

A new method to evaluate software artifacts

against predefined profiles
Maurizio Morisio
Politecnico di Torino

24, Corso Duca degli Abruzzi
10129 Torino Italy
+ 39-011-5647033

morisio@polito.it

Ioannis Stamelos
Dept. of Informatics
Aristotle University

54006 Thessaloniki Greece
+30-310-998227

stamelos@csd.auth.gr

Alexis Tsoukiàs
Lamsade - CNRS

Université Paris Dauphine
Paris, France

+33-1-44054401

tsoukias@lamsade.dauphine.fr

ABSTRACT

Software artifacts are characterised by many attributes, each one
in its turn can be measured by one or more measures. In several
cases the software artifact has to be evaluated as a whole, thus
raising the problem of aggregating measures to give an overall,
single view on the artifact.

This paper presents a method to aggregate measures, that works
comparing the artifact with predefined, ideal artifacts, or profiles.
Profiles are defined starting from ranges of values on measures of
attributes. The method is based on two main phases, namely
definition of the evaluation model and application of the
evaluation model, and is presented in a simplified case study that
deals with evaluating the level of quality of an asset to decide if
accepting it in a reuse repository. The advantages of the method
are that it allows using ordinal scales, while it deals explicitly
with preferences expressed, implicitly or explicitly, by the
evaluator.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Complexity measures,
Performance measures, Process metrics, Product metrics.

General Terms
Management, Measurement

Keywords
Software evaluation, quality models, multicriteria decision aid.

1. INTRODUCTION
Artifacts in the software process are complex items with many
attributes, each one can be characterized by a measure. For
instance a code module could be characterized by size,
functionality, complexity, modularity, and the related measures.
A software product could be characterized by functionality,
reliability and cost.

Sometimes artifacts need to be evaluated as a whole, not only on
each attribute alone. Examples of evaluations are (see also [13]):

• Decide if a management information system (MIS)
should be kept, or changed. The existing MIS is
compared with the new, expected one.

• Decide which commercial off the shelf (COTS) product
to buy, to fulfill a need. COTS are compared among
them, and possibly they are compared with the ideal
one, fulfilling the need.

• Decide if a code module can be accepted, as far as its
quality level is concerned. This evaluation could be
performed by the quality assurance function of a
company, the module is compared with a virtual, ideal
module described in a company document, or in a
standard.

• Certify a software product. This case is in fact a
variation of the case above. The evaluation is performed
by an independent entity, an international/national
standard is used, a whole product is evaluated.

On the other hand, a software artifact may represent a broad class
of Information Technology concepts (a programming language, a
software development approach, a software organisation, etc.).
Examples of such practical evaluation situtations are:

• choice of a programming language to be used in a
project

• choice of open-source or close-source approach in
developing a new system

• determination of the capability maturity level a software
company belongs to

We can recognize some common patterns in the evaluation cases
listed above.

• An evaluator (project manager, quality assurance
manager, certification body, etc.) is charged of solving a
decision problem.

• The decision problem can be Boolean (keep- buy,
accept – reject, certify – not certify) or implies a choice
(select a COTS product).

• The evaluation involves many artifacts (selection of
COTS product) or only one. In the latter case, a second
artifact (the ideal one) is often used for comparison. In
other words the evaluation is not absolute, but uses a
reference for comparison.

• The starting point of the evaluation is a set of simple
attributes where measures are available. For instance, to
decide if a code module can be accepted, internal
attributes (such as size, complexity, number of defects,
etc.) are measured. But the final decision is Boolean,
accept-reject. We call this problem aggregation. Simple
measures have to be aggregated in a single view to help
the decision.

In the literature, evaluations, and specifically aggregations, are
mostly dealt with using the Weighted Average Sum (WAS)
approach. The problem with WAS is that it requires that the
measures have interval scales. In real world cases measures with
ordinal scales, or judgements on ordinal scales (such as good,
average, bad) are much more common. If one or more ordinal
scales are involved, the aggregation should be made as if all
scales were ordinal. Otherwise, ordinal scales will be treated as if
they were ratio, therefore introducing arbitrary information that
makes the evaluation unfair.

Kontio [8] uses the Analytic Hierarchy Process (AHP) [12], that
fits well the hierarchic nature of quality models used in
evaluations, but requires also ratio scales on all measures.

