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Abstract. Given a finite set A of actions evaluated by a family of criteria, we
consider a preferential information in the form of a pairwise comparison table
(PCT) including pairs of actions from a subset BcAxA described by graded
preference relations on particular criteria and a comprehensive outranking relation.
Using the rough set approach to the analysis of the PCT, we obtain a rough
approximation of the outranking relation by a graded dominance relation. Decision
rules derived from this approximation are then applied to a set McA of potential
actions. As a result, we obtain a four-valued outranking relation on set M. The
congtruction of a suitable exploitation procedure in order to obtain a
recommendation for multicriteria choice and ranking is an open problem within
this context. We propose an exploitation procedure that is the only one satisfying
some desirable properties.
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1 Introduction

A rough set approach to multicriteria decision analysis has been proposed by
Greco, Matarazzo and Slowinski (1996). This methodology operates on a pairwise
comparison table (PCT) (Greco, Matarazzo and Slowinski, 1995), including pairs
of actions described by graded preference relations on specific criteria and by a
comprehensive preference relation. It builds up a rough approximation of the
comprehensive preference relation using graded dominance relations. Furthermore,
some decision rules in the “if ... then..” form are derived from the rough
approximation of the preference relation. If the comprehensive preference relation
is an outranking relation, the application of these decision rules to a set of actions
gives a four-valued outranking relation (Tsoukias and Vincke, 1995, 1997), i.e. a
binary relation which, with respect to any pair of actions (a,b), characterizes the
proposition “a is at least as good as b” as true, contradictory, unknown or false.
Finally, in order to obtain a recommendation (Roy, 1993) for the decision problem



at hand, a suitable exploitation procedure of the four-valued outranking relation
should be applied. This paper, which is a reduced version of Greco, Matarazzo,
Slowinski and Tsoukias (1997), is focused on this exploitation procedure. More
precisely, we consider multicriteria ranking and choice problems, and we propose
an exploitation procedure, called scoring procedure, which we characterize by
proving that it is the only one ensuring some desirable properties.

The paper is structured as follows. In section 2, we introduce the rough
approximation of a preference relation and the generation of decision rules. In
section 3, we describe the four-valued outranking relation. In section 4, we
introduce the application of decision rules, showing how it defines a four-valued
outranking relation. Furthermore, the scoring procedure is presented. Section 5
proposes a characterization of this scoring procedure. Section 6 groups
conclusions.

2 Rough set analysis of a preferential information
2.1 Pairwise Comparison Table

In order to represent preferential information provided by the decision maker (DM)
in form of a pairwise comparison of some actions, we shall use a pairwise
comparison table, introduced in Greco, Matarazzo and Slowinski (1995).

Let A be afinite set of actions (feasible or not), considered by the DM as a basis
for exemplary pairwise comparisons. Let also C be the set of criteria (condition
attributes) describing the actions.

For any criterion qeC, let T, be afinite set of binary relations defined on A on

the basis of the evaluations of actions of A with respect to the considered criterion
g, such that V(x,y)eAxA exactly one binary relation teT, is verified. More

precisely, given the domain V,of geC, if VigV'qeV,are the respective evaluations
of x,yeA by means of g and (x,y)et with teT, then for each w,ze A having the
same evaluations VgV by means of g, (w,z)et. For interesting applications it
should be card(Tq)ZZ, vqeC.

Furthermore, let T, be a set of binary relations defined on A (comprehensive
pairwise comparisons) such that at most one binary relation teT, is verified,
V(X,y)eAxA.

The pairwise comparison table (PCT) is defined as an information table
Secr=(B, CU{d}, TUT,, ), where BcAxA is a non-empty sample of pairwise

comparisons, To= U Tq, d is a decision corresponding to the comprehensive
qeC

pairwise comparison (comprehensive preference binary relation), and

g:Bx(C{d})>ToUT, isatota function such that g[(x,y),al€T, V(x,y)eAxA

and vgeC, and g[(x,y),d]eT,, V(x,y)eB. It follows that for any pair of actions



(x,y)eB one and only one binary relation teT, is verified. Thus, T, induces a
partition of B. In fact, information table S, can be seen as decision table, since
the set of considered criteria C and decision d are distinguished.

