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ABSTRACT 

Software artifacts are characterised by many attributes, each one 
in its turn can be measured by one or more measures.  In several 
cases the software artifact has to be evaluated as a whole, thus 
raising the problem of aggregating measures to give an overall, 
single view on the artifact. 

This paper presents a method to aggregate measures, that works 
comparing the artifact with predefined, ideal artifacts, or profiles. 
Profiles are defined starting from ranges of values on measures of 
attributes. The method is based on two main phases, namely 
definition of the evaluation model and application of the 
evaluation model, and is presented in a simplified case study that 
deals with evaluating the level of quality of an asset to decide if 
accepting it in a reuse repository. The advantages of the method 
are that it allows using ordinal scales, while it deals explicitly 
with preferences expressed, implicitly or explicitly, by the 
evaluator. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Complexity measures, 
Performance measures, Process metrics, Product metrics. 

General Terms 
Management, Measurement 

Keywords 
Software evaluation, quality models, multicriteria decision aid. 

 

 

1. INTRODUCTION 
Artifacts in the software process are complex items with many 
attributes, each one can be characterized by a measure. For 
instance a code module could be characterized by size, 
functionality, complexity, modularity, and the related measures. 
A software product could be characterized by functionality, 
reliability and cost.  

Sometimes artifacts need to be evaluated as a whole, not only on 
each attribute alone. Examples of evaluations are (see also [13]):  

• Decide if a management information system (MIS) 
should be kept, or changed. The existing MIS is 
compared with the new, expected one.  

• Decide which commercial off the shelf (COTS) product 
to buy, to fulfill a need. COTS are compared among 
them, and possibly they are compared with the ideal 
one, fulfilling the need. 

• Decide if a code module can be accepted, as far as its 
quality level is concerned. This evaluation could be 
performed by the quality assurance function of a 
company, the module is compared with a virtual, ideal 
module described in a company document, or in a 
standard.  

• Certify a software product. This case is in fact a 
variation of the case above. The evaluation is performed 
by an independent entity, an international/national 
standard is used, a whole product is evaluated. 

On the other hand, a software artifact may represent a broad class 
of Information Technology concepts (a programming language, a 
software development approach, a software organisation, etc.). 
Examples of such practical evaluation situtations are: 

• choice of a programming language to be used in a 
project 

• choice of open-source or close-source approach in 
developing a new system 

• determination of the capability maturity level a software 
company belongs to 

 

 
 



We can recognize some common patterns in the evaluation cases 
listed above. 

• An evaluator (project manager, quality assurance 
manager, certification body, etc.) is charged of solving a 
decision problem.  

• The decision problem can be Boolean (keep- buy, 
accept – reject, certify – not certify) or implies a choice 
(select a COTS product). 

• The evaluation involves many artifacts (selection of 
COTS product) or only one. In the latter case, a second 
artifact (the ideal one) is often used for comparison. In 
other words the evaluation is not absolute, but uses a 
reference for comparison.  

• The starting point of the evaluation is a set of simple 
attributes where measures are available. For instance, to 
decide if a code module can be accepted, internal 
attributes (such as size, complexity, number of defects, 
etc.) are measured. But the final decision is Boolean, 
accept-reject. We call this problem aggregation. Simple 
measures have to be aggregated in a single view to help 
the decision. 

In the literature, evaluations, and specifically aggregations, are 
mostly dealt with using the Weighted Average Sum (WAS) 
approach. The problem with WAS is that it requires that the 
measures have interval scales. In real world cases measures with 
ordinal scales, or judgements on ordinal scales (such as good, 
average, bad) are much more common. If one or more ordinal 
scales are involved, the aggregation should be made as if all 
scales were ordinal. Otherwise, ordinal scales will be treated as if 
they were ratio, therefore introducing arbitrary information that 
makes the evaluation unfair.  

Kontio [8] uses the Analytic Hierarchy Process (AHP) [12], that 
fits well the hierarchic nature of quality models used in 
evaluations, but requires also ratio scales on all measures.  

