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Abstract. In this paper we introduce the concept of valued tolerance as an extension of the

usual concept of indiscernibility (which is a crisp equivalence relation) in rough sets theory.

Some specific properties of the approach are discussed in the paper. Further on the problem

of inducing rules from such a knowledge is addressed. In this case a “credibility degree” is

associated to each rule. Properties of such a degree are analysed in the paper and its use in

classification problems is discussed.
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1 Introduction

Rough sets were introduced by Pawlak [Pawlak 1982,1991] to deal with a vague description of

objects. They operate on an information table composed by a set of objects A = {x1, · · ·xn} and

a set of attributes C = {c1, · · · cm}. The starting point of the rough sets theory is an observation

that objects having the same description are indiscernible (similar) with respect to the available
information. The indiscernibility relation between objects is a mathematical basis of the rough sets
theory. As a consequence of inconsistent indiscernible objects it may not be possible to specify a set
of objects in terms of the available information. Therefore, the concept of rough set is introduced,
characterised by a pair of two ordinary sets denoted lower and upper approximations. Next basic
notions are: approximation of classification of objects from A, reduction of attributes from C and
decision rules derived from proper approximations of subsets identified with decision classes.

Although original rough sets theory has been used to face several problems (see e.g. review in
[Komorowski et al., 1999]), the use of the indiscernibility relation may be too rigid in some real situ-
ations. Therefore several generalisations of the rough sets theory have been proposed. Some of them
([Dubois and Prade, 1990,Dubois and Prade, 1992,Słowiński and Stefanowski, 1996,Yao, 1996]) ex-
tend the basic idea to a fuzzy context while others use more general similarity or tolerance relations
instead of classical indiscernibility relation (see e.g. [Skowron and Stepaniuk, 1996,Stepaniuk, 1996],
[Słowínski and Vanderpooten, 1997,Słowiński and Vanderpooten, 2000]). There are also combina-
tions of both extensions by [Greco et al., 1998] and [Greco et al., 2000] where lower and upper
approximations are fuzzy sets based on a fuzzy similarity relation. Properties of extended binary
relations were studied in [Yao and Wang, 1999].

In this paper we introduce the concept of valued tolerance relation as a new extension of rough
sets theory. A functional extension of the concepts of upper and lower approximation is introduced
so that to any subset of the universe a degree of lower (upper) approximability can be associated.
In other terms, any subset of the universe can be lower (upper) approximation of a given set, but to
a different degree. Further on, such a functional extension enables to compute a credibility degree



for any rule induced from the input information table. Such an idea first appeared in our previous
work on incomplete information tables [Stefanowski and Tsoukiàs, 1999].

The paper is organised as follows. In section 2, we discuss motivations for using valued tolerance
relation. Then, in section 3 we introduce formally the concept of valued tolerance. Some specific
properties of this approach are also examined. In section 4, problems of inducing decision rules and
computing credibility of rule are discussed. All considerations are illustrated by a didactic example.
Results are summarised in section 5.

2 Why valued tolerance?

Conventional rough sets theory is based on the crucial concept of indiscernibility relation which is a
crisp equivalence relation (complete, reflexive, symmetric and transitive relation valued in {0, 1}).
Practically speaking, two objects, described under a set of attributes, are indiscernible iff they have
identical values.

However, real life suggests that this is a very strong assumption. Objects may be practi-
cally indiscernible without having identical values. The idea of substituting indiscernibility with a
wider concept of similarity has already been studied in e.g. [Słowiński and Vanderpooten, 1997] or
[Skowron and Stepaniuk 1995]. Moreover, it could be the case that objects can be “more or less
similar” depending on the particular information available. Consider the following two examples.

Example 1. Three objects x1, x2, x3 and four attributes c1, c2, c3, c4 are given, each attribute equip-
ped with a discrete nominal scale A,B,C,D. Besides the following information table is provided:

c1 c2 c3 c4

x1 A B B C
x2 A B * C
x3 A * * *

* representing the “unknown” value of attribute.

