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LAMSADE - CNRS, Universit́e Paris Dauphine
email:{ozturk,tsoukias}@lamsade.dauphine.fr

Abstract

The use of positive and negative reasons in inference and de-
cision aiding is a recurrent issue of investigation. A language
enabling to explicitly take into account such reasons is Bel-
nap’s logic and the four valued logics derived from it. In this
paper, we explore the interpretation of a continuous extension
of a four-valued logic as a necessity degree (in possibility
theory). It turns out that, in order to take full advantage
of the four values, we have to consider “sub-normalised”
necessity measures. Under such a hypothesis four-valued
logics become the natural logical frame for such an approach.

Introduction
Classic logic is not always suitable to formalise real life
problem situations since it is unable to handle incomplete
and/or inconsistent information. In decision aiding such sit-
uations are regular and indeed classic logic has often been
criticised as a language used for decision support mod-
els formulation (Dubois & Prade 1988; 2001; Roy 1989;
Tsoukìas & Vincke 1995; Perny & Roubens 1998). On the
other hand, both in decision theory and in logic a recurrent
idea has been to separate positive and negative reasons sup-
porting a decision and/or a logical inference. For some early
contributions the reader can see (Raju 1954; Dubarle 1989;
Rescher 1969; Belnap 1976; 1977). Under such a perspec-
tive we study the possibility to extend a four valued logic
(Tsoukìas 2002) in situations where it is possible to make
continuous valuations on the presence of truth.

The four values (t, f, k, u) introduced by Belnap have a
clear epistemic nature. Given a propositionα, four situa-
tions may appear: (or truth values, the symbol∆ represent-
ing the “presence of truth”):
- true (t): there is evidence thatα is true (∆α) and there is
no evidence thatα is false (¬∆¬α)
- false (f ): there is no evidence thatα is true (¬∆α) and
there is evidence thatα is false (∆¬α)
- contradictory (k): there is evidence thatα is true (∆α) and
there is evidence thatα is false (∆¬α)
- unknown (u): there is no evidence thatα is true (¬∆α)
and there is no evidence thatα is false (¬∆¬α)

However, the sources of uncertainty are not limited to
pure incomplete and/or contradictory situations. The ev-
idence “for” or “against” a certain sentence might not be

necessarily of a crisp nature. In this case, we can intro-
duce “positive reasons” and “negative reasons” supporting
or not a certain sentence (Tsoukiàs, Perny, & Vincke 2002).
Considering a continuous valuation of such reasons, we can
introduce a continuous extension of any four-valued logic.
This continuous extension may help us to deal with uncer-
tainty due to doubts about the validity of the knowledge; im-
precision due to the vagueness of the natural language terms;
incompleteness due to the absence of information; apparent
inconsistency due to contradictory statements. Such situa-
tions are all the more relevant in decision aiding and prefer-
ence modelling.

More precisely in this paper, we consider two variants of
Belnap’s logic: DDT logic (Tsoukìas 2002) which extends
Belnap’s logic to a first order language and its continuous
extension suggested in (Perny & Tsoukiàs 1998).

The aim of this paper is to verify whether it is possible to
associate to the DDT logic an uncertainty distribution, pos-
sibly of the possibility/necessity type and if so, under which
conditions. Section 2 introduces the basic concepts of the
four-valued logic and its continuous extension through the
concept of positive and negative membership. In Section 3
we try to establish a first relation between four-valued logic
and possibility theory. Some related problems are discussed.
In Section 4 we suggest the use of “sub-normalised” neces-
sity distributions and we show why four-valued logic can be
considered a language for associating such type of uncer-
tainty distributions.

Four-valued logic and its continuous extension
Syntax

Belnap’s original proposition (Belnap 1976; 1977) aimed to
capture situations where hesitation in establishing the truth
of a sentence could be associated either to ignorance (poor
information) or to contradiction (excess of information). He
suggested the use of four truth values forming a bi-lattice
(see figure 1). It has been shown that such a bi-lattice is
the smallest nontrivial interlaced bi-lattice (Ginsberg 1988;
Fitting 1991).

