a “triangle” a set of three elements in A (x, y, z) such
that xΦyΨzΘx, where Φ,Ψ,Θ are any among P, P−1, Q,Q−1, Il, I

−1
l , I.

Proposition 3.1 In G0, a triangle with at least an I-arc must be one of
the following:
1 - I.I.I
2 - I.I.Il

3 - I.I.Q
4 - I.Il.I

−1
l

5 - I.I−1
l .Il

6 - I.P.P−1

7 - I.P−1.P
8 - I.Q.Q−1

9 - I.Q−1.Q

Proof.
Immediate from Theorem 2.2 which excludes all other possibilities.

Denote as X-arc any arc representing relation X, X being one of P,Q, I, Il.
Denote as I-path a path where each of its arcs is an I-arc. Consider then the
partial graph G∗ = (A, V1) where V1 = {(x, y)|x 6= y, ∃ I-path from x to y}.
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Proposition 3.2 G∗ consists of connected components which:
i. undirected associated graphs are complete;
ii. do not contain any P -arc;
iii. are closed to the propagation of the setting of Il.

We have proved that G∗ consists of connected components in which the
propagation of the setting of Il(x, y) is limited. Each component contains
only Q- or I- or Il- arcs, while P -arcs exist only among such components.
Therefore, we can limit ourselves in analyzing only one connected compo-
nent, denoted by G1 = (A1, V1).

Let (x∗, y∗) be the I-arc arbitrarily chosen in step 7 to become an Il-arc.
Denote as Ik

l the set of I-arcs set in Il in the current step and as IK
l the

cumulative set of I-arcs set in Il until the current step included. We have
that IK

l = Ik
l ∪ IK−1

l . Conventionally, in step 5, (x∗, y∗) is added to Ik
l ,i.e.,

as it is set in the step 5.

Proposition 3.3 I-arcs set to Il by transitive closure (step 6) are never
used when the algorithm iterates step 5.

Denote as a q-path a path whose arcs are Q or Q−1 ones. In the set A,
let us consider now the following equivalence relation: Θ(x, y) ⇔ ∃ a q-path
from x to y and use X, Y, Z to denote equivalence classes. Therefore we
can see graph G1 as composed by equivalence classes of nodes each of which
contains only Q-, I- and Il- arcs. Further on among such equivalence classes
only I- and Il- arcs do exist.

Proposition 3.4 In step 5
i - the propagation of Il(x, y) ∈ X × Y is limited to X × Y .
ii - when X 6= Y ,the propagation of Il covers the whole set X × Y .
iii - If (x∗, y∗) ∈ X ×X then Ik

l ⊂ X ×X
iv - If (x∗, y∗) ∈ X × Y, X 6= Y then Ik

l = X × Y .
v - Whatever (x, y) is chosen to be set in Il in Step 5 the result is the same.
vi - If Il(y∗, x∗) is chosen instead of Il(x∗, y∗) then all the settings in this
step will be reversed.

Proposition 3.4 states that, during the k-th iteration of the algorithm,
Step 5 sets to Il some I-arcs included in an equivalence class (of relation Θ)
and all I-arcs among the equivalence classes. Consider now Step 6. In each
application of step 6, setting Il(x, z) from Il(x, y) and Il(y, z), implies that
at least one arc, let’s say (x, y), has to be set during, either this step, or the
two last steps 5,7. In a formal notation we have:
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Proposition 3.5 In Step 6:
i - If (x, y) ∈ X ×X then z ∈ X.
ii - If (x∗, y∗) ∈ X ×X then Ik

l ⊂ X ×X.
iii - If it exists Ik

l (x, z) ∈ X × Z, X 6= Z then X × Z ⊂ Ik
l .

iv - If (x∗, y∗) ∈ X × Y, X 6= Y ((x∗, y∗) chosen in the last step 7), only
arcs connecting different classes are set in Step 6 (in other terms if Il(x, z) ∈
X × Z is set in Step 6 then Z 6= X ∧Z 6= Y ).

