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Abstract. The problem of uncertain and/or incomplete information in
information tables is addressed in the paper, mainly as far as the induc-
tion of classification rules is concerned. Two rule induction algorithms
are introduced, discussed and tested on a number of benchmark data
sets. The results obtained are promising, but further investigation can
be undertaken in order to obtain more effective classification strategies.

1 Introduction

Inducing decision rules from data sets, representing sets of learning examples
described by attributes, is one of the main tasks in knowledge discovery. Most
of the known algorithms find rules by inductive generalisation of learning ex-
amples descriptions [2,4]. A key issue in all such approaches is the comparison
of descriptions of examples represented in a form of attribute-values vectors.
Intuitively, we have to compare descriptions of examples among them in order
to establish their “similarity”. We also have to compare descriptions of new ob-
jects (unseen in the learning phase) to the condition parts of induced decision
rules, if these rules are used for classification aims. When such attribute-value
vectors are compared, it is not always the case that a crisp relation between two
descriptions can be established. This is due either to the presence of incomplete
descriptions or to the presence of uncertainty, imprecision and any other source
of ambiguity within the descriptions. For this purpose we developed, the so
called, “valued tolerance approach”, which consists in adopting a precise version
of valued similarity when multidimensional objects are compared [5-7].

Typical rule induction algorithms are based on the exploitation of crisp com-
parisons. In order to be able to induce rules from examples using the valued
tolerance approach we need new specific procedures. Therefore, we present two
different algorithms for rule induction using the valued tolerance approach. The
first algorithm finds the set of all rules that can be induced from a given set of
examples. The second algorithm constructs the minimal set of rules, i.e. covering
the set of examples by a smallest number of rules.



The aim of this paper is experimental. Firstly, we compare on several data
sets these two algorithms. A second experiment is then conducted concerning
strategies for classifying new objects on the basis of induced sets of rules. More
precisely, we compare two new proposed strategies. The difference between them
concerns the type of information used in order to classify any new object. More-
over, we examine the use of different uncertainty aggregation operators.

The paper is organised as follows. In section 2, a brief reminder of the ap-
proach based on the valued tolerance relation is given. In section 3, we introduce
two different algorithms for rule induction using this approach. In section 4, we
discuss various strategies that can be applied to classify new objects on the basis
of induced rules. Section 5 presents the results of the computational experiments.
Discussion of these results and conclusions are presented in the final section.

2 Basic concepts of valued tolerance approach

Consider an information table composed of a set of objects U described by a
set of attributes A. If it is possible to express a classification of the objects by
one distinguished attribute {d} ¢ A, called a decision attribute, we can define
a decision table DT = (U, AU {d}). The decision attribute d partitions set U
into decision classes denoted as @,V,.... In the valued tolerance approach we
assume: 3 Rp(z,y) : U x U — [0, 1], Rp representing a valued tolerance relation
among the objects from U, established using the attributes B C A. Rpg, which
is also a fuzzy set, satisfies two properties: (1) reflexivity: Va Rp(x,x) = 1; (2)
symmetry: Va,y Rp(x,y) = Rp(y,x). We are not going to discuss in this paper
how Rp is computed (for more details see [7]). We consider Rp as established.

Following rough sets theory [3] and its extension in the valued tolerance case
[6—7], given a set of objects Z C U, we define as lower approzimability of a class @
by Z, the degree by which all objects in Z, and all objects (more or less) similar
to them, are (more or less) similar to the elements in @. In other words, we “mea-
sure” the degree by which set Z approximates set @ using for “similarity” the val-
ued tolerance Rp. More formally: pg,(Z) = T.cz(Tpcop)(I(RB(2,1),12))),
pos(Z) = T.ez(Sycop)(T(RB(2,1),2))), where: ug, (Z) is the degree for set
Z to be a B-lower approximation of @; ugs(Z) is the degree for set Z to be a B-
upper approximation of @; ©p(z) is the tolerance class of element z; T, S, I are
functions representing the usual logical operators and satisfying the De Morgan
law. Rp(z,x) is the membership degree of z in the tolerance class of z (at the
same time it is the valued tolerance relation between z and z for attribute set
B); & is the membership degree of element x in the set @ (& € {0,1}).

