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Abstract

The paper makes a survey of the principal difficulties the mul-
tiple criteria decision making introduces with a particular em-
phasis on scheduling problems. Two types of difficulties are
considered. The first is of conceptual nature and has to do
with the difficulty of defining the concept of optimality in
presence of multiple criteria and the impossibility to define
universal preference aggregation procedures. The second dif-
ficulty is of more technical nature and concerns the increasing
computational complexity of multiple criteria decision mak-
ing problems. A number of examples are introduced in order
to explain these issues.

Introduction
In this paper, decision making is referred to an agent (artifi-
cial or human) who has to act within a given context, with a
given amount of resources and time in order to pursue one
or more goals. The decision process is expected to be char-
acterised by a form of rationality (possibly bounded) and to
be represented in a formal way (the agent has preferences
expressed either under a value function or more simply as
a binary relation on the set of consequences of his/her ac-
tions). This is the frame of operational research and/or deci-
sion theory, possibly under Simon’s (Simon 1979) bounded
rationality variant.

In real life, making decisions under multiple criteria is the
standard situation: there are always different consequences
to consider, there always more objectives and goals to sat-
isfy, there are always more opinions to take in account. Un-
der this point of view the presence of multiple criteria it
should be considered the general case, while single criterion
optimisation should be considered as a special case. This
is not what happened in the history of OR, where the first
contributions on the use of multiple criteria appeared in the
late 60s, early 70s (Roy 1968; Geoffrion 1968; Zeleny 1974;
Keeney & Raiffa 1976).

The difficulty to make decisions under multiple criteria
is twofold. The principal difficulty is conceptual. OR and
decision theory are based on the idea of a rational decision
process represented by a single objective function to opti-
mise. Such an idea simply does not apply in the presence of
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multiple criteria. Further on, some other conceptual difficul-
ties arise. Is it possible to substitute optimality with another
concept? Are there universal procedures solving multiple
criteria decision making problems? We explore these issues
in section 2. The second difficulty is more technical and
has to do with complexity. We confine ourselves in schedul-
ing problems in order to show that the presence of multiple
criteria normally implies the increase of computational com-
plexity of the problem also in apparently “easy” problems.
We discuss this problem in section 3.

The paper is based on results which are well known in lit-
erature. The aim of the paper is to put together such results
for a community such as the A.I. planning and scheduling
one. Further on, we want to show the importance of an au-
tonomous theory concerning decision making and support
in presence of multiple criteria and the difficulties such an
effort has to face.

The vanishing optimum
Can the concept of optimum vanish (Schärlig 1996)? Tra-
ditionally when we think about decision theory we think
about optimisation: find the one best solution. From a strict
mathematical point of view this is straightforward. Express
your problem as a functionF of your decision variables
x1, · · · , xn and then find the minimum (or maximum) of the
function. This is well defined since

min(F (x1 · · · , xn))⇔F ′(x1 · · · , xn) = 0

whereF ′ is the “derivate” of functionF . But then, as
soon as we consider more than one criteria (more objective
functions) we have a set of functionsFi, i = 1 · · · ,m and we
should look for a solutionX such that∀i F ′

i (X) = 0 and
this is a problem since∀i F ′

i (X) = 0 can be an inconsistent
sentence.

Example 0.1 Consider two objective functionF1, F2, both
to minimise, such thatmin(F1) = A = max(F2) and
min(F2) = B = max(F1). Clearly the sentence
∀i F ′

i (X) = 0 is inconsistent.

There is no way to guarantee that in presence of multiple
criteria there exist feasible solutions such that all objective
functions can be simultaneously optimised. What we learn
from that?



Difficulty 0.1 Unlike traditional optimisation, the presence
of multiple criteria does not allow to establish an “objec-
tive” definition of ”optimal solution”.

In other terms when we work using multiple criteria there
is no mathematical definition of the solution. We have to
introduce alternative concepts, less easy to define and more-
over subjectively established. What are we allowed to estab-
lish in the frame of multiple criteria?