Morisio and Tsoukiàs [9] propose to use an ordinal aggregation
method in a COTS product selection evaluation case (see also
[14] and [16]). The advantage is that ordinal scales can be used,
and that preferences are clearly distinguished from measures.
Starting from this work we propose in this paper a method that
compares artifacts with predefined profiles. The method applies to
any situation where preferences are expressed on an ordinal scale
and where alternatives are not compared between them, but to
"profiles" in order to fit them in pre-defined categories. Such an
approach has already been applied in real world cases (see [10]).

In the following we examine in more detail the concepts of
measurement, evaluation, measure, preference, aggregation and
their mutual relationships.

2. EVALUATION CONCEPTS
2.1 Measurement and Evaluation
The problem of evaluation of an artifact is often addressed in a
confusing way. The basic confusion arises between the
measurement of attributes of the artifact and the evaluation of an
artifact based on these attributes for any decision purpose. In the
first case a measurement is expected to be performed, while in the

second the decision maker’s preferences have to be modeled.
These are two completely different activities (Tab. 1) and have to
be treated as such (for a detailed discussion see [2] and [3]).

The construction of a measure requires:

• The definition of the semantics of the measure (what do
we measure?);

• The definition of the structure of the metric (what scale
is used?);

• The definition of one or more standards (how the
measurement is performed?).

On the other hand, evaluating a set of artifacts under a decision
perspective requires to answer questions of the type:

• Who evaluates?
• Why it is necessary to evaluate?
• For what purpose is the evaluation?
• How the evaluation has to be done?
• Who is responsible for the consequences?
• What resources are available for the evaluation?
• Is there any uncertainty?

A measure is a unary function m: A→ M mapping the set of
artifacts A to the set of measures M. The set M is equipped with a
structure which is the scale on which the measure is established.
Such scales can be nominal, ordinal, ratio, interval or absolute.
Each type is univocally defined by its admissible transformations.
Measuring the elements of A can be done only if M is defined. So,
an external reference system and standards are necessary
(represented by M).

A preference is usually represented by a binary relation R, R ⊆ A
× A, so that the set A is mapped to itself. We obviously need to
know under which conditions r(x,y) x,y ∈ A is true, but there is
no need of external reference system. Typically, an evaluator can
decide that he prefers x to y, basing the decision on simple
judgement, or using a measure, in both cases this establishes
r(x,y) is true.

When R is a complete binary relation (∀ x,y ∈ A r(x,y) ∨ r(y,x))
then it admits a numerical representation which depends on what
other properties R fulfills. For instance if R satisfies the Ferrers
property and semi-transitivity (for such concepts see [11]), then it
is known that ∃ v:A → ℜ : r(x,y) ⇔ v(x) ≥ v(y)+k (k being a
real constant). A typical confusion is to consider the function v as
a ``measurement'' applied on the set A. Actually there exist an
infinity of functions v representing the relation R and any one
could be chosen. Since there is no standard (or metric) any of
such functions v is just a numerical representation of R, but not a
measure. For instance if on the preference relation x is indifferent
to y, y is indifferent to z, but z is preferred to x, then two
numerical representations of such preferences are

u(x)=10,u(y)=12,u(z)=14,k=3 and
v(x)=50,v(y)=55,u(z)=60,k=6.

We call criterion a preference relation with a numerical
representation.

Finally, if for a given set A a measurement function exists, it is
always possible to infer a preference relation from the
measurement. However, such a preference relation is not unique

(the fact that two objects have a different length, which is a
measure, does not imply a precise preference among them).

Suppose that ∃ l:A → ℜ (a measure mapping the set A to the
reals, let's say a length). Then the following are all admissible:

 r(x,y) ⇔ l(x) ≥ l(y)
 r(x,y) ⇔ l(y) ≥ l(x)
 r(x,y) ⇔ l(x) ≥ l(y)+k
 r(x,y) ⇔ l(x) ≥ 2l(y)

These are all admissible preference relations, but with an obvious
different semantic. The choice of the ``correct'' one depends on
the answers on the evaluation questions. An evaluation therefore
is always part of a decision aid process and represents its
subjective dimension.