Morisio and Tsoukiàs [9] propose to use an ordinal aggregation 
method in a COTS product selection evaluation case (see also 
[14] and [16]). The advantage is that ordinal scales can be used, 
and that preferences are clearly distinguished from measures. 
Starting from this work we propose in this paper a method that 
compares artifacts with predefined profiles. The method applies to 
any situation where preferences are expressed on an ordinal scale 
and where alternatives are not compared between them, but to 
"profiles" in order to fit them in pre-defined categories. Such an 
approach has already been applied in real world cases (see [10]). 

In the following we examine in more detail the concepts of 
measurement, evaluation, measure, preference, aggregation and 
their mutual relationships. 

2. EVALUATION CONCEPTS 
2.1 Measurement  and Evaluation 
The problem of evaluation of an artifact is often addressed in a 
confusing way. The basic confusion arises between the 
measurement of attributes of the artifact and the evaluation of an 
artifact based on these attributes for any decision purpose. In the 
first case a measurement is expected to be performed, while in the 

second the decision maker’s preferences have to be modeled. 
These are two completely different activities (Tab. 1) and have to 
be treated as such (for a detailed discussion see [2] and [3]). 

 
The construction of a measure requires: 

• The definition of the semantics of the measure (what do 
we measure?); 

• The definition of the structure of the metric (what scale 
is used?); 

• The definition of one or more standards (how the 
measurement is performed?). 

 
On the other hand, evaluating a set of artifacts under a decision 
perspective requires to answer questions of the type:  

• Who evaluates?  
• Why it is necessary to evaluate?  
• For what purpose is the evaluation?  
• How the evaluation has to be done?  
• Who is responsible for the consequences?  
• What resources are available for the evaluation?  
• Is there any uncertainty? 
 

A measure is a unary function m: A→ M mapping the set of 
artifacts A to the set of measures M. The set M is equipped with a 
structure which is the scale on which the measure is established. 
Such scales can be nominal, ordinal, ratio, interval or absolute. 
Each type is univocally defined by its admissible transformations. 
Measuring the elements of A can be done only if M is defined. So, 
an external reference system and standards are necessary 
(represented by M). 

 
A preference is usually represented by a binary relation R, R ⊆ A 
× A, so that the set A is mapped to itself. We obviously need to 
know under which conditions r(x,y)  x,y ∈ A is true, but there is 
no need of external reference system. Typically, an evaluator can 
decide that he prefers x to y, basing the decision on simple 
judgement, or using a measure, in both cases this establishes 
r(x,y)   is true. 
 
When R is a complete binary relation (∀ x,y ∈ A r(x,y) ∨ r(y,x)) 
then it admits a numerical representation which depends on what 
other properties R fulfills. For instance if R satisfies the Ferrers 
property and semi-transitivity (for such concepts see [11]), then it 
is known that ∃ v:A →  ℜ : r(x,y) ⇔ v(x) ≥  v(y)+k  (k being a 
real constant). A typical confusion is to consider the function v as 
a ``measurement'' applied on the set A. Actually there exist an 
infinity of functions v representing the relation R and any one 
could be chosen. Since there is no standard (or metric) any of 
such functions v is just a numerical representation of R, but not a 
measure. For instance if on the preference relation x is indifferent 
to y, y is indifferent to z, but z is preferred to x, then two 
numerical representations of such preferences are 

u(x)=10,u(y)=12,u(z)=14,k=3 and  
v(x)=50,v(y)=55,u(z)=60,k=6. 

We call criterion a preference relation with a numerical 
representation. 

 
Finally, if for a given set A a measurement function exists, it is 
always possible to infer a preference relation from the 
measurement. However, such a preference relation is not unique 



(the fact that two objects have a different length, which is a 
measure, does not imply a precise preference among them). 
 