There is a set of feasible solutions which are the “natural”
candidates for solving a multiple criteria decision making
problem. These are the so-called Pareto solutions (or effi-
cient solutions or non dominated solutions). We introduce
the following notation:

∀X, Y D(X, Y )⇔∀i Fi(X) ≤ Fi(Y )∧∃k Fk(X) < Fk(Y )

We read:solutionX dominates solutionY , iff for all cri-
teria X is at least as good asY and there is at least one
criterion whereX is strictly better thanY . It is clear that all
feasible solutions which arenot dominated are potentially
solutions of our problem (a dominated solution is obviously
not interesting). The problem is that the set of Pareto solu-
tions can be extremely large (sometimes equal to the set of
feasible solutions).

Example 0.2 Consider three candidatesA,B,C such that
for criterion: 1 A > B > C, for criterion 2: B > C > A
and for criterion 3:C > A > B (> representing a prefer-
ence). All three candidates are non dominated.

What can we do? Roughly there are two ways to face the
problem:
1. fix a functionF(F1, · · · , Fm) and then try to optimiseF
(that is re-conduct the problem to a single criterion optimi-
sation problem);
2. explore the feasible or the efficient set using a majority
rule as this is conceivable in various voting procedures (that
is, choose the Pareto solution preferred by the “majority” of
criteria).

One single function
The basic idea is simple. Put together the different functions
in such a way that we obtain one single value for each fea-
sible solution. After all this is exactly what happens in all
schools, university degrees, multi-dimensional indices, cost
benefit analysis and hundred other examples of “more or
less” simple aggregation functions where values expressed
on different attributes are merged in one single value.

The interested reader can look in (Bouyssouet al. 2000)
for a nice presentation of all the drawbacks and unexpected
consequences of such an approach. We try to summarise.

• Such a global function does not always exist. To say it in
other terms, the conditions under which such a function
exist are not always possible to fulfill. First of all evalua-
tion on the different objective functions have to commen-
surable. Provided it is the case, then it should be possible
to compensate the values of one function with the values
of another function. If this is possible then each subset

of functions should be preferentially independent with re-
spect to its complement (see (Keeney & Raiffa 1976) for
a detailed presentation of this approach). Last, but not
least, it is possible that the effort to adapt the information
to these conditions results in a model which has nothing
to do with the original problem.

• Fulfilling the conditions can be possible in principle, but
impossible in practice. In the sense that the cost of obtain-
ing the extra information (such as the trade-offs among
the criteria, the trial-error protocol used in order to cali-
brate the global function etc.) can be simply to large with
respect to the problem or even unattainable (see (Hobbs
1986; Svenson 1996; Mongin 2000) for a discussion on
this issue, including the cognitive effort required for such
an approach).

• In any case, even if such a function can be defined, fur-
ther information is required in order to establish it. Such
information concerns two non exclusive issues:
- further preferential information (trade offs among crite-
ria, ideal points in the criteria space etc.);
- shape of the global function (additive, distance, non lin-
ear etc.).
In human decision support usually is the client (or de-
cision maker) who provides such information through a
protocol of information exchange with the analyst. How-
ever, there is always some arbitrariness in this process
since this information depends also on technical choices
(for instance trade offs are necessary in an additive func-
tion, but not in the frame of scalarising constants; the
reader can see (Steuer 1986; Vanderpooten 1989; Korho-
nen, Moskowitz, & Wallenius 1992) for more details).
The problem is more difficult in the case of “automatic”
decision support as with artificial agents. Either such an
agent has to carry enough preferential information or it
has to be able to support a dialog with a human providing
such information. Moreover the agent should be aware
of the technical knowledge necessary to define the global
function. It is always possible to fix the global function (at
least the shape) from the beginning, but then we impose a
severe limitation to the agent’s autonomy.

Let the criteria vote
Another option is to make the criteria vote as if they were
parties in a parliament. The idea is simple. Given any two
feasible solutionsX andY , X is better thanY if it is the
case for the majority of criteria. Hundreds of parliaments,
committees, boards, assemblies, use this principle of democ-
racy.

The interested reader can again refer to (Bouyssouet al.
2000) for a critical presentation of the drawbacks and coun-
terintuitive results such an approach presents. Again we
summarise.