In this paper, we consider S, related to the choice and ranking problems (Roy,
1985) and assume that the exemplary pairwise comparisons provided by the DM
can be presented in terms of graded preference binary relations:

T,={ F§, heH,},
where He {hez he[—pq, rq]} and Py fqeN, VaeC and V(x,y)e AxA;

- X ng, h>0, means that action x is preferred to action y by degree h with respect
to criterion q,

- xpgy, h<0, means that action X is not preferred to action y by degree h with
respect to criterion q,

- xpgy means that x is similar (asymmetrically indifferent) to y with respect to
criterion q.
Let us remark that the similarity represented by the binary relation Pg has been

introduced by Slowinski and Vanderpooten (1995,1996, 1998) in very genera
terms, i.e. without any specific reference to preference modeling. Let us remember
that a similarity relation is only reflexive (i.e., with respect to P2, we have xpgx

vxeA and VgeC), relaxing therefore the properties of symmetry and transitivity.
The abandon of the transitivity requirement is easily justifiable, remembering — for
example — Luce's paradox of the cups of tea (1956). As for the symmetry, one
should notice that yRx, which means "y is similar to x", is directional; there is a
subject y and areferent x, and in general thisis not equivalent to the proposition "x
is similar to y", as maintained by Tversky (1977). Thisis quite immediate when
the similarity relation is defined in terms of a percentage difference between
evaluations of the actions compared on the attribute at hand, calculated with
respect to the evaluation of the referent action. In terms of preference modeling,
similarity relation, even if not symmetric, resembles indifference relation. Thus, in
this context, we also call this similarity relation "asymmetric indifference”.

Of course, Vx,yeA
[xPly, h=0]< [yPkx, k<0].

Therefore, V(x,y),(w,z)eAxA and VqeC:
- if xpgy and wp'éz , k>h>0, then w is preferred to z not lessthan x is
preferred to y with respect to criterion q;
-if xPly and wp}z, k<h<0, then w isnot preferred to z not lessthan x is
not preferred to y with respect to criterion q.



The set of binary relations T is defined analogously; however, x PQ y means that
X iscomprehensively preferred to y by degree h.

2.2 Rough approximation of a preferencerelation

Let H= 1 Hq VP=C. Given x,yeA, PcC and he Hp, we say that x positively
qeP

dominates y by degree h with respect to the set of criteria P iff ngy with
f>h, VqeP. Analogously, Vx,yeA, PcC and heH, x negatively dominates y by
degree h with respect to the set of criteria P iff xpgy with f<h, VgeP. Thus,
VheHp, every PcC generates two binary relations (possibly empty) on A, which
will be called P-positive-dominance of degree h, denoted by D, and P-negative-
dominance of degree h, denoted by D'}, respectively. The relations Df, and D'b
satisfy the following properties:

(PL) if (x,y)e DI, then (x,y)e DX, for each RcP and for every k<h;
(P2) if (x,y)e D'}, then (x,y)e D, for each RcP and for every k>h.

In the following, we consider a PCT where the decision d can have only two
values on BCAxA:

1) x outranksy, which will be denoted by xSy or (x,y)eS,
2) x does not outrank y, which will be denoted by xSy or (x,y)e S,

where “x outranks y” means “X is at least as good as y” (Roy, 1985). Let us
remember that the minimal property verified by the outranking relation S is
reflexivity (see Roy, 1991; Bouyssou, 1996).

We propose to approximate the binary relation S by means of the D', binary

dominance relations. Therefore, S is seen as a rough binary relation (see Greco,
Matarazzo and Slowinski, 1995).

The P-lower approximation of S, denoted by P S, and the P-upper approximation
of S, denoted by P'S, are defined, respectively, as:

Es:hgp{(mpm B)<S),

F>s:hgp{(ozpm B);s}.

Taking into account property (P1) of the dominance relations D5, P'S can be
viewed as the dominance relation D, which has the largest intersection with B



included in the outranking relation S, and P'S as the dominance relation Dy
including S which has the smallest intersection with B.