These results show that if we choose an arc (x∗, y∗) to set in Il, if it
is inside one equivalent class it does not propagate Il outside this class,
while if it connects two different classes, it does not propagate Il into any
class. Furthermore, as the algorithm has passed through steps 5, 6 before
the establishment of G1 at least once, all the arcs between two classes X, Y
are of the same type (either I-arcs or Il-arcs). Therefore, the problem can
be further decomposed into two sub-problems:
a) - Outside all the equivalent classes, we consider the same problem with G1

replaced by G2 = (A2, V2) where A2 is the quotient set AΘ and V2 consists
of two types of arcs: I(X, Y ) if ∃(x, y) ∈ X ×Y such that I(x, y) holds, and
Il(X, Y ) if ∃(x, y) ∈ X × Y such that Il(x, y) holds.
b) - Inside each equivalent class, we consider the same problem with G1

replaced by G3 = (A3, V3).

The sub-problem a) is trivial, as the graph G2 contains only I or Il

arcs, furthermore, the part of G2 covered by Il-arcs is already Il transitively
closed since the algorithm has already gone through Step 6. The problem
is reduced to the construction of a linear order. Therefore, we have to deal
only with the sub-problem (b).

We have to demonstrate now that the algorithm is backtracking free on
G3 where the arcs are Q, Il, I and there is a q-path connecting any two dif-
ferent nodes. We consider now the possible situations where a contradiction
may occur.

Proposition 3.6 In step 5
i - Ik

l (x, y)∧Ik
l (y, z)⇒Ik

l (x, z) i.e. if (x, y) and (y, z) are set in this step,
then so is (x, z).
ii - Ik

l (x, y)∧IK−1
l (y, z)∧Ik

l (z, t)⇒Ik
l (x, t).

iii - IK−1
l (x, y)∧IK−1

l (y, z)⇒IK−1
l (x, z).

N.B. We may emphasise that, while in Step 5, Ik
l (x, y)∧IK−1

l (y, z) does
not necessarily imply Ik

l (x, z).
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Proposition 3.7 In step 5, an Il-circuit occurs only with a contradiction.

Proposition 3.8 If the first contradiction occurs at step 6, then there must
be an Il circuit at the end of step 5 (an IK−1

l circuit).

Proposition 3.9 If the first contradiction occurs at step 5, then the problem
has no solution.

From Proposition 3.8 if a contradiction occurs in Step 6 there is an Il

circuit at Step 5. From Propositions 3.6 and 3.7 if such a circuit exists in
Step 5 it has to exist also a contradiction in Step 5. And from Proposition 3.9
if a contradiction occurs at Step 5, the problem has no solution and it is not
necessary to make any backtracking. And this concludes our demonstration.

4 Matrix version of the algorithm

From the previous discussion it is easy to see that the critical part of the
PQI graph to analyze is the G3 graph, so we may study complexity with
respect to this subgraph. In the following we give a way to implement the
algorithm and discuss its complexity. Let A = {a1, a2, ...an} and let P , Q,
I, L be n×n matrixes representing relations P , Q, I, Il respectively, where:
Xij = 1 ⇔ aiXaj , otherwise Xij = 0, X being one among P , Q, I, Il.

Theorem 4.1 Algorithm 3.1 is in polynomial time (O(n5))

Proof The algorithm presented in the previous section can be represented
in the following way (including some small variations discussed immediately
after):

Algorithm 4.1
Step 1: Pij + Pjk ≤ 1 + Pik, Pij + Qjk ≤ 1 + Pik, Qij + Qjk ≤ 1 + Pik +
Qik ∀ i, j, k = 1..n;
Step 2: Iij = Pik = Qjk = 1 ⇒ Lij = 1 ∀ i, j, k = 1..n;
Step 3: Iij = Pki = Qkj = 1 ⇒ Lij = 1 ∀ i, j, k = 1..n;
Step 4: Pij = Iik = Ikj = 1 ⇒ Lik = Lkj = 1 ∀ i, j, k = 1..n;
Step 5: Qij + Qji = Iik = Ikj = 1 ⇒ Lik = Lkj ∀ i, j, k = 1..n;
Step 6: Lij = Ljk = 1 ⇒ Lik = 1 ∀ i, j, k = 1..n;
Step 7: For I(x, y) not yet established as Il or Ir, choose arbitrarily Il(x, y).
If the Il established belongs to an equivalence class established in Step 5, put
all the elements of the class equal to 1. Return to 6 (instead of 5).
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A critical step in this algorithm is step 5 since it introduces implicitly a
recursive establishment of Il. In order to avoid an infinite recursion and the
associate contradictions it is necessary to “fix” Il as soon as it is generated
by step 5 so that only I(x, y) which are not yet established may still be
considered in the recursive application of step 5. This is possible partitioning
the set of non zero elements of the matrix I into classes which will have the
same value of Lij because of step 5. Then as soon as one element of one
of these classes turns to 1, the whole class will turn to 1. Under such an
adjustment the following positive consequences hold:
- if there is no solution then a contradiction in establishing an Il will appear
before step 6;
- after step 7 you just have to return to step 6.