• There is no universal voting procedure. Since the 18th
century we know that voting procedures are either manip-
ulable (to some extend a minority can impose its will) or
potentially ineffective (unable to find a solution) as can
be seen in the following example (borrowed from (French
1988)).



Example 0.3 Consider four candidates (A,B,C,D) and
seven examiners (a,b,c,d,e,f,g). Each examiner gives a
preference in decreasing order (1 is the best, 2 is the sec-
ond best etc.). The following table is provided.

a b c d e f g
A 1 2 4 1 2 4 1
B 2 3 1 2 3 1 2
C 3 1 3 3 1 2 3
D 4 4 2 4 4 3 4

If we sum the ranks of each candidate we obtainσ(A) =
15, σ(B) = 14, σ(C) = 16, σ(D) = 25 and clearly B
is the winner. Suppose now that for some reason the can-
didate D could not participate to the selection. Being the
worst one should expect that nothing changes. Unfortu-
nately it is not the case. Recomputing the sum of the ranks
we obtainσ′(A) = 13, σ′(B) = 14, σ′(c) = 15 and now
A is the winner. This is tricky. On the other hand if we
look on pure majorities we get thatA > B (five examin-
ers prefer A to B),B > C (five examiners prefer B to C)
and C > A (four examiners prefer C to A). There is no
solution.

Arrow (Arrow 1963) definitely solved the problem prov-
ing the following theorem.

Theorem 0.1 When the number of candidates is at least
3, there exists no aggregation method satisfying simulta-
neously the properties of universal domain, unanimity, in-
dependence and non-dictatorship.

where:
- universal domain means that there is no restriction on
the preferences to aggregate;
- unanimity means that an aggregation procedure should
not violate the unanimity;
- independence means that in order to establish ifX is
better thanY we consider only information concerning
X andY and nothing else;
- non-dictatorship means that there is no preference in-
formation which is more importante than others, such to
impose its will.
The reader can see that although the conditions imposed
by Arrow are very “natural” they are inconsistent. In other
terms: there is no universal preference aggregation proce-
dure. Either we choose for guaranteing a result and we
take the risk of favouring a minority or we impose the
majority rule and we take the risk not to be able to decide.
Decision efficiency and democracy are incompatible.

• Suppose a voting procedure has been chosen. If it is ma-
nipulable then one should obtain the information neces-
sary to control possible counterintuitive results. If it is
a majority rule then the outcome could be an intransitive
and/or incomplete binary relation. In such a case further
manipulation is necessary in order to obtain a final result.
As for the previous approach such further information
is usually provided by the client (the decision maker)
through a precise dialog. A number of guidelines ap-
ply here (see (Bouyssouet al. 2000)), but no structured

methodological knowledge is available up today. In the
case of automatic decision making things become much
more difficult since an artificial agent should be able to
understand the difference among several voting schemes
and procedures.

What did we learn from the above discussion?

Difficulty 0.2 There is no way to establish an universal
procedure for a multiple criteria decision making problem.
Either further information has to be gathered or “extra-
problem” procedures have to be adopted. Either the quality
of the outcome can be poor (but we are sure to have an out-
come) or we require a nice outcome knowing that it might
be impossible to obtain it.

The fact that we have such “negative” results should not
induce the reader to consider that multiple criteria decision
making problems are just a mess. In real world decision
makers make every day sound decisions using multiple cri-
teria. What we have to give up is the idea ofTHE solution
of a multiple criteria decision making problem. We need
to accept locally, bounded to the available information and
resources, satisfying solutions.

There is still one more open question. Suppose that for a
given problem we establish a model (and a concept of good
or optimal solution). Suppose also that a precise procedure
has been adopted in order to put together the preferences
on the different criteria. How “complicated” is to reach a
solution?

Complexity issues
Let us assume that a well defined multiple criteria optimisa-
tion model is available and, without loss of generality, let us
consider scheduling problems. For a comprehensive anal-
ysis on multiple criteria scheduling we refer to (T’kindt &
Billaut 2002). We will deal with the simplest scheduling en-
vironment, namely the static single machine environment.
We use the notation given in (Chen & Bulfin 1993) that ex-
tends to multiple objective problems the so-calledthree-field
α/β/γ classification of Lawler (Lawleret al. 1993).