Analogously, we can approximate S° by means of the D'L, dominance relations:

Ps= U {(DhnB)cs),

heHp

PS= N {(DhnB)2S7.
heHp {( P ) }
Taking into account property (P2), the interpretation of P St and P S°is similar
to the interpretation of PSand PS.

2.3 Decision rules

We can derive a generalized description of the preferential information contained
inagiven PCT in terms of decision rules.

We will consider the following kinds of decision rules:

1) D,,-decision rule, being a statement of the type: X D!lpy=xSy;

2) D, -decision rule, being a statement of the type: not x D y=>xS%;
3) D_,-decision rule, being a statement of the type: not x Db y=>xSy;
4) D__-decision rule, being a statement of the type: x D/b y=>xS.

Speaking about decision rules we will simply understand all the four kinds of
decision rules together.

If there is at least one pair (w,z)eB such that w D5 z and wSz , and there is no
(v,u)eB such that vDpu and vSu, then xDfpy=xSy is accepted as a
D,,-decision rule. A D,,-decision rule x D!l y=xSy will be called minimal if

there is not any other rule x DX y=>xSy such that RcP and k<h. Let us observe

that, since each decision rule is an implication, a minimal decision rule represents
an implication such that there is no other implication with an antecedent at least of
the same weakness and a consequent of at least the same strength. The other rules
can be characterized analogously.



Theorem 2.1. (Greco, Matarazzo, Slowinski, 1996). If

1) x Dpy=xSy isaminima D,,-decisionrule, then PS= D" B,
2) x D'b y=xS% isaminimal D_-decision rule, then PS° = p"x N B,
3) not X Dpy=xS°y isaminimal D, -decision rule, then PS=p"sN B,

4) not x D'k y=xSy isaminimal D_,-decision rule, then Pt = D"-NB.

3 Four-valued outranking

The basic idea of the four-valued outranking model of preferences (Tsoukias and
Vincke, 1995, 1997) is connected with the search of “positive reasons’ and
“negative reasons’ (xSy and xS°y) supporting a hypothesis of the truth of a
comprehensive outranking relation for an ordered pair (x,y) of actions. The
combination of presence and absence of the positive and the negative reasons
creates four possible situations for the outranking:
1) true outranking, denoted by xSy, iff there exist sufficient positive reasons to
establish xSy and there do not exist sufficient negative reasons to establish

xSYy;

2) contradictory outranking, denoted by xSy, iff there exist sufficient positive
reasons to establish xSy and sufficient negative reasons to establish xS'y;

3) unknown outranking, denoted by xSy, iff there do not exist sufficient positive
reasons to establish xSy and there do not exist sufficient negative reasons to
establish xS'y;

4) false outranking, denoted by xSy, iff there do not exist sufficient positive
reasons to establish xSy and there exist sufficient negative reasons to establish
xSYy.

By such definitions it is possible to apply the rough approximations of outranking
relations S and S° defined on B, in order to build a preference model on MxM,
where McA, which could further be exploited to get a recommendation (choice or
ranking) with respect to a set of actions from M. In other words, we are able to
move from a descriptive model of decision maker’s preferences expressed on B to
a prescriptive model on McA.

4 Application of decision rulesand definition of a final

recommendation

Given aset D of decision rules, obtained in the way described in section 2, and two
actionsv,ueA,

1) if x DNy y=>xSy isaD,,-decision rule and v D'} u, then we conclude that vSu,



2) if not x D y=>xS% is a D,_-decision rule and not v D! u, then we conclude
that vSu,

3) if not x D', y=>xSy is a D_,-decision rule and not v D% u, then we conclude
that vSu,

4) if xpby=xSy is a D_-decision rule and v D', u, then we conclude that
vSu.