We can now discuss complexity. Steps 1 to 4 are obviously in O(n3)
as step 6 (transitive closure) is. Step 5 is in O(n5) as can be seen by the
following implementation (remark that in the worst case n = |G3|):

function step5: boolean
forall i, j, k

if (Iik*Ikj*(Qij+Qji) == 1)
if ( not setLabel(i,j,k) )

return false
return true

function setLabel(i,j,k: integer)
if (Lik, Lkj no label)

set new label to Lik and Lkj
else if (Lik = L1, Lkj no label)

set Lkj to L1
else if (Lik no label, Lkj = L2)

set Lik to L2
else if (Lik = L1 et Lkj = -L1)

return false (conflict)
else if (Lik = L1 et Lkj = L2)

unify these two labels
endif
return true

Furthermore it is easy to see that the decomposition of the PQI graph in
G1 and its connected components, the decomposition in G2 and G3 and the
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construction of the linear order in G2 are all in polynomial time. Therefore
the whole algorithm is in polynomial time.

5 Conclusions

The paper presented an operational solution to how a PQI preference struc-
ture on a finite set A can be checked to be or not a PQI interval order. In
other words verify if it is possible to associate to each element of A an inter-
val such that if the interval associated to x is completely to the right of the
interval associated to y, then x is strictly preferred to y, if one interval is
included to the other, then x is indifferent to y and if the interval associated
to x is to the right of the interval associated to y, their intersection being
not empty, then x is weakly preferred to y.

In the paper the necessary and sufficient conditions for such a case are
introduced and an algorithm for the satisfaction of such conditions is pre-
sented. We first demonstrate that the algorithm, although appears that has
to explore a tree generated by branches of arbitrary choices, is backtracking
free and then we demonstrate that runs in polynomial time. We consider
such a result very promising, since it enables an efficient check of the exis-
tence of PQI interval orders which are very common in many different cases,
including preference medelling and temporal logic. In fact, PQI interval or-
ders are very useful in representing discrete states of preference hesitation.
Being able to detect if a PQI preference structure is a PQI interval order al-
lows to know if its numerical representation is meaningful. Further on, since
we conjecture that this result can be generalised in the case of preference
structures with multiple thresholds, the existence of an efficient algorithm
allows to hope for an easy extension of this theory in the case of multiple
interval orders, a long time open problem in preference modelling.
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MCDA. In: Cĺımaco, J. (Ed.), Multicriteria Analysis, Springer Verlag,
Berlin, pp. 37-50.
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Appendix A

Proof of Algorithm 3.1
When step 1 succeeds, condition ii holds and Il = ∅. As P,Q are invariable
during steps 2 to 7, condition ii always holds.
When step 2 succeeds, condition iii holds for Il. As Il is never reduced in all
the following steps, condition iii always holds. In the same way, conditions
iv, v hold after steps 3 and 4, and always hold thereafter.
It is obvious that Il is always asymmetric after each step.
When the algorithm passes through the step 6 the first time, the following
condition holds:
(V ) : (I.I∩(Q∪Q−1)) ⊂ ((Il.Ir)∪(Ir.Il)∪((I\(Il∪Ir∪I0)).(I\(Il∪Ir∪I0)))
and Il.Il ⊂ Il and Il asymmetric.
It is easy to verify that steps 7,5,6 form a loop accepting (V ) as an invariant
(a condition that always holds before and after each iteration of the loop).
The ending condition of the loop is (E) : I \ (Il ∪ Ir ∪ I0) = ∅.
When the algorithm succeeds, both (V ) and (E) hold which induces condi-
tions i, vi, vii and Il is a partial order.