Suppose that ∃ l:A →  ℜ   (a measure mapping the set A to the 
reals, let's say a length). Then the following are all admissible:  

  r(x,y) ⇔ l(x) ≥ l(y) 
  r(x,y) ⇔ l(y)  ≥ l(x) 
  r(x,y) ⇔ l(x) ≥  l(y)+k 
  r(x,y) ⇔ l(x) ≥ 2l(y)  
 

These are all admissible preference relations, but with an obvious 
different semantic. The choice of the ``correct'' one depends on 
the answers on the evaluation questions. An evaluation therefore 
is always part of a decision aid process and represents its 
subjective dimension. 
 

 
Table 1. Properties of measures and preferences 

 Measure Preference 
Definition Function Binary relation 
Used for Measurement Evaluation 
Constraints Representation 

condition, 
meaningfulness 

Properties of 
the binary relation 

Obtained by Measurement 
(reference system) 

Established by the 
evaluator (possibly 
using a measure) 

Scale Nominal to 
absolute 

Ordinal to absolute 
(defined for the 
corresponding 
criterion, not for the 
preference) 

Value obtained by Measurement 
(reference system) 

From measure or 
from judgement 

Choice of 
aggregation 
operator 

Function of scales 
of measures and 
semantics 

Function of scales 
of criteria and 
semantics 

 

2.2 Aggregation 
The differences between measurement and evaluation (seen as 
preference modeling) reflect also the possibilities we have in 
order to obtain an aggregated measure or an aggregated 
preference from sets of measures or sets of preferences. Typically 
sets of preferences or measures regard a set of attributes that 
characterize an artifact. But a comprehensive measure or 
preference relation is needed, which may represent all the 
different dimensions we want to consider. It is surprising how 
often the choice of the aggregation operator is done without any 
critical consideration about its properties. Let's take two 
examples. 

 
Suppose you have two three dimension objects a,b, for which 
their dimensions (length, height and depth) are known 
(l(a),l(b),h(a),h(b),d(a),d(b)). In order to have an aggregate 
measure of each object dimension we may compute their volume, 
that is  

v(a)=l(a)h(a)d(a) and v(b)=l(b)h(b)d(b).  
 

If the three dimensions are prices we may use an average, that is  

p(a)=l(a)+h(a)+d(a)/3 and  p(b)=l(b)+h(b)+d(b)/3.  
 

From a mathematical point of view both operators are admissible 
(when l(x),h(x),d(x) are ratio scales as in our example). However, 
the semantics of the two measures are quite different. It will make 
no sense to compute a geometric mean in order to have an idea of 
the price of a,b as it will make no sense to compute an arithmetic 
mean in order to have an idea of  the volume of a,b. The choice 
between the geometric and the arithmetic mean depends on the 
semantics of the single measures and of the aggregated one. 

 
For the next example, suppose you have two artifacts a,b 
evaluated on  two attributes. For each one a complete preference 
relation (r1, r2) is defined. 
 
Let’s pass to the numerical representation, defining the criteria g1 
and g2 

g1 : A→ [0,1] and g1 (a)=0 and g1 (b)=1  
g2 : A→ [0,2] and g2 (a)=2 and g2 (b)=1.  

Under the hypothesis that both criteria are of equal importance, 
many people will compute the average (weighted average sum) to 
infer the global preference relation.  

g(a)= (g1 (a)+ g2 (a))/2=1 and 
g(b)= (g1 (b)+ g2 (b))/2=1   

so the two artifacts result to be indifferent.  However, if an 
average is used it is implicitly assumed that g1 and g2 admit ratio 
transformations. Therefore it is possible to replace g2 by  
g’2: A→ [0,1] so that g’2 (a)=1 and g’2 (b)= 1/2 (known as scale 
normalization). Under the usual hypothesis of equal importance of 
the two criteria we obtain now g(a)=1/2 and g(b)=3/4 meaning 
that b is preferred to a.  

 
The problem is that the average aggregation was chosen without 
verifying if the conditions under which it is admissible hold. First 
of all if the values of a and b are obtained from ordinal 
judgements (of the type good, medium, bad etc.) then the 
numerical representation does not admit a ratio transformation (in 
other words we cannot use its cardinal information). Second, even 
if the ratio transformation were admissible, the concept of criteria 
importance is misleading. In a ``weighted arithmetic mean'' (as 
the average is) the weights are constants representing the ratios 
between the scales of the criteria. 
 