According to the four-valued logic, from the application of the decision rules to
the pair of actions (x,y) e AxA there may arise one of the four following states:

« true outranking, denoted by xS'y: this is the case when there exists at least one
D,,-decision rule and/or at least one D_,-decision rule stating that xSy, and no
D__-decision rule or D, _-decision rule stating that xS°y;

« false outranking, denoted by xSTy: this is the case when there exists at least one
D__-decision rule and/or at least one D, _-decision rule stating that xS°y, and no

D,,-decision rule or D_,-decision rule stating that xSy;

« contradictory outranking, denoted by xS*y: this is the case when there exists at
least one D, ,-decision rule and/or at least one D_,-decision rule stating that xSy,

and at least one D__-decision rule and/or at least one D, _-decision rule stating that
xSy;

e unknown outranking, denoted by xSYy: this is the case when there is no
D, ,-decision rule or D_,-decision rule stating that xSy, and no D__-decision rule
or D, _-decision rule stating that xS°y.

Theorem 4.1. (Greco, Matarazzo, Slowinski, 1996) The application of al the
decision rules obtained for a given Sy on any pair of actions (v,u)eAxA results
in the same outranking relation as obtained by the application of the minimal
decision rules only.

From Theorem 4.1, we conclude that the set of all decision rules is completely
characterized by the set of the minimal rules. Therefore, only the latter ones are
presented to the DM and applied in the decision problem at hand.

In order to define a recommendation with respect to the actions of McA, we can
calculate a particular score based on the outranking relations S and S° obtained
from the application of these rules to the actions of M.

VMcA and VxeM, let

e M™(x) ={yeM-{x}: thereis at least one D.. -decision rule and/or at least
one D_.-decision rule stating that xSy},



e M"(x) ={yeM-{x}: thereisat least one D..-decision rule and/or at least one
D..-decision rule stating that ySx},

e M7(X)={yeM-{x}: thereis at least one D.. -decision rule and/or at least
one D_-decision rule stating that yS°x},

e M"(X)={yeM-{x}: thereisat least one D.. -decision rule and/or at least one
D_-decision rule stating that xSy} .

To each xeM we assign ascore
S(x,M) = S™(x,M) - S"(x,M) + S*(x,M) - S"(x,M)

where  S™(x,M)=card[M**(x)], S"(x,M)=card[M™(x)], S*(x,M)=card[M™(x)],
S (x,M)=card[M~(x)].

We can use this score to work out a recommendation in the ranking and choice
problems. For the ranking problem, S(x,M) establishes a total preorder on M. For
choice problems, the final recommendation is xeM such that
S(x' ,M)= T?/IX S(x,M). We call these exploitation procedures scoring procedures.

€

5 A characterization of the scoring procedure

The use of a score-based procedure in presence of a four-valued outranking
relation is a problem which goes beyond the exploitation of rough approximations
(see Tsoukias and Vincke, 1997). For this reason we start with some general
remarks concerning the use of such procedures.

We want also to stress that such procedures are not the only possibility when
four-valued outranking relations have to be exploited. Moreover, the reader may
notice that the use of the score, as defined in this paper, conceals the difference
between uncertainty due to contradictions (contradictory outranking S¢) and
uncertainty due to lack of information (unknown outranking S”) contributing in the
same manner to the score S(x,M). However, in our opinion, any exploitation
procedure results in a loss of information since it reduces the rich form of
knowledge contained in the outranking relations (S and S°) to a poorer one which is
the final choice or ranking. In favor of the scoring procedure play its intuitive
nature (it is easy to understand by decision makers), its clear and straightforward
characterization (as it will be demonstrated in the following) and its easiness in
implementation. In other words, we sacrifice some richness of the information to
the easiness of use.

5.1 Some previousresults

The scoring procedure proposed in the previous section can be considered as an
extension to the four-valued logic of the well-known Copeland ranking and choice
method (see Goodman, 1954; Fishburn, 1973).

These procedures have been characterized by Rubinstein (1980) and Henriet
(1985) and, with respect to valued binary relations, by Bouyssou (1992a and b).



In this subsection we remember synthetically the results of Bouyssou, while in
the following subsection we extend them to the four-valued outranking relation.