If any similarity is to be considered among the three objects it is easy to suggest that “is more
possible that x2 is similar to x1 than x3 to x1”. Conventional rough sets theory simply does not ap-
ply in this case and its usual extensions handling unknown values will consider the three objects as
completely different or totally identical ([Grzymala, 1991,Kryszkiewicz, 1995,Kryszkiewicz, 1998]).

However, being able to give a value to the possibility that objects are similar could open interesting

operational directions (see [Stefanowski and Tsoukiàs, 1999]).

Example 2. Three objects x1, x2, x3 and four attributes c1, c2, c3, c4 are given, each attribute equip-

ped with an interval scale in the interval [0,100]. Besides, the following information table is provided:

c1 c2 c3 c4

x1 90 20 50 80

x2 91 21 51 81

x3 85 15 45 75

If any similarity is to be considered the reader might agree that is reasonable to consider that

“is more possible that x2 is similar to x1 than x3 to x1”, while x2 and x3 are not similar at all.

This is an effect of the existence of a discrimination threshold. In such a model (see [Luce, 1956])

objects are different only if they have a difference of more than the established threshold (in the

example such a threshold is 5). However, the threshold by itself does not solve the problem, for

the same discrimination problem could be considered near the threshold: i.e. why a difference of 4



is not significant and a difference of 5 it is? It is more natural to consider that the possibility that

two objects are similar decreases as the difference of value of the two objects increases. The use of

a valued tolerance appears to be more appropriate in this case also.

From the above considerations it is clear (for us) the opportunity of introducing a valued

tolerance when comparing objects, whatever the purpose of the comparison is. Our aim is to

introduce such a concept in the domain of classification based on rough sets theory. In the following

we will restrict ourselves to symmetric (possibly valued) similarity relations which we denote as

(possibly valued) tolerance relations.

3 Rough sets and valued tolerance

In the following we introduce an approach already discussed for handling incomplete information

tables in [Stefanowski and Tsoukiàs, 1999].

Given a valued tolerance relation on the set A we can define a “tolerance class”, that is a fuzzy

set with membership function the “possibility of tolerance” to a reference object x ∈ A.

The problem is to define the concepts of upper and lower approximation of a set Φ. The

approach we will adopt in this paper considers, coherently with the rest, approximation as a

continuous valuation. Given a set Φ to describe and a set Z ⊆ A we will try to define the degree

by which Z approximates from the top or from the bottom the set Φ. Technically we will try to

give the functional correspondent of the concepts of lower and upper approximation.

[Dubois and Prade, 1990,Dubois and Prade, 1992,Greco et al., 1998,Greco et al., 2000] have simi-

lar concerns and explored the idea of combining fuzzy and rough sets, but under our perspective

lower and upper approximations are not fuzzy sets to which elements from the universe of discourse

may more or less belong. Each subset of A may be a lower or upper approximation of Φ, but to

different degrees (such an approach has been inspired by the work of Kitainik [Kitainik, 1993]).

For this purpose we need to translate in a functional representation the usual logical connectives

of negation, conjunction etc. (x, y, z · · · represent in the following membership degrees).

1. A negation is a function N : [0, 1] �→ [0,1], such that N(0) = 1 and N(1) = 0. An usual

representation of the negation is N(x) = 1− x.

2. A T -norm is a continuous, non decreasing function T : [0,1]2 �→ [0,1] such that T (x, 1) = x.

Clearly a T -norm stands for a conjunction. Usual representations of T -norms are:

- the min: T (x, y) = min(x, y);
- the product: T (x, y) = xy;

- the Łukasiewicz T -norm: T (x, y) = max(x+ y − 1,0).
3. A T -conorm is a continuous, non decreasing function S : [0, 1]2 �→ [0, 1] such that S(0, y) = y.

Clearly a T -conorm stands for a disjunction. Usual representations of T -conorms are:

- the max: S(x, y) = max(x, y);
- the product: S(x, y) = x+ y − xy;

- the Łukasiewicz T -conorm: S(x, y) = min(x+ y, 1).