Proof of Proposition 3.2
i. If x, y belongs to a connected component then exists a path (in G∗)
a0 = x, a1, ...ak = y. ∀ i = 0...k− 1, if exists an I-path from ai to ai+1 then
exists an I-path from x to y and therefore (x, y) ∈ V1.
ii. If a P -arc exists, denote it P (x, y) and consider the length k of the I-path
a0 = x, a1, ...ak = y to be minimal (among all P -arcs and all (x, y)). Con-
sider then the arc a1, ak (it exists from the completeness of the component),
then from proposition 3.1 we have P (a1, ak) and therefore we have another
P -arc with length of the I- path < k. Impossible.
iii. Immediate from conditions vi and vii of Theorem 2.2 (steps 5 and 6 of
the algorithm).

Proof of Proposition 3.3
First consider (x1, x2) such that Ik

l (x1, x2) in step 6. Therefore it exists
Il(x1, x3)∧Il(x3, x2). If, for example, (x1, x3) was also established in Ik

l (in
the current step 6) then it exists Il(x1, x4)∧Il(x4, x3) and so on until an
IK−1
l -path is obtained. Therefore for all (x, y) such that Il is established in

the current step 6 exists an IK−1
l -path from x to y.

Let now (x, y) to be an arc set to Il in the last step 6, participating to the
setting of arc (x, z) in step 5 through let’s say Q(z, y). Let us consider the
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situation in the last step 6:
Ik
l (x, y)⇒∃ IK−1

l -path t0 = x, t1, ...tk = y.
Consider the triangle z, tk−1, y where Q(z, y)∧IK−1

l (tk−1, y).
If Q(tk−1, z) then Q(tk−1, z)∧Q(z, y)⇒(P∪Q)(tk−1, y), conflict with Il(tk−1, y).
If I(tk−1, z) then IK−1

l (tk−1, y)∧Q(z, y)∧I(tk−1, z)⇒IK−1
l (tk−1, z) (at least

in the last step 5). Therefore it exists an IK−1
l -path from x to z, that

is Il(x, z) must be set at least at the same time as (x, y). We conclude
that Q(z, tk−1). Repeat this procedure, and we get at last Q(z, t1), which
together with IK−1

l (x, t1) gives IK−1
l (x, z) i.e. (x, z) must have been set

before (x, y).

Proof of Proposition 3.4
i - In each application of step 5, consider (x, y) ∈ X × Y such that Il(x, y).
Relation Il will propagate to (x′, y) or (x, y′), x′, y′ arbitrary. There have to
exist q-paths from x to x′ and from y to y′. Therefore (x′, y′) ∈ X × Y .
ii - (x′, y′) ∈ X×Y implies that there exist q-paths a0 = x, a1, ...ak = x′, and
b0 = y, b1, ...bl = y′. Applying consecutively step 5 on these two paths we ob-
tain the setting in Il of (x, y), (a1, y), ...(x′, y) and then of (x′, b1), (x′, b2), ...(x′, y′).
iii and iv - Immediate from propositions (3.3), (3.4.i) and (3.4.ii).
v and vi - Immediate from Theorem 2.2.

Proof of Proposition 3.5
i - Otherwise, consider the first setting with z ∈ Z 6= X. It implies that
Il(y, z) ∈ X ×Z, Z 6= X and since (x, z) is the first such setting, IK−1

l (y, z)
holds. We have x, y ∈ X ∧ z ∈ Z ∧ IK−1

l (y, z) which implies IK−1
l (x, z) as

it must be set at least in the last step 5 (proposition (3.4.ii)). Contradiction.
ii - Immediate from (3.4.iii),(3.5.i).
iii - Otherwise it should exist (x′, z′) ∈ X×Z \ Ik

l . In the next step 5 (x, z),
which is set in this step 6, will propagate Il to (x′, z′), which is impossible
because of (3.3) ((x, z) set in step 6, cannot be used in the step 5).
iv - Suppose that (x∗, y∗) ∈ X × Y, X 6= Y is introduced in step 5. Then
all the arcs of X × Y are set to Il and only these arcs. The setting in step
6 is the propagation of such arcs. Let Il(x, y)∧Il(y, z)⇒Il(x, z), x ∈ X, y ∈
Y, z ∈ Z the first setting in step 6 with IK−1