A valued (binary) outranking relation on A is a function R associating an
element of [0,1] with each ordered pair of actions (ab)eAxA, with a=b. Let
R(A) be the set of all valued binary relationson A and 2* the set of all non-empty
subsets on A. A ranking method (RM), denoted by >, is a function assigning a
ranking >(M,R) on McA to any valued relation Re R(A) and to any (non-empty)
McA. A choice function (CF) on A isafunction

C: 2°xR(A)—»2*
such that C(M,R)cM, for each Me2* and ReR(A).

The following properties of ranking and choice exploitation procedure are
considered (Bouyssou, 1992a and b):

1) strong monotonicity: an exploitation procedure is strongly monotonic iff it
responds in the right direction to a modification of R. More formally,

1a) RM > is strongly monotonic iff VabeMcA and VReR(A)
a(M,R)b = a>(M,R)b,

where >(M,R) is the asymmetric part of >(M,R) and R' isidentical to R except that
R(a,c)<R'(a,c) or R(c,a>R'(c,a) for some ceM-{a};

1b) a CF C is strongly monotonic iff YReR(A) and all Me2*
acC(M,R) = {a} =C(M,R))
where R' is defined as previoudly.

2) neutrality: an exploitation procedure is neutral iff it does not discriminate
between actions just because of their labels. More formally,

2a) aRM > isneutral iff for all permutations s on A, VReR(a) and Vabe McA
a>(M,R)b < o(a)>(c(M),R°%)c(b)

where R° is defined by R°(c(a), o(b))=R(ab) VabeA;

2b) a CF Cisneutral iff for all permutationss on A, VReR(a) and YMe2*
acC(M,R) < o(8)eC(c(M),R%).

3) independence of circuits: a circuit of length q in a digraph is an ordered
collection of arcs (uy, Uy, ..., Ug) such that for i=1, 2, ...,q, the initial extremity of
u; is thefinal extremity of u,.; and the final extremity of u; is theinitial extremity
of ui;1, Where up isinterpreted asu, and uq.; asus. A circuit is elementary iff each
node being the extremity of one arc in the circuit is the extremity of exactly two
arcsin the circuit. A transformation on an elementary circuit consists of adding the
same quantity to the value of al the arcs in the circuit. A transformation on an
elementary circuit is admissible if al the transformed valuations are still between 0



and 1. An exploitation procedure is independent of circuits iff its results do not
change after an admissible transformation of R. More formally,

3a) aRM > is independent of circuits iff RR'eR(A), R' is obtained from R
through an admissible transformation on an elementary circuit of length 2 or 3 and
VYabeMcA

a>(M,R)b = a>(M,R)b;

3b) a CF C is independent of circuits iff YMe2* and VR,R'eR(A), such that R’ is
obtained from R through an admissible transformation on an elementary circuit of
length 2 or 3on M,

C(M,R)=C(M,R).

The property of independence of circuits makes an explicit use of the cardinal
properties of the valuations R(a,b). This is not the case of the neutrality and
monotonicity (Bouyssou, 1992a and b).

Given ReR(A) and McA, anet flow Sye(x,M,R) can be associated to each xeM
asfollows:

Se(XMR) = ¥ (R(x,b) -R(b,x)).
beM—{x}
More specifically, the RM > such that

a>(M,R)b iff Sye(aM,R)> Sye(b,M,R)
is called net flow ranking method, and the CF C such that
C(M,R) ={aeM: Syr(a,M,R)=S\r(b,M,R) VbeM}.
is called net flow choice method.

Theorem 5.1. (Bouyssou 1992a). The net flow method is the only RM that is
neutral, strongly monotonic and independent of circuits.

Theorem 5.2. (Bouyssou 1992b). The net flow method is the only CF that is
neutral, strongly monotonic and independent of circuits.

5.2 Properties of the exploitation procedures for the four-valued
outranking

In order to characterize the scoring procedure we consider a four-valued
outranking relation as a function R, associating an element of {S', S”, S,
S} with each ordered pair of actions (ab)eAxA. Now, RM > and CF C are
defined analogously for a four-valued outranking relation, i.e., for Ry (A) being
the set of all possible four-valued relations on A, RM > is a function assigning a
ranking >(M,R4,) on McA to any Ry eRy,(A) and to any McA, and CF Con A is
afunction
C: 2*xRy(A)—> 24



such that C(M,R4,)<=M, for each M e2” and each Ry e Ry (A).