If S(x, y) = N(T (N(x), N(y))) we have the equivalent of the De Morgan law and we call the

triplet 〈N,T, S〉 a De Morgan triplet. I(x, y), the degree by which x may imply y is again a function

I : [0,1]2 �→ [0, 1]. However, the definition of the properties that such a function may satisfy do

not make the unanimity. Two basic properties may be desired:

- the first claiming that I(x, y) = S(N(x), y) translating the logical equivalence x→y=def¬x∨y;

- the second claiming that whenever the membership degree x is not greater than the membership

degree y, then the implication should be true (x ≤ y⇔ I(x, y) = 1).
It is almost impossible to satisfy both the two properties. In the very few cases where this

happens other properties are not satisfied (for an excellent discussion see [Dubois et al., 1991]).



Coming back to our lower and upper approximations we know that, given a set Z ⊆ A, a subset
of attributes B ⊆ C and a set Φ, the usual definitions are:

1. Z = ΦB ⇔ ∀ z ∈ Z, ΘB(z) ⊆ Φ

2. Z = ΦB ⇔ ∀ z ∈ Z, ΘB(z) ∩ Φ �= ∅

where ΘB(z) is the tolerance class of element z created on the basis of the subset of attributes B.
The functional translation of such definitions is straightforward. Considering that,
∀ x φ(x) =def Txφ(x);
∃ x φ(x) =def Sxφ(x);
Φ ⊆ Ψ =def Tx(I(µΦ(x), µΨ (x)));
Φ ∩ Ψ �= ∅ =def ∃ x φ(x)∧ψ(x) =def Sx(T (µΦ(x), µΨ (x))) we get:

1. µΦB (Z) = Tz∈Z(Tx∈ΘB(z)(I(RB(z, x), x̂))).
2. µΦB (Z) = Tz∈Z(Sx∈ΘB(z)(T (RB(z, x), x̂))).

where:

µΦB(Z) is the degree for set Z to be a B-lower approximation of Φ;

µΦB(Z) is the degree for set Z to be a B-upper approximation of Φ;

ΘB(z) is the tolerance class of element z;

T, S, I are the functions previously defined; as far as I(x, y) is concerned we will always choose to

satisfy De Morgan law (I(x, y) = S(N(x), y)). This is due to the particular case of µΦB(Z) where
x̂ ∈ {0, 1}. If we choose any other representation then lower approximability collapse to {0,1}.

RB(z, x) is the membership degree of element x in the tolerance class of z (at the same time is

the valued tolerance relation between elements x and z for attribute set B; in our case RB(z, x) =

Tj∈BRj(z, x));

x̂ is the membership degree of element x in the set Φ (x̂ ∈ {0, 1}).

In the following we provide some formal properties that such an approach fulfill. The reader

should remark that in the following Φc denotes the complement of set Φ with respect to the universe.

Proposition 1. If T, S, I fulfill the De Morgan law and RB is a valued tolerance relation then

∀Z ∈ A µΦB (Z) ≤ µΦB (Z).

Proof.

In order to demonstrate the proposition we first observe that both the lower and the upper

approximability are T-norms on the same set Z. Therefore it is sufficient to demonstrate that

∀z ∈ Z the argument of the T-norm defining the lower approximability is less or equal to the

argument of the T-norm defining the upper approximability. Thus we have to demonstrate that:

Tx∈ΘB(z)(S(1−RB(z, x), x̂)) ≤ Sx∈ΘB(z)(T (RB(z, x), x̂))
Since min is the largest T-norm and max is the smallest T-conorm is sufficient to demonstrate

that: minx∈ΘB(z)(max(1−RB(z, x), x̂)) ≤ maxx∈ΘB(z)(min(RB(z, x), x̂)).

We distinguish two cases:

1. Consider z = xk ∈ Φ
c
. Then x̂k = 0. Therefore when x = xk we havemax(1−RB(xk, xk), x̂k) =

0 so that minx∈ΘB(z)(max(1−RB(z, x), x̂)) = 0. At the same time:

∀x ∈ Φ
c
x̂ = 0 and min(RB(z, x), x̂) = 0 and

∀x ∈ Φ x̂ = 1 and min(RB(z, x), x̂) = RB(z, x)
so that maxx∈ΘB(z)(min(RB(z, x), x̂)) = maxx∈Φ(RB(z, x)) ≥ 0. Therefore if z ∈ Φ

c
we get

µΦB (z) = 0 ≤ µΦB (z).