Table 1. Properties of measures and preferences

 Measure Preference
Definition Function Binary relation
Used for Measurement Evaluation
Constraints Representation

condition,
meaningfulness

Properties of
the binary relation

Obtained by Measurement
(reference system)

Established by the
evaluator (possibly
using a measure)

Scale Nominal to
absolute

Ordinal to absolute
(defined for the
corresponding
criterion, not for the
preference)

Value obtained by Measurement
(reference system)

From measure or
from judgement

Choice of
aggregation
operator

Function of scales
of measures and
semantics

Function of scales
of criteria and
semantics

2.2 Aggregation
The differences between measurement and evaluation (seen as
preference modeling) reflect also the possibilities we have in
order to obtain an aggregated measure or an aggregated
preference from sets of measures or sets of preferences. Typically
sets of preferences or measures regard a set of attributes that
characterize an artifact. But a comprehensive measure or
preference relation is needed, which may represent all the
different dimensions we want to consider. It is surprising how
often the choice of the aggregation operator is done without any
critical consideration about its properties. Let's take two
examples.

Suppose you have two three dimension objects a,b, for which
their dimensions (length, height and depth) are known
(l(a),l(b),h(a),h(b),d(a),d(b)). In order to have an aggregate
measure of each object dimension we may compute their volume,
that is

v(a)=l(a)h(a)d(a) and v(b)=l(b)h(b)d(b).

If the three dimensions are prices we may use an average, that is

p(a)=l(a)+h(a)+d(a)/3 and p(b)=l(b)+h(b)+d(b)/3.

From a mathematical point of view both operators are admissible
(when l(x),h(x),d(x) are ratio scales as in our example). However,
the semantics of the two measures are quite different. It will make
no sense to compute a geometric mean in order to have an idea of
the price of a,b as it will make no sense to compute an arithmetic
mean in order to have an idea of the volume of a,b. The choice
between the geometric and the arithmetic mean depends on the
semantics of the single measures and of the aggregated one.

For the next example, suppose you have two artifacts a,b
evaluated on two attributes. For each one a complete preference
relation (r1, r2) is defined.

Let’s pass to the numerical representation, defining the criteria g1
and g2

g1 : A→ [0,1] and g1 (a)=0 and g1 (b)=1
g2 : A→ [0,2] and g2 (a)=2 and g2 (b)=1.

Under the hypothesis that both criteria are of equal importance,
many people will compute the average (weighted average sum) to
infer the global preference relation.

g(a)= (g1 (a)+ g2 (a))/2=1 and
g(b)= (g1 (b)+ g2 (b))/2=1

so the two artifacts result to be indifferent. However, if an
average is used it is implicitly assumed that g1 and g2 admit ratio
transformations. Therefore it is possible to replace g2 by
g’2: A→ [0,1] so that g’2 (a)=1 and g’2 (b)= 1/2 (known as scale
normalization). Under the usual hypothesis of equal importance of
the two criteria we obtain now g(a)=1/2 and g(b)=3/4 meaning
that b is preferred to a.

The problem is that the average aggregation was chosen without
verifying if the conditions under which it is admissible hold. First
of all if the values of a and b are obtained from ordinal
judgements (of the type good, medium, bad etc.) then the
numerical representation does not admit a ratio transformation (in
other words we cannot use its cardinal information). Second, even
if the ratio transformation were admissible, the concept of criteria
importance is misleading. In a ``weighted arithmetic mean'' (as
the average is) the weights are constants representing the ratios
between the scales of the criteria.

In the example, if we reduce g2 to g’2 we have to give to g’2 twice
the weight of g’1 in order to keep true the concept of ``equal
importance''.

In other words it is not possible to speak about importance of the
criteria (in the weighted arithmetic mean case) without
considering the cardinality of their co-domains.

From the above examples we can induce a simple rule. In order to
choose appropriately an aggregation operator it is necessary to
take in consideration the semantics of the operator and of each
single preference or measure and the properties (axiomatic) of the
aggregation operator. In other words, if the aggregation operator
is chosen randomly, neither the correctness of the result, nor its
meaningfulness can be guaranteed. For a detailed discussion on
the above problems the reader can see [4].