In the example, if we reduce g2 to g’2 we have to give to g’2  twice 
the weight of g’1   in order to keep true the concept of ``equal 
importance''. 
 
In other words it is not possible to speak about importance of the 
criteria (in the weighted arithmetic mean case) without 
considering the cardinality of their co-domains. 

 
From the above examples we can induce a simple rule. In order to 
choose appropriately an aggregation operator it is necessary to 
take in consideration the semantics of the operator and of each 
single preference or measure and the properties (axiomatic) of the 
aggregation operator. In other words, if the aggregation operator 
is chosen randomly, neither the correctness of the result, nor its 
meaningfulness can be guaranteed. For a detailed discussion on 
the above problems the reader can see [4]. 
 



Uncertainty can be considered using intervals, fuzzy measures, 
possibility and/or probability distributions etc., instead of exact 
evaluations. For each such case, precise procedures apply.  In this 
paper we present a principle of ordinal preference aggregation, 
not a complete method. To this end, we chose an easy example in 
order to show how such a family of methods works, not for 
presenting a definitive method. 
 

3. THE EVALUATION METHOD 
In this section we present the evaluation method using a 
simplified real life case as working example. This case is a 
variation of the third evaluation type presented in the 
introduction, ‘Decide if a code module can be accepted ...’.  
 
A reuse repository contains reusable assets. These are made of 
source code and documents describing design and functionality of 
the asset.  
 
The reuse manager receives the potential assets, and has to verify 
their quality level to accept them in the repository, or not.  For 
this purpose, the reuse manager, helped by the quality assurance 
function, builds a quality model. His intuition is to establish a 
judgement of the type “very good” (VG), “good” (G), “quite 
good” (QG), “acceptable” (A), “unacceptable” (U) and introduce 
to the repository assets judged at least “A”. Of course reusers can 
choose assets not only according to functional requirements, but 
also to the quality level. The reuse manager only has information 
concerning specific attributes of the assets and finds difficult to 
define the comprehensive judgements. Actually the reuse 
manager is facing a problem of measurement aggregation from 
the single quality attributes to the comprehensive ordinal scale 
“VG > G >QG > A > U”. 
 
In this section we briefly present the method adopted consisting in 
the following steps (we identify the reuse manager as a decision 
maker): 

Phase 1 - definition of evaluation model 
Definition of quality model 
Definition of criteria 
Definition of profiles and categories 

Phase 2 - application of evaluation model 
Selection of artifacts 
Measurement of artifacts 
Aggregation of measures 

 
3.1 Definition of the Evaluation Model 
The evaluation model is established defining a hierarchy of 
attributes and the associated measures. Measures can have any 
scale, from nominal to absolute. 
 
In our working example, quality for reusable assets is defined, 
using a constructive quality model approach [7], in terms of code 
understandability and code reliability. This model is also 
influenced by the ISO 9126 standard [5], that lists reliability and 

maintainability as quality characteristics, and suggests 
understandability as a decomposition of maintainability.  
 
 
 
 
Table 2. Attributes and measures for Code Understandability 

Attribute Subattribute Measure Criterion 
scale 

Code understandability 
Algorithmic 
complexity 

Mc Cabe’s 
cyclomatic number 

Inverse 

Size LOCs*  Inverse 

Complexity 

Fan out Number of 
functions called, not 
contained in the 
asset 

Inverse 

Docume-
ntation 

Comments on 
code 

(physical lines of 
code containing 
comments) / LOCs 

Identity 

 Descriptive-
ness 

Unacceptable (U), 
Acceptable (A), 
Quite Good (QG), 
Good (G),  
Very Good (VG) 