2. Consider z = xk ∈ Φ. Then x̂k = 1. Therefore when x = xk we have min(RB(xk, xk), x̂k) = 1

so that maxx∈ΘB(z)(min(RB(z, x), x̂)) = 1. At the same time:

∀x ∈ Φ x̂ = 1 and max(1−RB(z, x), x̂) = 1 and

∀x ∈ Φ
c
x̂ = 0 and max(1−RB(z, x), x̂) = 1−RB(z, x) ≤ 1

so that minx∈ΘB(z)(max(1 − RB(z, x), x̂)) = minx∈Φc(1 −RB(z, x)) ≤ 1. Therefore if z ∈ Φ

we get µΦB(z) ≤ 1 = µΦB(z).

And this completes the proof.

We immediately obtain the following corollary.

Corollary 1.

If z ∈ Φ then µΦB (z) = minx∈Φc(1−RB(z, x)) ≤ µΦB(z) = 1

If z ∈ Φ
c
then µΦB (z) = 0 ≤ µΦB(z) = maxx∈Φ(RB(z, x))

Proposition 2. If T, S, I respect the De Morgan law and RB is a valued tolerance relation then

∀z µΦB(z) = 1− µ(Φc)B (z).

Proof.

Denote by x̂c the membership of x to Φ
c
. Clearly x̂c = 1− x̂. We then have:

µΦB(z) = Tx∈ΘB(z)(S(1−RB(z, x), x̂)) =

Tx∈ΘB(z)(S(1−RB(z, x), 1− x̂c)) =

Tx∈ΘB(z)(1− T (RB(z, x), x̂c)) =

1− Sx∈ΘB(z)(T (RB(z, x), x̂c)) =
1− µ(Φc)B(z).

We immediately obtain the following corollary.

Corollary 2.

µΦB(Z) = 1− Sz∈Z(µ(Φc)B(z)
µΦB(Z) = 1− Sz∈Z(µ(Φc)B(z)

The practical consequence of the above result is that in order to compute the lower (upper)

approximability of any subset Φ ⊆ A is sufficient to compute the upper (lower) approximability of

each single element of A of the sets Φ and Φ
c. Operationally we can fix a threshold k (l) for the

lower (upper) approximability and then add elements to the empty set by decreasing order of their

lower (upper) approximability.

Finally we can show the following result.

Proposition 3. ∀Z ⊂ A ˆB ⊂ B⇒µΦ
ˆB
(Z) ≤ µΦB(Z)

Proof.

Since RB(z, x) = Tj∈BRj(z, x), if B̂ ⊆ B then ∀x R
ˆB
(z, x) ≥ RB(z, x) and therefore ∀x 1 −

R
ˆB
(z, x) ≤ 1−RB(z, x). Then by definition of lower approximability the proposition holds.

In order to improve comprehension of our approach consider the following example (Φ and Ψ

being two distinct classes to which elements of A may belong, the one being the complement of

the other).

Example 3. A set of 12 objects x1, · · ·x12, four attributes c1, c2, c3, c4 and a decision attribute d are

given, each attribute equipped with an interval scale in the interval [0,100]. Besides, the following

decision table is provided:



c1 c2 c3 c4 d

x1 89 91 95 87 Φ

x2 85 87 90 86 Φ

x3 80 83 92 80 Ψ

x4 79 80 85 77 Φ

x5 74 76 83 71 Ψ

x6 70 71 79 70 Ψ

x7 68 70 74 66 Φ

x8 63 64 70 62 Ψ

x9 59 64 69 60 Ψ

x10 57 59 57 56 Φ

x11 55 56 56 54 Ψ

x12 25 32 15 48 Φ

Table 1: Decision table for valued tolerance

A constant threshold of k = 10 applies in order to consider two objects as surely not different

(similar) to any of the four attributes.