Consider a setN of n jobs where each jobj has a pro-
cessing timepj , a weightwj and a due datedj , respectively.
Given a schedule, for each jobj we denote withCj its com-
pletion time, withTj = max{Cj−dj , 0} its tardiness. Also,
let Tmax denote the maximum tardiness of the schedule. Fi-
nally, let Uj denote the unit penalty for jobj being tardy:
namely,Uj = 1 if Tj > 0, elseUj = 0.

If we refer to mono-criterion problems, we already en-
counter all main classes of computational complexity (see
(Garey & Johnson 1979) for details): for instance, the
1||

∑
wjCj , the1||

∑
Uj and the1||Tmax are polynomially

solvable, whereas the1||
∑

Tj is weaklyNP -hard and the
1||

∑
wjUj and the1||

∑
wjTj are stronglyNP -hard.

Consider the simplest multiple criteria environment,
namely the bi-criteria one and the two main general ap-
proaches indicated previously for putting together the two
criteria (a specific case of the first approach is considered
for presentation purposes):
(1) fix a function weighting the two criteria by means of



a lexicographic rule (one criterion is designated as primary
and the other criterion is designated as secondary);
(2) generate the set of efficient solutions (to be then explored
by some majority rule). Notice that an optimal solution of
(1) always belongs to the set of efficient solutions described
by (2).

In the three-field scheduling notation,γ denotes the per-
formance measure. Letγ1 andγ2 be the two performance
measures for the bi-criterion problem. Consider, now, the
above general approaches with respect to single machine
bi-criteria problems. In case (1), the objectiveγ1 is lex-
icographically more important than objectiveγ2 and the
corresponding problem will be denoted as1||(γ2|γ1). In
case (2), where the set of non dominated solutions must be
determined the corresponding problem will be denoted as
1||γ1, γ2.

The following result proposed in (Chen & Bulfin 1993)
links the complexity of a problem with single objectiveγ1

to the complexity of bi-criteria problems involving objective
γ1.

Theorem 0.2 If 1||γ1 is NP -hard, then 1||(γ2|γ1) and
1||γ1, γ2 areNP -hard.

Theorem 0.2 indicates that there is little hope to efficiently
handle multiple criteria problems if any of the related mono-
criterion problems is difficult.

There are actually a few special cases where the bi-
criterion lexicographic problem is polynomially solvable
when the secondary objective induces a mono-criterionNP -
hard problem.

An example of this peculiar situation is given by the
1||(

∑
Tj |

∑
Cj) problem. The1||

∑
Tj problem is known

to beNP -hard in the ordinary sense, whilst the1||
∑

Cj

is known to be optimally solved in polynomial time by se-
quencing the jobs in nondecreasing order of their processing
times, the so-called SPT rule. In the1||(

∑
Tj |

∑
Cj) prob-

lem, in order to optimise the primary objective, the SPT rule
must be respected. However there may be ties, namely jobs
with identical processing times. Only for these jobs it is pos-
sible to optimise the secondary criterion. But this is equiv-
alent to solve a special case of the1||

∑
Tj problem with

all identical processing times, this latter problem being opti-
mally solvable in polynomial time by sequencing the jobs in
nondecreasing order of the due dates (the well known EDD
rule). Hence, the1||(

∑
Tj |

∑
Cj) problem is polynomially

solvable.
Analogously there are a few special cases where the

bi-criterion lexicographic problem is pseudo-polynomially
solvable when the secondary objective induces a mono-
criterion strongly NP -hard problem. An example is
1||(

∑
wjTj |

∑
wjCj) problem which isNP -hard in the or-

dinary sense though the1||(
∑

wjTj) problem isNP -hard
in the strong sense. These are the onlyrelative good news
we have.

The following theorem also proposed in (Chen & Bulfin
1993) links the complexity of cases (1) and (2).