VG > G > 
QG > A > 
U 

 Quantity Number of pages of 
documents 
associated to source 
code 

Identity 

*LOCs = Physical lines of code, less comments and blank lines 
 

Table 3. Attributes and measures for Reliability 

Attribute Subattribute Measure Criterion 
scale 

Reliability Branch 
coverage 

Branch coverage 
(percentage of 
statements and 
decisions exercised 
by test cases) 

Identity 

 Inspection Yes (the source 
code was formally 
inspected) No 

Yes > No 

 Defects 
correction 
ratio 

(Number of defects 
fixed after release) / 
(Number of defects 
reported after 
release) 

Identity 

 MTTF Mean Time To 
Failure 

Identity 

 
 



g1

g2

g3

gm-1

gm

Categ. 1 Categ. 2 Categ. p-1 Categ. p Categ. p+1

b1
bp-1 bp  

 
Figure 1: Definition of categories and profiles 

 
Code understandability is further decomposed in complexity and 
documentation. Next, each leaf quality attribute (complexity, 
documentation, reliability) is characterized through a number of 
measures. This step uses a GQM approach [1] and is also 
influenced by the Reboot reusability model [6]. Refer to Tables 2 
and 3 for the complete definition of attributes, subattributes and 
measures. 
 

3.2 Definition of Criteria/Attributes/Scales 
The decision maker willing to express a quality judgement on an 
ordinal scale, all attributes have to be equipped with at least 
ordinal scales of measurement. Further on, since the final scale is 
both a measurement and a criterion (in the sense that obviously 
VG objects are preferred to G objects, etc.) we have to associate 
to each attribute a preference model. 
 
For each attribute a correspondent criterion has to be defined, 
with its scale. While an attribute is neutral, a criterion expresses a 
preference by an evaluator. For example code size is an attribute 
that allows to state that a 200 Loc source code module is of larger 
size than a 100 Loc module. A criterion based on size expresses 
the preference of an evaluator for larger or smaller modules. In 
one context an evaluator could prefer larger modules, in another 
smaller ones.  
 
A criterion can have the same scale as the attribute (identity 
transformation, larger modules are preferred to smaller modules), 
or the inverse scale (small modules are preferred to large ones). 
The same holds for (Documentation) Quantity: a user might 
prefer to define a more suitable documentation attribute (e.g. 
Documentation Appropriateness, measured on an ordinal scale), 
not strictly depending on the number of pages. Another common 
transformation is defining an ordinal scale for the criterion 
starting from a nominal scale for the attribute. Other 
transformations are possible, but we will not deal with them in 
this paper. 
 
The rightmost column of tables 2 and 3 shows how the scale of 
the criterion was defined starting from the scale of the attribute. 
The attribute Descriptiveness uses an ordinal scale, and depends 
on the judgement of the reuse manager.  The attribute Inspection 
uses a measure with nominal scale (values yes no), the 
corresponding criterion uses an ordinal scale. For all other criteria 
the scale is the same as for the attribute, or the inverse one. 

3.3 Definition of Profiles and Categories 
Next, profiles and categories (see figure 1) have to be defined.  
The criteria of the evaluation model compose a tree, for instance 
criterion g0 decomposes in criteria g1, g2, .. gn. A profile for g0 is a 
set of values, one for each criterion gi.  In figure 1 g1..gm, indicate 
generic criteria,  b1..bp generic profiles, that define p+1 categories. 
In our method bh represents the upper limit of category Ch and the 
lower limit  of  category Ch+1. 
 
In our working example, four profiles and five categories (Very 
good (VG), Good (G), Quite good (QG), Acceptable (A), 
Unacceptable (U)) are defined for each composed criterion, see  
tables 4, 5 and 6. 