Following an approach recently introduced ([Tsoukiàs and Vincke, 2000,Tsoukiàs, 2000]) we

consider for each attribute cj a valued tolerance relation as follows:

Rj(x, y) =
max(0,min(cj(x), cj(y)) + k −max(ci(x), cj(y)))

k

where: k is the discrimination threshold. It is easy to observe that:

∀x, y ∈ A Rj(x, y) = 1 iff cj(x) = cj(y)
∀x, y ∈ A Rj(x, y) ∈]0, 1[ iff | cj(x) − cj(y) |< k

∀x, y ∈ A Rj(x, y) = 0 iff | cj(x) − cj(y) |≥ k

Actually the valued tolerance defined above considers that when the values of two objects are

identical the objects are necessarily similar. If the difference of value is more than the threshold

k then the two objects are necessarily not similar. If the difference of value is between 0 and

k then the valued tolerance decreases linearly as the difference increases. If Rj(x, y) represents

the necessity that x is similar to y then, in presence of several attributes, a way to evaluate the

necessity that x is comprehensively similar to y is to take the T-norm of the different similarities.

Coherently with the necessity approach we get: R(x, y) = minj(Rj(x, y)). Applying this formula

to the information in Table 1 we get the following comprehensive valued relation on the set A.

Clearly R is a valued tolerance.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 1 0.5 0.1 0 0 0 0 0 0 0 0 0

x2 0.5 1 0.4 0.1 0 0 0 0 0 0 0 0

x3 0.1 0.4 1 0.3 0.1 0 0 0 0 0 0 0

x4 0 0.1 0.3 1 0.4 0.1 0 0 0 0 0 0

x5 0 0 0.1 0.4 1 0.5 0.1 0 0 0 0 0

x6 0 0 0 0.1 0.5 1 0.5 0.1 0 0 0 0

x7 0 0 0 0 0.1 0.5 1 0.4 0.1 0 0 0

x8 0 0 0 0 0 0.1 0.4 1 0.6 0 0 0

x9 0 0 0 0 0 0 0.1 0.6 1 0 0 0

x10 0 0 0 0 0 0 0 0 0 1 0.7 0

x11 0 0 0 0 0 0 0 0 0 0.7 1 0

x12 0 0 0 0 0 0 0 0 0 0 0 1

Table 2: Valued tolerance relation for example 3



Using the above information we can compute the lower and upper approximability for each

element of set A as results in Table 3.

µΦB (x) µΦB (x) µΨB (x) µΨB (x)
x1 0.9 1 0 0.1

x2 0.6 1 0 0.4

x3 0 0.4 0.6 1

x4 0.6 1 0 0.4

x5 0 0.4 0.6 1

x6 0 0.5 0.5 1

x7 0.5 1 0 0.5

x8 0 0.5 0.5 1

x9 0 0.2 0.8 1

x10 0.3 1 0 0.7

x11 0 0.7 0.3 1

x12 1 1 0 0

Table 3: Lower and upper approximability of each element of A.

4 Decision Rules

In order to induce classification rules from the decision table on hand we may accept now rules

with a “credibility degree” derived from the fact that objects may be similar to the conditional

part of the rule only to a certain degree, besides the fact the implication in the decision part is

also uncertain. More formally we give the following representation for a rule ρi:

ρi =def

∧

cj∈B

(cj(x) = v)→ (d = φ)

where: B ⊆ C, v is the value of conditional attribute cj, φ is the value of decision attribute d.

We may use the valued relation sB(x, ρi) in order to indicate that element x “supports” rule ρi

or that, x is similar to some extend to the conditional part of rule ρi on attributes B. The relation s

is a valued tolerance relation defined exactly as relation R. We denote as S(ρi) = {x : sB(x, ρi) > 0}
and as Φ = {x : d(x) = φ}. In a case of crisp relation ρi is a classification rule iff:

∀ x ∈ S(ρi) : ΘB(x) ⊆ Φ

Shifting in the valued case we can compute a credibility degree for any rule ρi calculating the

credibility for the previous formula which can be rewritten as: ∀ x, y sB(x, ρi)→(RB(x, y)→Φ(y)).
We get:

µ(ρi) = Tx∈S(ρi)(I(sB(x, ρi), Ty∈ΘB(x)(I(µΘB(x)(y), µΦ(y)))))

where: µΘB(x)(y) = RB(x, y) and µΦ(y) ∈ {0,1}.
Finally it is necessary to check whether B is a non-redundant set of conditions for rule ρi, i.e.

to look if it is possible to satisfy the condition: ∃ B̂ ⊂ B : µ(ρ
ˆB

i
) ≥ µ(ρB

i
). We can equivalently

state that if there is no B̂ satisfying the condition then B is a “non redundant” set of attributes

for rule ρi.

Before we continue the presentation of our approach in rule induction, is important to state

the following result.



Proposition 4. Consider a rule ρi classifying objects to a set Φ ⊆ A under a set of attributes B.

If T, S, I satisfy the De Morgan law and RB is a valued tolerance, the credibility µ(ρi) of the rule
is upper bounded by the lower approximability of set Φ by the element xk whose description (under

attributes B) coincides with the conditional part of the rule.

Proof.

Consider the definition of rule credibility. We know that:

Ty∈ΘB(x)(I(µΘB(x)(y), µΦ(y))) = µΦB (x). Therefore considering that

I(x, y) = S(N(x), y) and that sB = RB we can rewrite:

µ(ρi) = Tx∈S(ρi)(S(1−RB(x, ρi), µΦB (x)))

We distinguish four cases.

1. It exists an element xk ∈ A whose description (under attributes B) coincides with the condi-

tional part of rule ρi. We have RB(x, ρi) = 1. Therefore S(1−RB(x, ρi), µΦB (x)) = µΦB (x)
in this case.

2. For all x for which RB(x, ρi) = 0 we get S(1−RB(x, ρi), µΦB (x)) = 1.
3. For all x for which 1−RB(x, ρi) > µΦB (x) we get

S(1−RB(x, ρi), µΦB (x)) ≥ 1−RB(x, ρi) since max is the smallest T-conorm.

4. For all x for which 1−RB(x, ρi) < µΦB (x) we get

S(1−RB(x, ρi), µΦB (x)) ≥ µΦB(x) since max is the smallest T-conorm.

Denoting xk, xl, xi, xj the x for the four cases respectively we obtain:

µ(ρi) = Tx∈S(ρi)(µΦB (xk), {∀xl : 1},{∀xi : 1−RB(xi, ρi)}, {∀xj : µΦB(xj)})

And since by definition we have T (x, y) ≤min(x, y) ≤ x, µΦB (xk) is an upper bound for µ(ρi).

Operationally, the user should fix a credibility threshold for the induced rules in order to prevent

proliferation of rules considered as "unsafe" for the classification purposes. A sensitivity analysis

could be performed around such a threshold to find accepted rules.

In general, elementary conditions of the induced rules are created using the description of

objects in the decision table. Assuming that the user has defined a credibility threshold at level λ,

it is possible to use the result of Proposition 4.1. to induce decision rules, i.e.

1. When choosing objects as candidates for inducing a classification rules for class Φ, it is sufficient

to choose only objects with lower approximability of a set Φ not worse than λ. Other objects

could be skipped.

2. Further on it is necessary to search for the non-reduced sets of conditions (in general it corre-

sponds to the problem of looking for local reducts [Komorowski et al., 1999])

3. Given credibility threshold λ one can relax the previous requirements to non-redundant rule,

i.e. it may be accepted that from rule ρi with credibility µ(ρi) new rules could be generated

with shortest condition part but with lower credibility however still over the allowed threshold.

Let us notice that the problem of inducing all rules with accepted credibility from examples in

the information table has exponential complexity in the worst case (see corresponding problems of

looking for all local reducts in the classical rough sets theory [Komorowski et al., 1999]). However,

fixing sufficient high value of credibility threshold may reduce the search space.

Continuation of Example 3: Consider again the example of information table used in this paper.

Coherently with our previous computations we choose min as the T-norm and max as T-conorm.