Moreover, the property of neutrality maintains the same formulation asin the
exploitation procedure for the valued outranking relation, i.e.

e aRM > isneutra iff for al permutationsc on A, YMcA, VR, €Ry(A) and
VYabeM

a2(M,Ra)b < o(8) 2(c(M),R°4)c(b)
e aCF Cisneutral iff for all permutationsc on A, YMe2* and VR4 € Ruy(A)
acC(M,Ry) < (@) eC(c(M),R%)
where for any permutation o and VabeA, R°;, isdefined by
R%(o(8),5(b))=Ra(a,b).

Instead, the strong monotonicity and the independence of circuits properties have
a formal definition which is dightly different from the previous definition and
requires some new Cconcepts.

A 4v-transformation on the pair (a,b)e AxA consists of changing the outranking
relation S* into the outranking relation S¥, where S*, S'e{S', S”, S, S}, and it
isdenoted by

aS‘b — aS'b.

Let us denote by S* — S" the class of all the transformations aS*b — aS'b with

(ab)eAxA and s, SYe{ST, IS SF}

Let T be the set of al 4v-transformations on the pairs (a,b) e AxA. We introduce
an equivalence binary relation E on T. More specifically,

[aS*b — aS'b] E [aS"b —> aSh]

means that the transformation [aS‘b — aS'b] has the same “strength” as the
transformation [aS"b — aS“b], where S*,S",SV,°{S', S, ¢, §7}.

We define the following equivalence classes for E:

1. E=(S™- SHUS - SHu(S’ > SHUS - SHUES - SH)uS? - 59, ie
the class of the transformations from an outranking S* to an outranking S of
the same strength;

2. E=(SY - SHUE - SHUS - )uS —» 59, i.e the class of the
transformations from an outranking S* to an outranking S' having a greater
strength;

3. E’=(S" - )y - HUE? » SHust —» 9), ie the class of the
transformations from an outranking S* to an outranking S' having a weaker
strength;



4. E>=(S > 9), i.e. the class of the transformation from an outranking S* to an
outranking S” having afar greater strength (from total absence of outranking to
sure presence of outranking);

5. E*=(S" - S), i.e. the class of the transformation from an outranking S* to an
outranking S' having a far weaker strength (from sure presence of outranking
to total absence of outranking).

Within the context of a four-valued outranking relation,
1'a) aRM > is strongly monotonic iff VMcA and VabeM
a(M,Ry)b=a>(M,Ry, )b

where >(M,R,,) is the asymmetric part of >(M,R4,) and R' 4, is identical to Ry,
except that Ry, is obtained from R, by means of a 4v-transformation
aS*c — aS"c with (S*—»S")cE"UE? or cS*a—»>cS'a with (S*-S")cE*UE? for
some ceM-{a};

1'b) CF C is strongly monotonic iff YMe2* and Ry, €Ray(A)
acC(M, Ry) = {a} =C(M, R'y)
where Ry, is defined as previously.

A Adv-transformation on an elementary circuit consists of performing a
4v-transformation of the same equivalence class in the arcs of the circuit. A
4v-transformation on an elementary circuit is admissible if all the transformed
outranking relations belong to the set {S', S”, S, S} ; e.g., if we have aS'b, bS’c,
cS'a, an admissible transformation on the elementary circuit { (a,b), (b,c), (c,a)} is
aS’b, bS'c, cS‘a Let us point out that the elementary transformation on the arcs
are aS'"b—aS’b, bS’c—»bSc, cS'a»>cS‘a Therefore a RM > is independent of
circuits if Ry, R4eRy(A), R4 being obtained from Ry, through an admissible
transformation on an elementary circuit and

a>(M,Ra)b = a>(M,R'a))b.

Anaogously, a CF C isindependent of elementary circuits iff, under the same
hypotheses, VM e2* and VR4, R'sveRa(A)

C(M,R4) = C(M,R's).