DDT logic (for details see Tsoukiàs,2002) extended Bel-
nap’s logic in a first order language endowed with a weak
negation (6∼). DDT is a boolean algebra. This logic al-
lows a distinction between the strong negation (¬) and the
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Figure 1: The two lattices suggested by Belnap

α ∼ α ¬α 6∼ α
t f f k
k u k t
u k u f
f t t u

Table 1: The truth tables of negations and complement

complementation (∼); see table 1. It is easy to check that
∼ α ≡ ¬ 6∼ ¬ 6∼ α.
Besides ordinary four valued sentences, in DDT it is possi-
ble to formulate two valued sentences such as:
- ∆α (there is presence of truth inα);
- ∆¬α (there is presence of truth in¬α);
- Tα (α is true);
- Kα (α is contradictory);
- Uα (α is unknown);
- Fα (α is false);

through the following formulas:
- ∆α ≡ (α ∧ ¬ ∼ α) ∨ (6∼ α ∧ 6∼ ¬α) ≡
T(α) ∨ K(α)
- Tα ≡ α ∧ ¬ ∼ α ≡ ∆α ∧ ¬∆¬α.

Example 1. Why the above is a relevant language in deci-
sion aiding problems? Let us take the example of a Parlia-
ment which is preparing to vote for a new proposal (α) con-
cerning an ethical issue. Members of the Parliament (MPs)
can vote “for” or “against” this proposal or can “not vote”.
Suppose that the Parliament has the following rule for adopt-
ing laws concerning ethics: a “strong” majority has to vote
“for” (more than 50%) and less than 1/3 can vote “against”
(in order to defend minorities; the reader can see the Nice
Treaty establishing the decision rules of the enlarged Euro-
pean Union for more complicated similar examples). This
kind of voting can be captured by the four valued logic as in
the following (the parliament having 100 Mps): Let us note
V (α): number of MPs voting forα, V (¬α): number of MPs
voting againstα
∆α = 1 iff V (α)

100) ≥ 0.51, ∆¬α = 1 iff V (¬α)
100 ≥ 0.33

Four different cases are presented in table 2. In the first two
cases there is no hesitation since in the first one the propo-
sition is clearly accepted , while in the second is clearly
rejected. In the third case, the majority of MPs are for

Case V (α) V (¬α) ∆α ∆¬α Value
1 75 20 1 0 True
2 48 40 0 1 False
3 60 40 1 1 Contradictory
4 41 25 0 0 unknown

Table 2: The truth table of example 1

the acceptance of the proposal but at same time the num-
ber of MPs againstα is remarkable too; the proposition
will not be accepted, but is clear that we are facing a con-
flict, a contradictory case. Finally, in the fourth case, the
votes for and againstα are insufficient to make a decision
which is expressed here with the unknown value. From a
decision aiding point of view is clear that the recommen-
dation of an analyst towards a decision maker facing any
of the above situations will be different. In the third case
is necessary to work towards the opposants (perhaps ne-
gotiating in order to meet some of their claims), while in
the fourth case is necessary to convince the “non voters”
(perhaps strengthening the contents of the law). The reader
should note that both situations 3 and 4 would lead the de-
cision maker to an hesitation (a state represented by most
of the formalisms used in order to take into account un-
certainty). However, it is only the explicit separation be-
tween situations of (relative) ignorance and (relative) con-
tradiction that allows to provide the decision maker use-
ful operational recommendations. More examples and ap-
plications of this approach in decision aiding and prefer-
ence modelling can be seen in (Tsoukiàs & Vincke 1997;
Tsoukìas, Perny, & Vincke 2002).

Semantics

The logic introduced deals with uncertainty. A setA may
be defined, but the membership of an objecta to the set may
not be certain either because the information is not sufficient
or because the information is contradictory.