Uncertainty can be considered using intervals, fuzzy measures,
possibility and/or probability distributions etc., instead of exact
evaluations. For each such case, precise procedures apply. In this
paper we present a principle of ordinal preference aggregation,
not a complete method. To this end, we chose an easy example in
order to show how such a family of methods works, not for
presenting a definitive method.

3. THE EVALUATION METHOD
In this section we present the evaluation method using a
simplified real life case as working example. This case is a
variation of the third evaluation type presented in the
introduction, ‘Decide if a code module can be accepted ...’.

A reuse repository contains reusable assets. These are made of
source code and documents describing design and functionality of
the asset.

The reuse manager receives the potential assets, and has to verify
their quality level to accept them in the repository, or not. For
this purpose, the reuse manager, helped by the quality assurance
function, builds a quality model. His intuition is to establish a
judgement of the type “very good” (VG), “good” (G), “quite
good” (QG), “acceptable” (A), “unacceptable” (U) and introduce
to the repository assets judged at least “A”. Of course reusers can
choose assets not only according to functional requirements, but
also to the quality level. The reuse manager only has information
concerning specific attributes of the assets and finds difficult to
define the comprehensive judgements. Actually the reuse
manager is facing a problem of measurement aggregation from
the single quality attributes to the comprehensive ordinal scale
“VG > G >QG > A > U”.

In this section we briefly present the method adopted consisting in
the following steps (we identify the reuse manager as a decision
maker):

Phase 1 - definition of evaluation model
Definition of quality model
Definition of criteria
Definition of profiles and categories

Phase 2 - application of evaluation model
Selection of artifacts
Measurement of artifacts
Aggregation of measures

3.1 Definition of the Evaluation Model
The evaluation model is established defining a hierarchy of
attributes and the associated measures. Measures can have any
scale, from nominal to absolute.

In our working example, quality for reusable assets is defined,
using a constructive quality model approach [7], in terms of code
understandability and code reliability. This model is also
influenced by the ISO 9126 standard [5], that lists reliability and

maintainability as quality characteristics, and suggests
understandability as a decomposition of maintainability.

Table 2. Attributes and measures for Code Understandability

Attribute Subattribute Measure Criterion
scale

Code understandability
Algorithmic
complexity

Mc Cabe’s
cyclomatic number

Inverse

Size LOCs* Inverse

Complexity

Fan out Number of
functions called, not
contained in the
asset

Inverse

Docume-
ntation

Comments on
code

(physical lines of
code containing
comments) / LOCs

Identity

 Descriptive-
ness

Unacceptable (U),
Acceptable (A),
Quite Good (QG),
Good (G),
Very Good (VG)

VG > G >
QG > A >
U

 Quantity Number of pages of
documents
associated to source
code

Identity

*LOCs = Physical lines of code, less comments and blank lines

Table 3. Attributes and measures for Reliability

Attribute Subattribute Measure Criterion
scale

Reliability Branch
coverage

Branch coverage
(percentage of
statements and
decisions exercised
by test cases)

Identity

 Inspection Yes (the source
code was formally
inspected) No

Yes > No

 Defects
correction
ratio

(Number of defects
fixed after release) /
(Number of defects
reported after
release)

Identity

 MTTF Mean Time To
Failure

Identity

g1

g2

g3

gm-1

gm

Categ. 1 Categ. 2 Categ. p-1 Categ. p Categ. p+1

b1
bp-1 bp

Figure 1: Definition of categories and profiles

Code understandability is further decomposed in complexity and
documentation. Next, each leaf quality attribute (complexity,
documentation, reliability) is characterized through a number of
measures. This step uses a GQM approach [1] and is also
influenced by the Reboot reusability model [6]. Refer to Tables 2
and 3 for the complete definition of attributes, subattributes and
measures.

3.2 Definition of Criteria/Attributes/Scales
The decision maker willing to express a quality judgement on an
ordinal scale, all attributes have to be equipped with at least
ordinal scales of measurement. Further on, since the final scale is
both a measurement and a criterion (in the sense that obviously
VG objects are preferred to G objects, etc.) we have to associate
to each attribute a preference model.

For each attribute a correspondent criterion has to be defined,
with its scale. While an attribute is neutral, a criterion expresses a
preference by an evaluator. For example code size is an attribute
that allows to state that a 200 Loc source code module is of larger
size than a 100 Loc module. A criterion based on size expresses
the preference of an evaluator for larger or smaller modules. In
one context an evaluator could prefer larger modules, in another
smaller ones.