Decision rules induced from examples in decision tables are represented as:
pi =def Ne;eB (¢j(x) =v) — (d = @) ; where B C A, v is the value of condition
attribute ¢; € B, ¢ is the value of decision attribute d. In the valued tolerance
approach a special credibility degree is associated with each rule p;. We shortly
present how this degree is calculated [5]. The valued relation sg(z, p;) is used in
order to indicate that example z “supports” rule p;, or in other words that, x
is similar to some extend to the condition part of rule p; on attributes B. The



relation s is a valued tolerance relation defined exactly as relation R. We denote
as S(p;) = {z : sp(z,p;) > 0} and as & = {x : d(x) = ¢}. A credibility degree
for rule p; is calculated as: V z,y sp(z, p;)—(Rp(z,y)—P(y)). We get: u(p;) =
Tres(o)(L(sB(@, pi): Tycos @)L (Hop ) (), ka(y))))) where: po, ) (y) = Rp(z,y)
and pg(y) € {0,1}. We quote the following result from [6]:

Proposition 1. Consider a rule p; classifying objects to a set ® C U under a set
of attributes B. If T, S, I satisfy the De Morgan law and Rp is a valued tolerance,
the credibility p(p;) of the rule is upper bounded by the lower approximability of
set @ by the element xy, whose description (under attributes B) coincides with
the condition part of the rule.

The proof was presented in [6]. One should observe that: - the concept of rule
credibility allows to fix an acceptance threshold, let’s say A, which may avoid the
generation of unsafe rules; - proposition 2 allows to consider as candidates for
rule generation only the examples having a sufficient high lower approximability
- not smaller than \. This reduces the rule generation cost.

3 Algorithms of rule induction

The rough sets based rule induction algorithms can be divided into two main
categories [2,4]. The first group is focused on inducing the complete set of all
rules in the given syntax, which can be generated from the examples. The other
group of algorithms is focused on minimal set of rules, i.e. covering the learning
examples using the minimum number of rules. Inducing all rules is characterised
by exponential time complexity in the worst case, while minimal sets of rules
are usually generated in a heuristic way. Following this categorisation, we also
present two different algorithms for rule induction using valued tolerance.

Let us suppose that the credibility threshold for the induced rules is fixed
at A. In both algorithms descriptions of objects, being completely defined by
attribute-value pairs, are considered as conjunctions of elementary conditions
which can be used to create condition parts of rules. According to Proposition 1
an object x is a candidate for creating a rule indicating class @; if: (1) its lower
approximability pe(z) > A (computed for completely defined attributes, where
@ is the decision class which object = belongs to); (2) the credibility of the rule
using as condition part its description is also p(p,) > A. Other objects could be
skipped, as they will not lead to rules with sufficient credibility.

3.1 Algorithm inducing all rules

The algorithm is based on looking for all possible reduced descriptions of candi-
date objects from the decision table, which lead to rules with credibility u(p,) >
A. The general schema of the algorithm is presented below.

Procedure Allrules(DT: decision tables; var R: set of rules);
begin R« 0
for i =1 to n do begin{ n — number of objects in DT }
x «— read_i-the_object(DT);



if not(ezxist_rule(R,z)) then begin
e () — compute_lower_approzimation(P, x); { & decision class of x }
if pua(x) > X then { Apply Proposition 2 }
if u(pz) > A then begin{ p, decision rule created using z }
RT «— Create_Tree_reducts(®, x); {find all reduced forms of p.}
R +— RURT end
end
end
end

Function Create Tree Reducts checks possible reductions of the condition part
by dropping elementary conditions. Starting from one description of a candidate
object, a ”"tree” of all admissible reduced condition parts is constructed, where
each path should fulfill sufficient rule credibility and cannot be a conjunction
of conditions already used in other condition parts. The tree is organised in a
particular way to reduce repeating computations for the same subsets of condi-
tions. The induced rules are stored in a special structure and function Exist rule
checks whether a description of object = is equal to, or is a subset of, already
induced rules. The objects in decision table DT are sorted from ones having the
most complete description, so ”longer” candidate objects are checked the first.

3.2 Algorithm inducing minimal set of rules

This algorithm induces in a heuristic way the smallest number of rules covering
all such objects from the decision table that approximate decision classes with
degree pg(x) > A. By objects covered by the rule we understand the objects,
which are described by the same values of attributes as used in the condition part
(non zero valued tolerance relation). The main idea of MinimalCover algorithm is
inspired by techniques of linear dropping conditions used in the LEM1 algorithm
[2]. In this form of dropping, the list of all elementary conditions in the rule p,
is scanned from the left to the right with attempt to drop any of (¢; = v)
conditions, while checking whether the simplified rule does not decrease rule
credibility below threshold A - see function Dropcondition. In this technique,
only one reduced form of a condition part is found. The order in the list of
condition is determined by function determine order conditions on the basis of
increasing number of positive examples covered by an elementary condition. So,
first these conditions are dropped, which cover the smallest number of examples
belonging to the decision class indicated by the rule.