In order to distinguish these two principal sources of un-
certainty, the knowledge about the“membership” of a to
A and the“non-membership”of a to A are evaluated in-
dependently since they are not necessarily complementary.
From this point of view, from a given knowledge, we have
two possible entailments, one positive, about membership
and one negative, about non-membership. Therefore, any
predicate is defined by two sets, its positive and its negative
extension in the universe of discourse. Since the negative ex-
tension does not necessarily correspond to the complement
of the positive extension of the predicate we can expect that
these two extensions possibly overlap (due to the indepen-
dent evaluation) and that there exist parts of the universe
of discourse that do not belong to either of the two exten-
sions. The four truth values capture such situations. More
formally:
Consider a first order languageL. A similarity typeρ is a
finite set of predicate constantsR, where eachR has arity
nR. Every alphabet uniquely determines a class offormu-
las. Relative to a given similarity typeρ, R(x1, . . . , xm) is



an atomic formula iffx1, . . . , xm are individual variables,
R ∈ ρ, andnR = m. In this paper, formulas are denoted by
the lettersα, β, γ, · · · , possibly subscripted.

A structureor modelM for similarity typeρ consists of
a non-empty domain|M | and, for each predicate symbol
R ∈ ρ, an ordered pairRM = 〈RM+

, RM−〉 of sets (not
necessarily a partition) ofnR-tuples from|M |. In fact, an
individual can be in the two sets or in neither of them. A
variable assignmentis a mapping from the set of variables
to objects in the domain of the model. Capital letters from
the beginning of the alphabet are used to represent variable
assignments.

The truth definition for DDT is defined via two semantic
relations,|=t (true entailment) and|=f (false entailment),
by simultaneous recursion as in the following definition (due
to the structure introduced, the case of “not true entailment”
6|=t does not coincide with the false entailment and the case
of “not false entailment”6|=f does not coincide with the true
entailment). Each formula is univocally defined through its
model which is however, a couple of sets, the “positive”
and “negative” extensions of the formula. When possible
we are going to simplify notation using the ordered couple
〈R+, R−〉 in order to represent the models ofR.

Definition 1 Let M be a model structure andA a variable
assignment.
- M |=t R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ RM+

.
- M |=f R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ RM−

.
- M 6|=t R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ |M | \
RM+

.
- M 6|=f R(x1, . . . , xn)[A] iff 〈A(x1), . . . , A(xn)〉 ∈ |M | \
RM−

.
- M |=t ¬ α[A] iff M |=f α[A].
- M |=f ¬ α[A] iff M |=t α[A].
- M 6|=t ¬ α[A] iff M 6|=f α[A].
- M 6|=f ¬ α[A] iff M 6|=t α[A].
- M |=t 6∼ α[A] iff M |=t α[A].
- M |=f 6∼ α[A] iff M 6|=f α[A].
- M 6|=t 6∼ α[A] iff M 6|=t α[A].
- M 6|=f 6∼ α[A] iff M |=f α[A].

It is now possible to introduce an evaluation functionv(α)
mappingL in to the set of truth values{t, k, u, f} as follows:
- v(α) = t iff M |=t α[A] andM 6|=f α[A]
- v(α) = k iff M |=t α[A] andM |=f α[A]
- v(α) = u iff M 6|=t α[A] andM 6|=f α[A]
- v(α) = f iff M 6|=t α[A] andM |=f α[A]

Clearly, such “truth values” have an epistemic nature. It is
our knowledge and/or beliefs (in that precise moment) that
allows a “positive” and/or a “negative” entailment. How-
ever, there is no use of epistemic modal operators in the
logic.
From the above definitions we get for any two subsets of
formulaα andβ:

Proposition 1
α|=t β iff A+ ⊆ B+

α|=f β iff B− 6⊆ A−

α 6|=t β iff A+ 6⊆ B+

α 6|=f β iff B− ⊆ A−

Finally we can introduce the concept of strong conse-
quence:

Definition 2 (Strong Consequence.)
A formula α is true in a model M iff M |=t α[A] and
M 6|=f α[A] for all variable assignmentsA and we write
M |≡α[A]. A formulaα is satisfiableiff α is true in a model
M for someM . A set of formulasΓ is said to has as
strong consequenceor to strongly entaila formulaα (writ-
tenΓ|≡α) when for all modelsM and variable assignments
A, if M |≡βi[A], for all βi ∈ Γ, thenM |≡α[A].