A criterion can have the same scale as the attribute (identity
transformation, larger modules are preferred to smaller modules),
or the inverse scale (small modules are preferred to large ones).
The same holds for (Documentation) Quantity: a user might
prefer to define a more suitable documentation attribute (e.g.
Documentation Appropriateness, measured on an ordinal scale),
not strictly depending on the number of pages. Another common
transformation is defining an ordinal scale for the criterion
starting from a nominal scale for the attribute. Other
transformations are possible, but we will not deal with them in
this paper.

The rightmost column of tables 2 and 3 shows how the scale of
the criterion was defined starting from the scale of the attribute.
The attribute Descriptiveness uses an ordinal scale, and depends
on the judgement of the reuse manager. The attribute Inspection
uses a measure with nominal scale (values yes no), the
corresponding criterion uses an ordinal scale. For all other criteria
the scale is the same as for the attribute, or the inverse one.

3.3 Definition of Profiles and Categories
Next, profiles and categories (see figure 1) have to be defined.
The criteria of the evaluation model compose a tree, for instance
criterion g0 decomposes in criteria g1, g2, .. gn. A profile for g0 is a
set of values, one for each criterion gi. In figure 1 g1..gm, indicate
generic criteria, b1..bp generic profiles, that define p+1 categories.
In our method bh represents the upper limit of category Ch and the
lower limit of category Ch+1.

In our working example, four profiles and five categories (Very
good (VG), Good (G), Quite good (QG), Acceptable (A),
Unacceptable (U)) are defined for each composed criterion, see
tables 4, 5 and 6.

Table 4: Profiles for criteria Complexity and Documentation

Composed
criterion

Criterion Pro-
file
A

Pro-
file
QG

Pro-
file
G

Pro-
file
VG

Algorithmic
complexity

8 6 4 2

Size 10000 5000 2000 1000

Comple-
xity

Fan out 20 10 7 5
Comments
on code

10% 20% 30% 40%

Descripti-
veness

A QG G VG

Docume-
ntation

Quantity 0 10 100 1000

Table 5: Profile for criterion Code Understandability

Composed
criterion

Criterion Pro-
file
A

Pro-
file
QG

Pro-
file
G

Pro-
file
VG

Complexity A QG G VG

Code
Understand
ability Docume-

ntation
A QG G VG

Table 6: Profile for criterion Reliability

Composed
criterion

Criterion Pro-
file
A

Pro-
file
QG

Pro-
file
G

Pro-
file
VG

Branch
coverage

20% 40% 60% 100%

Inspection No Yes Yes Yes

Reliability

Defects
correction
ratio

50% 70% 80% 100%

 MTTF
[hours]

1000 5000 8000 10000

3.4 Selection, Measurement
At this point Phase II starts. Elements to be evaluated are selected
and identified. In our working example assets are produced and
submitted to the reuse manager. Next, elements are measured on
each attribute of the evaluation module. In the example, these
measures are taken partially by the project that produces the asset,
partially by the reuse manager. As already noted, some attributes
are judged and not measured, such as Descriptiveness. Table 7
reports values for four assets to be evaluated on Code
Understandability.

Table 7: Values for attributes related to Code

understandability

Composed
criterion

Criterion Asset
p0

Asset
p1

Asset
p2

Asset
p3

Algorithmic
complexity

2 2 5 2

Size 2378 4277 9501 1010

Comple-
xity

Fan out 6 15 20 5
Comments
on code

15% 15% 5% 40%

Descripti-
veness

U U A VG

Docume-
ntation

Quantity 0 0 50 1000

3.5 Aggregation
The aggregation phase assigns an element to be evaluated to a
category of the root criterion in the tree. The aggregation is
performed using an algorithm inspired by the ELECTRE-TRI
procedure [17], defined in the Multi Criteria Decision Aid
approach [15].

The basic concept of the algorithm chosen is the Outranking
relation S, which has to be read as is at least as good as, and has
to be computed between each element and each profile. The
outranking relation holds if the concordance and non-discordance
tests are satisfied.