Procedure MinimalCover(DT: decision tables; var R: set of rules);
begin R« 0
for i =1 to n do begin z < read_i-the_object(DT);
e () «— compute_lower_approzimation(P, z);
if pua(z) > X then
if u(pz) > A then begin{ p, decision rule created using = }
determine_order_conditions(zx, condx);
T — pa;



for j =1 to |condz| do begin{ perform linear dropping of }
py — dropcondition(j,r); { conditions from p, }
if u(py) > A then r — p,; end
R — RUr; remove from DT objects x covered by r; end
end
end.

4 Strategies for classifying new objects

Induced decision rules are the basis for classifying new or testing objects (i.e.
not being learning examples). The description of such objects is provided only
on condition attributes. The classification problem is to assign such objects to
a decision class on the basis of their similarity/tolerance to the condition part
of rules. There are two sources of uncertainty in this problem. First, the new
object will be similar to a certain degree to the condition part of a given rule
(due to the valued tolerance relation). Second, the rule itself has a credibility
(classification is not completely sure any more). In general, the new object will
be more or less similar to more than one decision rule and such rules may indicate
different decision classes (with a different membership degree). In order to make
a precise decision to which class the new object belongs we consider two kinds of
information: (1) rule credibility and similarity/tolerance of the new object to its
condition part; (2) number of objects supporting the rule, i.e. learning examples
similar to condition part of the rule and belonging to the decision class indicated
by the rule. The following two classification strategies are thus proposed:
Strategy A: 1. For each decision rule p; in the set of induced rules, the tolerance
of new object z to its condition part, Rg(z, p;), is calculated (where B is a set
of attributes used in the condition part of p;).

2. Then, the tolerance of the object z to the condition part of the rule, is aggre-
gated with the credibility of the rule:u,, (2) = T(Rp(z, pi), p1(ps))-

3. The membership degree of object z to decision class @; is calculated on the
basis of all rules R(®;) - indicating @; and having p,,(z) > 0: as ps,(2) =
Sp.er(@;)(1p;(2)). Choose the class with the maximum membership degree.

4. If a tie occurs (the same membership for different classes), take into account
information about the relative supports of rules denoted as Supp(p;) (it is a ratio
of the number of objects supporting the rule to the total number of examples
from the given decision class). For each competitive class @; and its rules R(®;)
calculate the aggregated support as Suppg,(2) = Sy, cr(@,)(Supp(pi)). The ob-
ject z is classified as being a member of class ®; with highest Supps,(2).
Strategy B 1. As in strategy A.

2. As in strategy A, but u,,(2) = T(Rp(2, pi), 1(pi), Supp(p;))-

3. As in strategy A.

Practically the two strategies differ in that the first uses a lexicographic
procedure in order to consider the support of a rule, while the second uses this
information directly in the membership degree. A question arising at this point
is the influence on the final result of the choice of the family of T, S, I operators.
In this paper we consider three particular cases of T-norms:



- the min T-norm: T'(«, 8) = min(a, 8), S(a, 8) = max(«, 5);
- the product T-norm: T(«, 8) = - 3,5(a, ) =a+ 0 — a - G;
- the Lukasiewicz T-norm: T'(«, ) = max(a+ 3 —1,0), S(«, §) = min(a+ 3, 1);

5 Experiments

In the first part of the experiment we want to compare both algorithms inducing
all rules and minimal cover on several data sets taking into account the follow-
ing criteria: number of rules, time of computation and classification accuracy.
Classification accuracy (the higher value, the more preferred) is estimated by
performing 10 fold cross-validation technique Moreover, we want to analyse the
influence of changing the number of attributes and the number of examples in
data sets on the performance of both algorithms.

Table 1. The number of induced rules (first number) and classification accuracy [in
%] for compared algorithms from Mushroom data

Number of Algorithm Number of attributes
objects 5 7 9 11 15 21
50 Allrules 46 /68 133 /82 327 /82 618 /84 2713 /90 10499 / 82
MinCover 17 /64 18 /74 13 /74 12 /76 9/94 9 /84
100 Allrules 69 206 482 1275 6787 -
MinCover 27 26 29 22 19 -
250 Allrules 87 306 873 2895 18283 -
MinCover 47 56 51 44 30 -
500 Allrules 72 350 1109 4875 — —
MinCover 47 79 86 83 - -
1000 Allrules 80 396 1138 6596 - -
MinCover 27 120 131 133 - -
4000 Allrules 13 160 1052 — - -
MinCover 13 88 193 - - -
8124 Allrules 8 92 - - - -
MinCover 8 50 — - - -