Practically we get the following. Consider a universe of
discourse and a predicateS of arity n. Such an universe is
partitioned into four subsets:
St = S+∩ ∼ S−

Sk = S+ ∩ S−

Su =∼ S+∩ ∼ S−

Sf =∼ S+ ∩ S−

where∼ S+ (∼ S−) is the complement ofS+ (S−) and
St, Sk, Su, Sf , represent the true, contradictory, unknown
and false extensions of the predicateS within the universe
An. Hence(¬S)+, (¬S)−, (∼ S)+and(∼ S)− are defined
as follows:
(¬S)+ = S−

(¬S)− = (S+)
(∼ S)+ =∼ (S+)
(∼ S)− =∼ (S−)

Obviously the following hold:
St ∪ Sk = S+

St = (¬S)f = (∼ S)f

Sf ∪ Sk = S−

Sk = (¬S)k = (∼ S)u

St ∪ Su =∼ S−

Su = (¬S)u = (∼ S)k

Sf ∪ Su =∼ S+

Sf = (¬S)t = (∼ S)t

St ∩ Sk = St ∩ Su = St ∩ Sf =
Sf ∩ Sk = Sf ∩ Su = Sk ∩ Su = ∅
St ∪ Sk ∪ Su ∪ Sf = An

Continuous Extension
For the continuous extension of the previously introduced
four valued logic,S+ andS− can be considered as fuzzy
sets and two membership functions can be introduced:µS+

andµS− . They can be considered for instance as degrees
which represent to what extent we believe inS(x) and non
S(x) respectively (X representing an universe of discourse):

µS+ : X → [0, 1] µS− : X → [0, 1]

We then have to define the fuzzy subsetsSt, Sk, Su, Sf .
Hence, we have to make explicit the intersection, the union
and the complementarity to fuzzy subsets ofX. To define
these operators, we introduce a De Morgan triple (N,T, V )
where N is a strict negation on [0, 1],T a continuous t-
norm andV is a continuous co-norm such thatV (x, y) =
N(T (N(x), N(y))). If we denoteu = µSt(a), v = µSk(a),



x = µS+(a), y = µS−(a), we have:

u =T (x,N(y)) v =T (x, y) x =V (u, v) y =V (N(u), v)

As a consequence we should get:

∀x, y ∈ [0, 1], x = V (T (x,N(y)), T (x, y))

Unfortunately, for such an equation generally there is no De
Morgan triplet satisfying it. Thus, we have to investigate
partial solutions. Following (Perny & Tsoukiàs 1998) we
denote:

µS+(α) =B(α) µS−(α) =B(¬α)

Thus the four truth valuest(α), k(α), u(α), f(α) can be
defined throughB(α) andB(¬α) as follows (using different
T-norms):

µSt(α) = t(α) =T1(B(α), N(B(¬α))) (1)

µSk(α) = k(α) =T2(B(α), (B(¬α)) (2)

µSu(α) = u(α) =T3(N(B(α)), N(B(¬α))) (3)

µSf (α) = f(α) =T4(N(B(α)), (B(¬α)) (4)

In order to fulfill the definition of fuzzy partition (t(α) +
k(α) + u(α) + f(α) = 1) we can use the following:

N =LNφ T2 =T3 = LTφ V =LVφ T1 =T4 = min

Where (LN φ, LT φ, LV φ) is the Lukasiewicz triple
(Schweizer & Sclar 1983). We thus get

t(α) =min(B(α), 1−B(¬α)) (5)

k(α) =max(B(α) + B(¬α)− 1, 0) (6)

u(α) =max(1−B(α)−B(¬α), 0) (7)

f(α) =min(1−B(α), B(¬α)) (8)