The concordance test is the majority strength to be reached in
order to be able to establish with a certain degree of confidence
the outranking relation. Such a majority is generally computed
using the relative importance (weight) of each criterion.

The non-discordance test is the minority strength not to be
reached in order to be able to establish the outranking relation.
Such a minority is generally computed using the relative
importance of each criterion.

Formally, for each ordered pair (x, y), where x and y stand for a
and bh or viceversa, and for a set of criteria G in which a
composed criterion is decomposed:

(){ }
(){ }
(){ }

G g G p x y

G g G i x y

G g G p y x

G G G

j j

j j

j j

+

=

−

± + −

= ∈

= ∈

= ∈

= ∪














: ,

: ,

: ,

where pj(x, y) means that x is preferred to y on criterion gj while
ij(x, y) means that x and y are indifferent on criterion gj.

Let wj be the relative importance of a criterion, with wj =∑ 1

,

S x y C x y D x y(,) (,) (,)⇔ ∧¬

the non-discordance relation is:

¬ ⇔ ≤ ∧ ∀ ∈ ¬
∈ −
∑D x y w d g G v x yj
j G

j j(,) : (,)

The discordance relation C(x,y) has a different definition if the
element (a) is compared with the profile (b) or viceversa.

C a b w c w w

C b a w c w w w w

j j
j Gj G

j
j G

j j
j Gj G

j
j G

j
j G

j
j G

(,)

(,)

⇔ ≥ ∧ ≥










⇔ ≥ ∧ ≥








 ∨ >























∈∈ ∈

∈∈ ∈ ∈ ∈

+± −

+± − + −

∑∑ ∑

∑∑ ∑ ∑ ∑

with:

• c: concordance threshold;

• d: discordance threshold;

• c+d ≠ 1;

• vj(x,y): veto, expressed on criterion gj, of y on x.
When the relation S is obtained, the assignment of an element to a
category can be done in two ways:

1) Pessimistic assignment:

• a is iteratively compared with bi, for i = p, p-1, ..., 0,

• as soon as a profile bh exists for which S(a, bh) then a is
assigned to the category Ch.

2) Optimistic assignment:

• a is iteratively compared with bi, for i = 1, 2, ..., p,

• as soon as a profile bh exists for which S(bh, a) ∧ ¬ S(a,
bh) then a is assigned to category Ch-1.

The pessimistic procedure finds the profile for which the element
is not worst. The optimistic procedure finds the profile against
which the element is surely worst. If the optimistic and
pessimistic assignments coincide, then no uncertainty exists for
the assignment. Otherwise, an uncertainty exists and should be
considered by the evaluator.

Let’s show how this works on our example. Aggregation will be
limited to the Code Understandability criterion. Consider asset p0
and the sub-node complexity. The performance vector of p0 is [2,
2378, 6] (from Table 7.). The best profile to which p0 is “at least
as good as” is G ([4, 2000, 7]), therefore the pessimistic
assignment is in class G. The worst profile which is strictly better
than p0 is VG ([2, 1000, 5]), therefore the optimistic assignment
is in class G.

Table 9: Categories of assets for Complexity and
Documentation

Composed
criterion

Criterion Asset
p0

Asset
p1

Asset
p2

Asset
p3

Complexity QG QG A VG

Code
Understand

ability Docume-
ntation

A A A VG

Table 10: Categories of assets for Code Understandability

Criterion Asset
p0

Asset
p1

Asset
p2

Asset
p3

Code Understandability A A A VG

Tables 9 and 10 show the allocation of assets to categories on the
nodes code understandability, complexity and documentation. In
all cases the pessimistic and the optimistic assignment coincide.
For all composed criteria, composing criteria have the same
weight. In all cases the thresholds used are 70% for the
concordance threshold, 28% for the discordance threshold (these
figures are commonly used in literature and thus introduced in
this example, usually it is the decision maker who provides this
information).

4. DISCUSSION
A new method to evaluate software artifacts has been presented.
The method distinguishes between measures and preferences and
uses an ordinal aggregation operator. Both points are essential, as
evaluations are decision problems that, even if they use measures
as a starting point, involve judgement; and because real life

evaluation models often use ordinal measures that require ordinal
aggregation operators.