When choosing objects as candidates for inducing a classification rule for class Φ or Ψ it is

natural to choose objects with the maximal lower approximability of a set. Fixing a high credibility

threshold we can look for rules describing class Φ on the basis of object x12 only (see table 3.).

So, let us fix the value of credibility threshold to 0.6. For the set of all attributes C and class Φ,

objects x1, x2, x4, x12 could be taken into account.

Let us consider candidate for a decision rule based of description of the object x1, i.e. ρ1 : (c1 =

89)∧(c2 = 91)∧(c3 = 95)∧(c4 = 87)→(d = Φ). Three objects (x1, x2, x3) are similar to its condition

part with RC(x1, ρi)=1, RC(x2, ρi)=0.5 and RC(x3, ρi)=0.1. So S(ρi) = {x1, x2, x3}. We can com-

pute credibility of the rule according to formula: µ(ρi) = minx∈S(ρi)(max(1−RB(x, ρi), µΦB(x))).
So, taking values of lower approximability (see Table 3.) we have µ(ρi) = min(max(1−1,0.9),max(1−
0.5, 0.6),max(1− 0.1,0)) = 0.6. However, this is a rule with a redundant set of conditions. As one

can check, it can be reduced to the much simpler form

ρ1 : (c4 = 87)→(d = Φ)

which is still supported by objects S(ρi) = {x1, x2, x3} with Rc4(x1, ρi)=1, Rc4(x2, ρi)=0.9 and

Rc4(x3, ρi)=0.3. It is necessary to compute the new lower approximability, µc4(x1) = min(max(1−

1, 1),max(1 − 0.9, 1),max(1− 0.3,0) = 0.7, µc4(x2)=0.6 and µc4(x3)=0. The credibility degree is

still µ(ρi) = min(max(1− 1, 0.7),max(1− 0.9, 0.6),max(1− 0.3, 0)) = 0.6.

Proceeding in a similar way we can induce the other decision rules for class Φ:

ρ2 : (c4 = 86)→(d = Φ) with µ(ρ2) = 0.6 and S(ρ2) = {x1, x2, x3, x4}

ρ3 : (c3 = 85)∧(c4 = 77)→(d = Φ) with µ(ρ3) = 0.6 and S(ρ3) = {x2, x3, x4, x5, x6}

ρ4 : (c1 = 25)→(d = Φ) with µ(ρ4) = 1.0 and S(ρ4) = {x12}

ρ5 : (c2 = 32)→(d = Φ) with µ(ρ5) = 1.0 and S(ρ5) = {x12}

ρ6 : (c3 = 15)→(d = Φ) with µ(ρ6) = 1.0 and S(ρ6) = {x12}

ρ7 : (c4 = 48)→(d = Φ) with µ(ρ7) = 0.6 and S(ρ7) = {x11, x12}

Further on, for class Ψ the following rules could be induced:

ρ8 : (c3 = 92)∧(c4 = 80)→(d = Ψ) with µ(ρ8) = 0.6 and S(ρ2) = {x1, x2, x3, x4, x5}

ρ9 : (c1 = 74)∧(c4 = 71)→(d = Ψ) with µ(ρ9) = 0.6 and S(ρ9) = {x3, x4, x5, x6, x7}

ρ10 : (c3 = 83)∧(c4 = 71)→(d = Ψ) with µ(ρ10) = 0.6 and S(ρ10) = {x3, x4, x5, x6, x7}

ρ11 : (c2 = 76)∧(c4 = 71)→(d = Ψ) with µ(ρ11) = 0.6 and S(ρ11) = {x3, x4, x5, x6, x7}

ρ12 : (c2 = 64)∧(c3 = 69)→(d = Ψ) with µ(ρ12) = 0.6 and S(ρ12) = {x7, x8, x9, x10}

Let us now consider the use of induced decision rules to classify new unclassified objects. The

problem is to assign such objects to a-priori known sets (decision classes) on the basis of their

tolerance to the conditional part of the already induced rules.