The reader can see further details in (Perny & Tsoukiàs
1998). We just mention that in order to generalise in-
ference we associate to each formula a pair of values
(〈α, (B(α), B(¬α))〉) and we get for modus ponens:

〈α, (B(α), B(¬α))〉
〈α → β, (B(α → β), B(¬(α → β)))〉
〈β, (B(β), B(¬β))〉

whereB(β) = min(B(α), B(α → β)) andB(¬β) =
max(B(¬α), B(¬(α → β))).

For another approach (without the fuzzy partition prop-
erty) on the continuous extension of four-valued logics the
reader can see (Fortemps & Słowiński 2002).

Example 2. We take again the example of the Parliament,
but this time we are going to value the positive and negative
reasons within the[0, 1] interval. Positive reasons become
strictly positive when at least 50% of the MPs vote “for”
and become sure (equal to 1) when at least 80% vote “for”.
Negative reasons become strictly positive when at least 15%
vote “against” and become sure (equal to 1) when at least
35% vote “against”. The model is shown in figure 2 (for
simplicity we considered the slopes of the membership func-
tions linear).
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Figure 2:B(α) andB(¬α) for example 2

Case V (a) V (¬a) B(a) B(¬a) t(a) k(a) u(a) f(a)

1 75 20 0.83 0.25 0.75 0.08 0 0.17

2 75 18 0.83 0.15 0.83 0 0.02 0.15

3 77 20 0.9 0.25 0.75 0.15 0 0.1

4 82 18 1 0.15 0.85 0.15 0 0

5 78 22 0.93 0.35 0.65 0.28 0 0.07

6 58 26 0.26 0.55 0.26 0 0.19 0.55

7 58 17 0.26 0.1 0.26 0 0.64 0.1

8 58 35 0.26 1 0 0.26 0 0.74

9 68 26 0.6 0.55 0.45 0.15 0 0.4

10 68 17 0.6 0.1 0.6 0 0.3 0.1

Table 3: The truth table for example 2

In table 3 we show the simulation of a number of votes
on a set of issues. How can the decomposition in positive
and negative reasons help a decision maker? First of all it is
easy to observe that (with that precise decision rule) negative
reasons grow faster than positive ones. Cases 1 to 3 show
that convincing two non voters to vote “for” will not im-
prove acceptability (t(a)), while convincing two opponents
to not vote will do. Cases 4 and 5 show how acceptability
and opposition will change due to opinion shifts from “for”
to “against” when there are no “non voters”. Cases 6 to 10
show the appearance of hesitation due to ignorance or con-
flict. The analysis of the positive and negative reasons helps
in showing to a decision maker in what direction he should
concentrate his efforts in order to pursue his policy.

B(a) as a standard necessity
Although the four valued logic previously introduced allows
to use a classical structure of “truth values” it is intuitive to
consider such values as representations of uncertainty states,
possibly qualitative. It is therefore natural to check any re-
lations between this formalism and others, established since
a long time, such as possibility theory (see (Dubois & Prade
1988)). Possibility measures should enable to take into ac-
count qualitative states of uncertainty and are expected to



provide an ordinal representation of uncertainty as follows:

Definition 3 Possibility MeasureGiven a set of eventsΩ, a
possibility measureΠ is a function defined on the power set
2Ω, (Π : 2Ω 7→ [0, 1]) such that:
1. Π(∅) = 0, Π(Ω) = 1
2. A ⊆ B ∈ 2Ω → Π(A) ≤ Π(B)
3. ∀A,B ∈ 2Ω, Π(A ∪B) = max(Π(A),Π(B))

The dual of the possibility measure, denoted necessity
measure is defined asN(a) = 1−Π(¬a).