 
 
 

Table 4: Profiles for criteria Complexity and Documentation 

Composed 
criterion 

Criterion Pro-
file  
A 

Pro-
file 
QG 

Pro-
file 
G 

Pro-
file 
VG 

Algorithmic 
complexity 

8 6 4 2 

Size 10000 5000 2000 1000 

Comple-
xity 

Fan out 20 10 7 5 
Comments 
on code 

10% 20% 30% 40% 

Descripti-
veness 

A QG G VG 

Docume-
ntation 

Quantity 0 10 100 1000 
 
 
      

Table 5: Profile for criterion Code Understandability 

Composed 
criterion 

Criterion Pro-
file  
A 

Pro-
file 
QG 

Pro-
file 
G 

Pro-
file 
VG 

Complexity A QG G VG 
 

Code 
Understand
ability Docume-

ntation 
A QG G VG 

 
  



 
Table 6: Profile for criterion Reliability 

Composed 
criterion 

Criterion Pro-
file  
A 

Pro-
file 
QG 

Pro-
file 
G 

Pro-
file 
VG 

Branch 
coverage 

20% 40% 60% 100% 

Inspection No Yes Yes Yes 

Reliability 

Defects 
correction 
ratio 

50% 70% 80% 100% 

 MTTF 
[hours] 

1000 5000 8000 10000 

    

3.4 Selection, Measurement 
At this point Phase II starts. Elements to be evaluated are selected 
and identified. In our working example assets are produced and 
submitted to the reuse manager. Next, elements are measured on 
each attribute of the evaluation module. In the example, these 
measures are taken partially by the project that produces the asset, 
partially by the reuse manager. As already noted, some attributes 
are judged and not measured, such as Descriptiveness. Table 7 
reports values for four assets to be evaluated on Code 
Understandability. 

 
Table 7: Values for attributes related to Code 

understandability 

Composed 
criterion 

Criterion Asset 
p0 

Asset 
p1 

Asset 
p2 

Asset 
p3 

Algorithmic 
complexity 

2 2 5 2 

Size 2378 4277 9501 1010 

Comple-
xity 

Fan out 6 15 20 5 
Comments 
on code 

15% 15% 5% 40% 

Descripti-
veness 

U U A VG 

Docume-
ntation 

Quantity 0 0 50 1000 
 

3.5 Aggregation 
The aggregation phase assigns an element to be evaluated to a 
category of the root criterion in the tree. The aggregation is 
performed using an algorithm inspired by the ELECTRE-TRI 
procedure [17], defined in the Multi Criteria Decision Aid 
approach [15]. 
 
The basic concept of the algorithm chosen is the Outranking 
relation S, which has to be read as is at least as good as, and has 
to be computed between each element and each profile. The 
outranking relation holds if the concordance and non-discordance 
tests are satisfied. 
 
The concordance test is the majority strength to be reached in 
order to be able to establish with a certain degree of confidence 
the outranking relation. Such a majority is generally computed 
using the relative importance (weight) of each criterion. 

 
The non-discordance test is the minority strength not to be 
reached in order to be able to establish the outranking relation. 
Such a minority is generally computed using the relative 
importance of each criterion.  
 
Formally, for each ordered pair (x, y), where x and y stand for  a 
and  bh or viceversa,  and for a set of criteria  G in which a 
composed criterion is decomposed: 

( ){ }
( ){ }
( ){ }

G g G p x y

G g G i x y

G g G p y x

G G G

j j

j j

j j

+

=

−

± + −

= ∈

= ∈

= ∈

= ∪














: ,

: ,

: ,
 

 
where  pj(x, y) means that x is preferred to  y on criterion gj while  
ij(x, y) means that  x and y are indifferent  on criterion gj. 
 

Let wj be the relative importance of a criterion, with wj =∑ 1 

,  

S x y C x y D x y( , ) ( , ) ( , )⇔ ∧¬  
 
the non-discordance relation is: 

¬ ⇔ ≤ ∧ ∀ ∈ ¬
∈ −
∑D x y w d g G v x yj
j G

j j( , ) : ( , )  

The discordance relation C(x,y) has a different definition if the 
element (a) is compared with the profile (b) or viceversa.  