We have a double source of uncertainty. First, the new object will be similar to a certain extend

to the conditional part of a given rule. Second the rule itself has a credibility (classification is not

completely sure any more). In general a new unclassified object will be more or less similar to

more than one decision rule and such rules may indicate different decision classes. Therefore an

unclassified object can be assigned to several different classes. In order to choose one class the

following procedure is proposed:

1. For each decision rules ρi in the set of induced rules (assigning objects to class Φi) we calculate

the tolerance of the new object z to its condition part, RB(z, ρi).
2. Then we compute the membership degree of object z to each decision class Φi as µΦi

(z) =
T (RB(z, ρi), µ(ρi)). Then we choose the class with the maximum membership degree.

3. If a tie occurs (the same membership for different classes) choose the rule with the highest

number of supporting objects S(ρi).

Let us comment that if we compute the best matched rules independently for each considered

decision class, we can show the user the distribution of possibilities of classifications z to different

classes.



Continuation of Example 3: Consider again the example of information table and induced

decision rules. Let us assume that the new unclassified object z has the following description

(c1 = 28)∧(c2 = 55)∧(c3 = 78)∧(c4 = 56). First its similarity to condition part of each decision

rule should be calculated. One can check that the tolerance RB(z, ρi) is greater than zero only

for three rules ρ4, ρ7, ρ12, i.e. RB(z, ρ4)=0.7, RB(z, ρ7)=0.2 and RB(z, ρ12) = min(0.1,0.1) = 0.1.

The two first rules indicate Φ with membership degrees µΦ(z) = min(0.7,1.0) = 0.7 and µΦ(z) =

min(0.2,0.6) = 0.2, while the last indicates Ψ with degree µΨ (z) = min(0.1, 0.6) = 0.1. Therefore

object z should be assigned to class Φ.

Further on, let us consider a more difficult case, i.e. assume that object z has the following

description (c1 = 85)∧(c2 = 87)∧(c3 = 91)∧(c4 = 84). Four decision rules have a non-zero similarity

with this object, i.e.

RB(z, ρ1) = 0.7 and µΦ(z) = min(0.7,0.6) = 0.6

RB(z, ρ2) = 0.8 and µΦ(z) = min(0.8,0.6) = 0.6

RB(z, ρ3) = min(0.4, 0.3) = 0.3 and µΦ(z) = min(0.3, 0.6) = 0.3

RB(z, ρ8) = min(0.9, 0.6) = 0.6 and µΨ (z) = min(0.6, 0.6) = 0.6.

In fact a tie occurs between rules ρ1, ρ2 and ρ8. However the supports of these rules are the

following: S(ρ1) = {x1, x2, x3}, S(ρ2) = {x1, x2, x3, x4}, S(ρ8) = {x1, x2, x3, x4, x5}. According
to the highest number of supporting objects, the rule ρ8 should be chosen and object z could be
assigned to the set Ψ .

5 Conclusion

In the paper we develop the idea that valued tolerance relations (symmetric valued similarity

relations) can be more suitable when objects are compared for classification purposes. Particularly

when rough sets are used, the classic indiscernibility relation (which is a crisp equivalence relation)
can be a too strong assumption with respect to the available information.

The main contribution of the paper consists in considering that any subset of the universe of

discourse can be considered as a lower (upper) approximation of set Φ, but to a different degree,

due to the existence of a valued tolerance relation among the elements of the universe. A number

of formal properties of this approach are demonstrated and discussed in the paper.

Further on, the availability of a lower (upper) approximability degree for each set with respect
to a decision class Φ enables to compute classification rules equipped with a credibility degree. A

significant result obtained in the paper consists in demonstrating that a rule credibility is upper

bounded by the lower approximability of the set whose elements description coincides with the

conditional part of the rule.

Besides increasing the number of induced rules for a given data set, the user has an improved
toolkit in order to explore the security of any classification. In fact when new objects have to be

classified using the induced rules two sources of uncertainty have to be considered: the first due to

the fact the new object might be more or less similar to the conditional part of the rule and the

second due to the fact that the rule itself is more or less safe (credible). A number of operational

hints are presented in the paper in order to implement efficient rule induction algorithms and
classification procedures.
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