Definition 4 Necessity measureGiven a set of eventsΩ, a
necessity measureN is a function defined on the power set
2Ω, (N : 2Ω 7→ [0, 1]), such that:
1. N(∅) = 0, N(Ω) = 1,
2. A ⊆ B ∈ 2Ω → N(A) ≤ N(B)
3. ∀A,B ∈ 2Ω, N(A ∩B) = min(N(A), N(B))

As a result, we obtain the following properties:

max(Π(a),Π(¬a)) = 1 (9)

Π(a) ≥ N(a) (10)

If N(a) 6= 0, then Π(a) = 1 (11)

If Π(a) 6= 1, then N(a) = 0 (12)

By definition we can consider a possibility measure as the
upper bound of the uncertainty associated to an event (or
a sentence), the one carrying the less specific information.
Dually the necessity measure will represent the lower bound:
how sure we are about an event (or a sentence). Clearly three
extreme situations are possible:
- N(a) = 1, N(¬a) = 0, a is the case;
- N(a) = 0, N(¬a) = 1, ¬a is the case;
- N(a) = 0, N(¬a) = 0, nothing is sure and everything is
possible.

A first attempt to interpret the continuous valuation of
“presence of truth inα” and “presence of truth in¬α” could
be to consider them as necessity measures. Coming back to
our notation, we considerB(α), as a standard necessity; as
a consequence we have:
B(α) = N(α) = 1−Π(¬α)
B(¬α) = N(¬α) = 1−Π(α)
Hence, we obtain the following definitions:

t(α) =min(N(α),Π(α)) (13)

k(α) =max(N(α)−Π(α), 0) (14)

u(α) =max(Π(α)−N(α), 0) (15)

f(α) =min(Π(¬α), N(¬α)) (16)

However, sinceΠ(α) > N(α) we can reformulate the equa-
tions 13-16:

t(α) =N(α) (17)

k(α) =0 (18)

u(α) =Π(α)−N(α) (19)

f(α) =N(¬α) = 1−Π(α) (20)

We first observe that interpretingB(α) as a standard neces-
sity measure leads tok(α) = 0. This is not surprising given
the semantics of necessity. Let us study separately two situ-
ations, i.eN(α) = 0 andN(α) > 0:

When N(α)> 0: we get

t(α) =N(α) (21)

k(α) =f(α) = 0 (22)

u(α) =Π(¬α) (23)

When N(α)= 0, we get:

t(α) =k(α) = 0 (24)

u(α) =Π(α) (25)

f(α) =N(¬α) (26)

In other terms it appears that, while the necessity measure
represents the “trueness” of a sentence (or, exclusively, of its
negation), the possibility measure represents the “unknown-
ness” of the same sentence. Although this is consistent with
possibility theory it presents also some weak points:
- presence of truth and “trueness” are practically equivalent;
- there is no way to consider contradictory statements;
- there are several compositional problems (for instance
N(α ∨ β) = t(α ∨ β) = max(t(α), t(β)) =
max(N(α), N(β)), while this is not the case in possibility
theory).

B(a) as a sub-normalised necessity measure
An important feature of four-valued logics is the separation
of negation from complementarity. Possibility theory does
not make any difference between these two operators since
it has been conceived as an uncertainty measure to be asso-
ciated to classic logic. In this section, we suggest the idea
of associating an uncertainty measure to a formalism such
as DDT and study the consequences. In order to do that we
recall the use in DDT of the “weak negation”6∼ (to be read
as “perhaps”). We remind that such a weak negation is con-
ceived so that the complement of a sentence∼ α can be
established as¬ 6∼ ¬ 6∼ α. We further impose (consistently
with the semantics of the DDT language) that an uncertainty
distribution associated to a sentence of the language should
fulfil the property:

B(α) = B(6∼ α) = t(α) + k(α)