l (x, y), IK−1
l (y, z) and (x, y)

set in the last steps 5,7, i.e. (x, y) ∈ X × Y and X × Y ⊂ IK−1
l . If Z = X

then (z, y) should have been set at the same time as (x, y), which contradicts
Il(y, z). We conclude that Z 6= X (and similarly that Z 6= Y ).
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Proof of Proposition 3.6
i - Let Q = Q ∪Q−1, in an equivalence class we have ∀(x, y) Ψ(x, y) where
Ψ = Il or I−1

l or Q.
If in Step 5 we had Q(x, z) then Ik

l (x, y)∧Q(x, z)∧I(z, y) ⇒ Ik
l (z, y), in

contradiction with Ik
l (y, z). Therefore we have ¬Q(x, z) and Ψ = Il or

I−1
l . The transition from Ik

l (x, y) to Ik
l (y, z) in step 5 passes through 2

q-paths x1 = x, x2, ...xn = y and y1 = y, y2, ...yn = z where (xi = xi+1

and yi 6= yi+1 and I(xi, yi), I(xi+1, yi+1)) or (xi 6= xi+1 and yi = yi+1 and
I(xi, yi), I(xi+1, yi+1)). We consider the two different transitions from (x, y)
to (y, z).
1. If y2 = y then x 6= x2 and therefore Q(x, x2)∧I(x2, y). We have then
Q(x, x2)∧Ik

l (x, y)∧I(x2, y)⇒Ik
l (x2, y). But Q(x2, z) is in contradiction with

Ik
l (x2, y). Therefore Ik

l (y, z)⇒¬Q(x2, z)⇒I(x2, z).
We have Q(x, x2)∧I(x2, z)∧Ψ(x, z)⇒Ψ(x2, z). Therefore the situation is not
changed (x2 plays now the role of x).
2. If y2 6= y then x = x2. Therefore Q(y, y2)∧I(x, y2)⇒Ik

l (x, y2). If Q(y2, z)
holds we have Q(y2, z)∧Ik

l (x, y2)∧I(x, z)⇒Ik
l (x, z). Otherwise, Q(y, y2) and

Ik
l (y, z) give Ik

l (y2, z) and the situation is not changed (y2 plays now the role
of y).
In order to pass from y to z, it must exist a k such that yk+1 = z and yk 6= z,
i.e. Q(yk, yk+1)⇒Q(yk, z)⇒Ik

l (x, z) (since it always holds Il(x, yk)).
ii - Let Ψ(x, t). Since Q(y, t) or Q(x, z) is in contradiction with Ik

l (x, y),
IK−1
l (y, z) and Ik

l (z, t) we have I(y, t) and I(x, z).
If Ψ = Q then Ik

l (x, y)∧I(y, t)∧Q(x, t)⇒Ik
l (t, y). But Ik

l (t, y)∧Ik
l (z, t)⇒Ik

l (z, y)
(3.6.i) in contradiction with IK−1

l (y, z). Therefore Ψ = Il ∪ Il−1. The tran-
sition from Ik

l (x, y) to Ik
l (z, t) in step 5 passes through 2 q-paths x1 =

x, x2, ...xn = z and y1 = y, y2, ...yn = z where (xi = xi+1 and yi 6= yi+1 and
I(xi, yi), I(xi+1, yi+1)) or (xi 6= xi+1 and yi = yi+1 and I(xi, yi), I(xi+1, yi+1)).
We consider the two different transitions from (x, y) to (z, t).
1. If y2 = y then x 6= x2 therefore Q(x, x2).
Q(x, x2)∧Ik

l (x, y)∧I(x2, y)⇒Ik
l (x2, y). If Q(x2, t) we have

Q(x2, t)∧Ik
l (x2, y)∧I(y, t)⇒Ik

l (t, y). But Ik
l (z, t)∧Ik

l (t, y)⇒Ik
l (z, y) (3.6.i),

in contradiction with IK−1
l (y, z).