In these experiments we used 5 real life data sets of different size and char-
acteristics. All of them are coming from Machine Learning Database, University
of California at Irvine [1]. The Breast Cancer and Credit data sets, which orig-
inally contained continuous-valued attributes, were discretised by means of the
minimal class entropy method. Data sets contained the following ratio of missing
values: Breast cancer - 6.14 [%], Credit - 2.1 [%], Bridge - 5.4 [%)], Hungarian
- 25.9 [%]. Moreover, the last Mushroom data set has been artificially changed
to obtain series of data sets with different number of attributes and objects.
Originally, it contained 8124 objects described by 21 attributes and classified
into two categories. From this data set we randomly sampled subsets contain-
ing 5, 7, 9 and 15 attributes. Then, in order to obtain data sets diversified by



Table 2. Classification accuracies [in %] obtained by using different classification
strategies and different representations of aggregation operators

Data Strategy A Strategy B
set min T-norm product T-norm FLukasiewicz T-norm
Breast 61.56 66.93 66.79 71.26
Credit 57.53 59 63.95 65.55
Bridges 44.84 48.05 47.53 50.64
Hungarian 72.91 74.23 75.25 76.46

number of objects, we randomly created samples of data sets containing 50, 100,
250, 500, 1000 and 4000 objects. Since we wanted all such subsets of examples
to contain a certain degree of missing values, we randomly introduced missing
values into each data in these series (finally each data contained 20% missing
values). As computational costs were high for the all rules algorithm, we decided
to skip some combinations of highest number of attributes and highest number
of objects. All computations for Mushroom data sets were performed with fixed
threshold value of accepted rule credibility A = 0.75. Results are summarised in
the Table 1. To classify objects, we used strategy B (it gives higher accuracy).
In the second part of the experiment we wanted to check the influence of using
the two classification strategies, A and B, on the value of classification accuracy.
Moreover, we wanted to examine the influence of choosing different representa-
tions of aggregation operators. We considered three particular cases presented
in section 4, i.e. the min T-norm, the product T-norm and the Lukasiewicz T-
norm. These experiments were performed using the four data sets Breast Cancer,
Credit Approval, Bridges, Hungarian and with credibility threshold A = 0.9. The
first observation was that the choice of classification strategies and T' operators
had no significant influence in the case of the minimal cover algorithm. On the
other hand, we observed an influence when the algorithm inducing all rules was
used. Thus, we summarise the experimental results for this case in Table 2.

6 Conclusions

In this paper we present two algorithms used in order to induce classification
rules from “uncertain” information tables. We consider as “uncertain” the case
where comparing any two objects we obtain a valued similarity (objects are more
or less similar) and the induced rules are associated a credibility degree.

The two algorithms (the first inducing all possible rules, the second a minimal
set) have been tested on a number of benchmark data sets. The comparison
of both rule induction algorithms clearly shows that the All rules algorithm
induces higher number of rules than Minimal cover. Moreover, the number of
rules induced by Minimal cover is relatively stable, while the other algorithm
induces larger and larger sets of rules with increasing number of attributes. The
increase of the number of objects has smaller influence on the number of rules



than increasing number of attributes. The computational time is much higher
for All rules algorithm and it exponentially grows with increasing the number
of attributes (see the results in Table 1). This is not surprising knowing the
idea behind this algorithm, however, the difference is quite large comparing to
computational time of Minimal Cover algorithm.

Classification accuracy is, in general, higher for decision rules generated by
All rules algorithm. The accuracies for both algorithms usually grow with in-
creasing number of attributes. However, the difference of accuracies between
algorithms decreases with the increase of the number of objects. On the other
hand, the ratio of incorrect classification is higher for All rules than for Min-
imal cover. These results can suggest the necessity of extension classification
strategies for Minimal cover in a case of no similarity of classified object to any
rule. To sum up, both algorithms induce sets of rules having different properties.
Their choice should depend on data characteristics, interest of the user and its
resources.

Comparing the results of different classification strategies, first we observed
that their choice had an influence on the classification accuracy in the case of
using All rules algorithm. For Minimal Cover the differences of accuracies were
not significant. The results presented in Table 2 showed that better classifica-
tion accuracy was obtained by using strategy B. The aggregation of similarity,
credibility and rule support degrees in a lexicographic order was less efficient.
The analysis of choosing particular representation of 7" norms to aggregate the
considered degrees showed that higher classification accuracies were obtained by
using either product or Lukasiesiewicz T-norms.
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