C a b w c w w
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with: 

• c: concordance threshold; 

• d: discordance threshold; 

• c+d ≠ 1; 

• vj(x,y): veto, expressed on criterion gj, of y on x. 
When the relation S is obtained, the assignment of an element to a 
category can be done in two ways: 
 
 



1) Pessimistic assignment: 

• a is iteratively compared with  bi, for i = p, p-1, ..., 0, 

• as soon as a profile bh exists for which  S(a, bh) then a is 
assigned  to the  category Ch. 

2) Optimistic assignment: 

• a is iteratively compared with bi, for i = 1, 2, ..., p, 

• as soon as a  profile  bh exists for which  S(bh, a) ∧ ¬ S(a, 
bh) then a is assigned to category Ch-1. 

The pessimistic procedure finds the profile for which the element 
is not worst. The optimistic procedure finds the profile against 
which the element is surely worst. If the optimistic and 
pessimistic assignments coincide, then no uncertainty exists for 
the assignment. Otherwise, an uncertainty exists and should be 
considered by the evaluator.  
 
Let’s show how this works on our example. Aggregation will be 
limited to the Code Understandability criterion. Consider asset p0 
and the sub-node complexity. The performance vector of p0 is [2, 
2378, 6] (from Table 7.). The best profile to which p0 is “at least 
as good as” is G ([4, 2000, 7]), therefore the pessimistic 
assignment is in class G. The worst profile which is strictly better 
than p0 is VG ([2, 1000, 5]), therefore the optimistic assignment 
is in class G. 
  

Table 9: Categories of assets for Complexity and 
Documentation 

Composed 
criterion 

Criterion Asset 
p0 

Asset 
p1 

Asset 
p2 

Asset 
p3 

Complexity QG QG A VG 
 

Code 
Understand

ability Docume-
ntation 

A A A VG 

 
Table 10: Categories of assets for Code Understandability 

Criterion Asset 
p0 

Asset 
p1 

Asset 
p2 

Asset 
p3 

Code Understandability A A A VG 

 
Tables 9 and 10 show the allocation of assets to categories on the 
nodes code understandability, complexity and documentation. In 
all cases the pessimistic and the optimistic assignment coincide. 
For all composed criteria, composing criteria have the same 
weight. In all cases the thresholds used are 70% for the 
concordance threshold, 28% for the discordance threshold (these 
figures are commonly used in literature and thus introduced in 
this example, usually it is the decision maker who provides this 
information). 
 

4. DISCUSSION 
A new method to evaluate software artifacts has been presented. 
The method distinguishes between measures and preferences and 
uses an ordinal aggregation operator. Both points are essential, as 
evaluations are decision problems that, even if they use measures 
as a starting point, involve judgement; and because real life 

evaluation models often use ordinal measures that require ordinal 
aggregation operators. 

 
The application of the method has shown that the definition of the 
evaluation model is a difficult task, probably the most difficult in 
an evaluation problem. One problem is the decomposition in 
attributes and subattributes. In some parts (for instance attributes 
branch coverage, inspection, and defects correction ratio) this 
corresponds to defining a predictive model, where the difficulty is 
in validating it.  
 
Another problem lies in the definition of profiles, and therefore 
categories. We have discovered that four profiles and five 
categories are probably too many. Both empirical and intuitive 
evidence of how the value of a measure discriminates assets and 
therefore defines profiles is missing. Accordingly, the next 
version of the evaluation model will be built with two profiles and 
three categories (reject, acceptable, good) only. 

 
Initially, reliability and understandability were supposed to be 
aggregated in a final evaluation considering both of them. 
Actually, this further aggregation was not performed, because it 
did not correspond with the need of the final user of an asset who 
decides to use an asset in function of understandability only.  The 
evaluation on reliability is used by the reuse manager to reject 
some assets, then the user selects on understandability only. In 
other words, two evaluation models are actually used, one on 
understandability, by the user and the reuse manager, one on 
reliability, by the reuse manager only. 
 
This situation could change in a safety critical systems context, 
where a user could be constrained to select an asset in function of 
the class of risk of the project, or part of project. Reliability 
categories of assets would be mapped to classes of risk, and the 
user should select accordingly. This situation will be the object of 
further research. 
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