We have then ¬Q(x2, t)⇒I(x2, t). Q(x2, x)∧I(x2, t)∧Ψ(x, t)⇒Ψ(x2, t) and
the situation is not changed (x2 plays now the role of x).
2. If y2 6= y then x2 = x, therefore Q(y, y2).
Q(y, y2)∧Ik

l (x, y)∧I(x, y2)⇒Ik
l (x, y2).
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If Q(y2, t), we have Q(y2, t)∧Ik
l (x, y2)∧Ψ(x, t)⇒Ik

l (x, t).
Otherwise, if Q(y2, z) then Q(y2, z)∧Ik

l (x, y2)∧I(x, z)⇒Ik
l (x, z).

Therefore, we have Ik
l (x, z)∧Ik

l (z, t)⇒Ik
l (x, t) (3.6.i).

If I(y2, z) then Q(y, y2)∧IK−1
l (y, z)∧I(y2, z)⇒IK−1

l (y2, z) and the situation
is not changed (y2 plays now the role of y).
So, we have either Il(x, t) when it exists Q(yi, z) or the only way to pass from
y to t is through some yk+1 = t and yk 6= t i.e. Q(yk, yk+1)⇒Q(yk, t)⇒Il(x, t).
iii - If IK−1

l (x, y) and IK−1
l (y, z) are set at least in the last step 6 then

IK−1
l (x, z) is also set at least in the last step 6.

Proof of Proposition 3.7
Let an Il-circuit with arcs Ik

l or IK−1
l . With (3.6.i), we can replace all

Ik
l -paths with Ik

l -arcs. With (3.6.iii), we can replace all IK−1
l -paths with

IK−1
l -arcs. We get at last an Il-circuit with alternative Ik

l -arcs and IK−1
l -

arcs. Let l to be the length of the circuit.
If l > 4 then exists Ik

l (x, y)∧IK−1
l (y, z)∧Ik

l (z, t) which can be replaced by
Ik
l (x, t) and we obtain a new circuit with alternative Ik

l -arcs and IK−1
l -arcs

and its new length l′ = l − 2. We get at last l′ = 3 or l′ = 4 . If l = 3
Ik
l (x, y)∧IK−1

l (y, z)∧Ik
l (z, x)⇒Ik

l (z, y) (3.6.i) in contradiction with IK−1
l (y, z).

IK−1
l (x, y)∧Ik

l (y, z)∧IK−1
l (z, x)⇒IK−1

l (z, y) (3.6.iii) in contradiction with
Ik
l (y, z).

If l = 4 Ik
l (x, y)∧IK−1

l (y, z)∧Ik
l (z, t)∧IK−1

l (t, x)⇒Ik
l (x, t) (3.6.ii) in contra-

diction with IK−1
l (t, x).

Proof of Proposition 3.8
Suppose that the first contradiction occurs at step 6, i.e. an arc (x, z) already
set in Q or in Q−1 or in I

−1K−1

l , is set in Il. Therefore it exists an IK−1
l

path x = z1, ..., z = zn. If I
−1K−1

l (x, z) is the case then we have an Il circuit
x..., z, x at the end of step 5. If Q(x, z) or Q−1(x, z) is the case, consider the
arc (x, zn−1), If I(x, zn−1) is the case then we have IK−1

l (zn−1, x) (at least
in step 5 for IK−1

l (zn−1, z)). We have then an IK−1
l circuit x, ..., zn−1, x at

the end of step 5. If Q(x, zn−1) or Q−1(x, zn−1) is the case, we continue
considering the arc (x, zn−2) and so on. The process is finite and must
end with either an IK−1

l circuit or with Q ∪ Q−1(x, z3) which leads to a
contradiction with IK−1

l (x, z2) and IK−1
l (z2, z3).
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Proof of Proposition 3.9
Consider (x∗, y∗) an arc arbitrarily set in Il at the last step 7, and let Il(x, y)
the first contradiction occurring at step 5, i.e. Il(y, x) has already been set
before. From (3.3.ii) we know that Il(y, x) was not set in a previous Step
6. By (3.4.v) and (3.4.vi), we know that Il(x, y) has to be set during the
current step 5, because otherwise (x∗, y∗) had to be also set and we could
not choose it in Step 7. The problem has then no solution because if we
choose to set (y*,x*) instead of (x*,y*), all the arcs set in step 5 in Ik

l will
be reversed but the same contradiction will occur.
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