Denoting the dual measure ofB asH (H(α) = 1−B(¬α))
and recalling thatB(¬α) = f(α) + k(α) as well as the
principle of fuzzy partition we get that:H(α) = t(α) +
u(α). Further on, due to the definitions of section 2 we have:
t(α) = f(¬α) = f(¬ 6∼ ¬ 6∼ α)
k(α) = k(¬α) = u(¬ 6∼ ¬ 6∼ α)
u(α) = u(¬α) = k(¬ 6∼ ¬ 6∼ α)
f(α) = t(¬α) = t(¬ 6∼ ¬ 6∼ α)

Therefore we have:
H(α) = t(α)+u(α) = f(¬ 6∼ ¬ 6∼ α)+k(¬ 6∼ ¬ 6∼ α) =
t(6∼ ¬ 6∼ α) + k(6∼ ¬ 6∼ α) = B(6∼ ¬ 6∼ α) = B(¬ ∼ α).



In other terms the dual measure ofB is equal to the mea-
sure of the negation of the complement. We can summarise
the result in table 4.

B(α) = B(� α) = H(� ¬ � α) = H(� ¬α)
B(¬α) = B(� ¬α) = H(¬ � ¬ � α) = H(� α)
B(¬ � ¬ � α) = B(¬ � ¬α) = H(¬α) = H(¬ � α)
B(� ¬ � α) = B(¬ � α) = H(α) = H(¬ � ¬α)

Table 4: Equivalence betweenB andH

Table 4 shows that the introduction of the weak negation
reduces the dual measures of the type necessity/possibility
to a single one. Indeed we just need to know an uncertainty
measure of a sentence and of its negation in order to know all
about the uncertainty associated to this sentence. Further on,
let us consider the first column of table 4. If we consider that
only one uncertainty distribution is defined (sayB) there is
no reason to claim thatB(� ¬ � α) > B(α) (the uncer-
tainty associated to the negation of the complement of a sen-
tence is not necessarily larger than the uncertainty associated
to the sentence itself; they should be unrelated). However,
sinceB(� ¬ � α) = H(α), if the above relation does not
hold we are practically relaxing the normalisation principle
of uncertainty measures used in possibility theory. What we
see is that, while it is difficult to justify such distributions
in a pure possibility theory frame, the use of the DDT logic
allows to give a logical justification for their existence.

Conclusion
In this paper we discuss two distinct tools used to deal with
uncertainty: four valued logics and uncertainty distributions,
both extensively used in decision aiding, the first in order to
take into account positive and negative reasons in formulat-
ing a recommendation the second in order to take into ac-
count the poor or contradictory information present in the
decision aiding process.

We first show how it is possible to extend a four valued
logic using continuous valuations of positive and negative
reasons. We then interpret such continuous valuations as
standard necessity measures. On the one hand we obtain
result consistent with possibility theory, but on the other
hand we lose some of the expressive power of the four val-
ued logic, mainly the possibility to distinguish contradictory
statements from unknown ones. We then show that interpret-
ing such valuations as sub-normalised necessity measures
we are ably to fully exploit the expressivity of the four val-
ued language, but at the price of losing the possibility to use
two independent dual measures of uncertainty.
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de la logique usuelle.Mathématique, Informatique, Sci-
ences HumainesNo 107:17–73. 1963 manuscript, pub-
lished posthumously.
Dubois, D., and Prade, H. 1988.Possibility theory. Plenum
Press, New-York.
Dubois, D., and Prade, H. 2001. Possibility theory, prob-
ability theory and multiple-valued logics: A clarification.
Annals of Mathematics and Artificial Intelligence32:35–
66.
Fitting, M. 1991. Bilattices and the semantics of logic
programming.Journal of Logic Programming11:91–116.
Fortemps, Ph., and Słowiński, R. 2002. A graded quadri-
valent logic for ordinal preference modelling : Loyola-like
approach.Fuzzy Optimization and Decision Making1:93–
111.
Ginsberg, M. 1988. Multivalued logics: a uniform ap-
proach to reasoning in artificial intelligence.Computa-
tional Intelligence4:265–316.
Perny, P., and Roubens, M. 1998. Fuzzy preference mod-
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