The application of the method has shown that the definition of the
evaluation model is a difficult task, probably the most difficult in
an evaluation problem. One problem is the decomposition in
attributes and subattributes. In some parts (for instance attributes
branch coverage, inspection, and defects correction ratio) this
corresponds to defining a predictive model, where the difficulty is
in validating it.

Another problem lies in the definition of profiles, and therefore
categories. We have discovered that four profiles and five
categories are probably too many. Both empirical and intuitive
evidence of how the value of a measure discriminates assets and
therefore defines profiles is missing. Accordingly, the next
version of the evaluation model will be built with two profiles and
three categories (reject, acceptable, good) only.

Initially, reliability and understandability were supposed to be
aggregated in a final evaluation considering both of them.
Actually, this further aggregation was not performed, because it
did not correspond with the need of the final user of an asset who
decides to use an asset in function of understandability only. The
evaluation on reliability is used by the reuse manager to reject
some assets, then the user selects on understandability only. In
other words, two evaluation models are actually used, one on
understandability, by the user and the reuse manager, one on
reliability, by the reuse manager only.

This situation could change in a safety critical systems context,
where a user could be constrained to select an asset in function of
the class of risk of the project, or part of project. Reliability
categories of assets would be mapped to classes of risk, and the
user should select accordingly. This situation will be the object of
further research.

5. ACKNOWLEDGMENTS
Our thanks to the anonymous reviewers for their helpful
comments

6. REFERENCES
[1] Basili V.B., Rombach H.D. (1988). The TAME Project:

Towards Improvement-Oriented Software Environments,
IEEE Transactions on software engineering, 14,6 (June 88
758-773.

[2] Blin M.J., Tsoukiàs A., ``Evaluation of COTS using multi-
criteria methodology'', in Proceedings of the 6th European
Conference on Software Quality (1999) 429 - 438.

[3] Blin M.J., Tsoukiàs A. Multicriteria Methodology
Contribution to the Software Quality Evaluation, Software
Quality Journal 9,2 (June 2001) 113-132.

[4] Bouyssou D., Marchant Th., Perny P., Pirlot M., Tsoukiàs
A., Vincke Ph., Evaluation and Decision Models: a critical
perspective, Kluwer Academic, Dordrecht (2000).

[5] ISO/IEC JTC1, International Standard 9126 Information
Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for their Use (1991) Geneva.

[6] Karlsson, E.A. Software Reuse. John Wiley & Sons (1995).

[7] Kitchenham, B. Towards a constructive quality model. Part
1: software quality modeling, measurement and prediction.
Software Engineering Journal (July 1987) 105-113.

[8] Kontio, J. A Case Study in Applying a Systematic Method
for COTS Selection, in Proceedings of the 18th Int. Conf. on
Software Engineering (1996) 201-209.

[9] Morisio, M., Tsoukiàs, A. IusWare: A methodology for the
evaluation and selection of software products. IEE
Proceedings Software Engineering (June 1997) 162-174.

[10] Paschetta E., Tsoukiàs A., ``A real world MCDA
application: evaluating software’’, Journal of Multi-Criteria
Decision Analysis, 9 (2000) 205 - 226.

[11] Roubens M., Vincke, Ph. Preference Modeling, LNEMS
250, Springer Verlag (1985).

[12] Saaty, T. The analytic hierarchy process. Mc Graw Hill, NY
(1980).

[13] Stamelos, I., Tsoukiàs, A. Software Evaluation Problem
Situations. Cahier du LAMSADE, No 156, Université Paris
Dauphine, to appear in European Journal of Operational
Research.

[14] Stamelos I., Vlahavas I., Refanidis I., Tsoukiàs A.,
``Knowledge Based Evaluation of Software Systems: a case
study’’, Information and Software Technology, 42 (2000)
333 - 345.

[15] Vincke, Ph. Multicriteria Decision Aid. John Wiley (1992).

[16] Vlahavas I., Refanidis I., Stamelos I., Tsoukiàs A., ``ESSE:
an expert system for software evaluation'', Journal of
Knowledge Based Systems, 12 (1999) 183 - 197.

[17] Yu, W. Aide multicritere a la decision dans le cadre de la
problematique du tri: methodes et applications LAMSADE,
Université Paris Dauphine, Paris (1992).