Theorem 0.3 If 1||(γ2|γ1) is NP -hard, then1||γ1, γ2 is
NP -hard.

Theorem 0.3 indicates that case (2) is at least as difficult
as case (1). Let then focus on bi-criteria problems handled
by means of a lexicographic approach. We have here pretty
bad results as bi-criteria problems involving polynomially
solvable mono-criterion ones are often alreadyNP -hard.

For instance, consider the1||(
∑

wjCj |Tmax) problem.
Both the 1||

∑
wjCj problem and the1||Tmax problem

are polynomially solvable. The1||(
∑

wjCj |Tmax prob-
lem, however, isNP -hard in the strong sense as shown in
(Hoogeveen 1992). This is due to the fact that the primary
objectiveTmax induces a constraint in the secondary objec-
tive of the typeTj ≤ Tmax ∀j, that can be written asCj ≤
dj + Tmax ∀j. By introducing a deadlinedj = dj + Tmax,
we obtainCj ≤ dj ∀j. Hence, the above1||(

∑
wjCj |Tmax)

problem is equivalent to the1|dj |
∑

wjCj problem which is
known to beNP -hard in the strong sense.

What happens is that the lexicographic weighting of cri-
teria (that we have seen to be generally easier than the gen-
eration of the efficient solutions) induces a further constraint
(well defined as the primary objective is polynomially solv-
able) in the solutions space: this nearly always induces un-
tractable bi-criteria problems that are polynomially solvable
when only the secondary criterion is considered. This is
what occurs in terms of pure computational complexity.

Also in practice, however, the structural properties of the
problem defined on the secondary criterion tend to be de-
stroyed when the primary objective is introduced as con-
straint.

An example of this is given by the1||
∑

(Tj |Tmax) prob-
lem. By the same approach applied previously, this problem
can be shown to be equivalent to the1|dj |

∑
Tj problem.

But the presence of the deadlines kills the nice decomposi-
tion structure (leading to a pseudo-polynomial dynamic pro-
gramming algorithm) of the1||

∑
Tj problem as shown in

(R. Tadei ). At the present state of the art the1||
∑

Tj |Tmax)
problem is open with respect to the weakly or stronglyNP -
hardness status.

What did we learn then in terms of complexity?

Difficulty 0.3 Even when we deal with the easiest well de-
fined multiple criteria problems, we immediately fall into
NP -hard problems. There is very little hope to derive poly-
nomial algorithms for multiple criteria problems whatever
is the complexity status of the corresponding mono-criterion
problems.

So, also in terms of computational complexity, we face
pretty negative results. Rather than being discouraged by
this situation (as forNP -hard mono-criterion problems sev-
eral high quality meta-heuristics exist for multiple objective
problems), we need to precise very carefully the goals of our
decision making: for instance, there is nonsense in search-
ing for the complete set of efficient solutions if such set has
huge cardinality.

As an example, consider problem1||
∑

wjCj ,
∑

hjCj

where each jobj has two weights (wj andhj). It is possi-
ble to derive the set of all efficient solutions by means of an
ε-constraint approach and each solution can be computed in
polynomial time. However the1||

∑
wjCj ,

∑
hjCj prob-

lem isNP -hard in the ordinary sense as the number of effi-



cient solutions may not be polynomially bounded as shown
in (Hoogeveen 1992).

Conclusions
In this paper we analyse the conceptual and technical diffi-
culties associated to decision making problems in presence
of multiple criteria. Three difficulties are discussed:
- the impossibility to introduce an “objective” definition of
solution;
- the impossibility to define “universal” preference aggrega-
tion procedures;
- the increasing computational complexity even when each
single criterion corresponds to an “easy” problem.

Despite the apparent negative nature of the above results
we claim that the development of precise preference aggre-
gation procedures, of heuristics adapted to the presence of
multiple criteria, allow for a given decision making problem
to find satisfying solutions. What we should keep in mind is
that:
- it makes no sense to look behind “optimality”, in any way
it might be defined;
- the method which is going to be used in order to solve
a multiple criteria decision making problem is part of the
model of the problem and is not defined externally.
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