Let us remark that the four-valued outranking R, expresses some possible
preference situations without using any numerical evaluation. Therefore, the
property of independence of circuits makes no use of cardinal properties of the
relations, similarly to the property of neutrality and monotonicity.



5.3 An extension of the previousresultsto the four-valued outranking

To extend the results of Bouyssou (1992a and b), we associate an element of {0,
1/2, 1} with each (a,b)e AxA introducing the valued outranking binary relation

R, AXA—[0,1] by stating:

0 if asb
R, (@b)=41/2 if as’b or aS‘b
1 if asS'b.

This is a reduction to the [0,1] interval of the lattice of the four truth values,
where the values S” and S* are incomparable (no numerical value is used there).
Such a reduction could be judged arbitrary, but the following result shows that

R,, satisfies some desirable properties, allowing us to say that R,, is the only

valued relation which faithfully represents Ry,. Let us consider F: {S', S, S,
S1-[0,1]. From each RyeRy(A) we can obtain one ReR(A) by stating
R(ab)=F(Ra(ab)) V(ab)eAxA.

Let us consider the following properties V(a,b),(c,d) e AxA:
R1) F(Ry, (a,b))=1iff aS'b,
R2) F(R4, (a,b))=0iff aSh,
R3) F(RY, (ab))-F(R3, (&b))=F(R3, (c.d))-F(R3, (c,d)) iff aS*b according to R, ,
aS'b according to R3,, ¢S"d according to RS, , cS°d according to R}, and
[aS*b — aS"b] E [cS"d — cSAd].

Property R1) says that V(ab)eAxA the transformation of the four-valued
outranking R4, into the valued outranking R should give the maximum value, i.e.,
R(a,b)=1, iff aSb. Analogously, property R2) says that, V(ab)cAxA, the same
transformation should give the minimum value, i.e., R(ab)=0, iff aSb. Finally,
property R3) says that, if 4v-transformations S*—»S' and SY—»S* are of the same
strength, then we should have F(S*)-F(S¥)= F(S")-F(S?).

Theorem 5.3. (Greco, Matarazzo, Slowinski, Tsoukias, 1997) Properties R1), R2)
and R3) are satisfied if and only if

F(Ra (ah)) =Ry, (ab).
Lemma 5.1. (Greco, Matarazzo, Slowinski, Tsoukias, 1997) The following
relation between the overall score S(x,M) and the net flow Syr (X,M, |§4V) holds:

S(X,M) = 2 Sye (M, Ry, ), VMcA and YxeM.



Lemma 5.1 shows that the overall score S(x,M) is a strictly positive monotonic
transformation of the net flow Syr(X,M, ﬁz4v). Therefore, we conclude that the
ranking and the choice obtained from S(x,M) are the same as those obtained from

Swe (M, Ry ).

Lemma 5.2. (Greco, Matarazzo, Slowinski, Tsoukias, 1997) Given
Ra,R'a€Ry(A), if Ry, isobtained from R, by an admissible 4v-transformation

on an elementary circuit, then R',, is obtained from R,, by an admissible
transformation on an elementary circuit.

Dueto Lemmas 5.1 and Lemma 5.2, Theorems 5.1 and 5.2 imply, respectively, the
following two theorems (Greco, Matarazzo, Slowinski, Tsoukias, 1997).

Theorem 5.4. With respect to a four-valued outranking relation established by a
set of decision rules, the scoring procedure based on S(x,M) is the only RM
which is neutral, strongly monotonic and independent of circuits.

Theorem 5.5. With respect to a four-valued outranking relation established by a
set of decision rules, the scoring procedure based on S(x,M) is the only CF which
is neutral, strongly monotonic and independent of circuits.

6 Conclusions

We have been using the rough set approach to the anaysis of preferentia
information concerning multicriteria choice and ranking problems. This
information is given by a decision maker as a set of pairwise comparisons among
some reference actions using the outranking relation. The outranking relation is
approximated by means of a special form of dominance relation and decision rules
are derived from these approximations. They represent the preference model of the
decision maker. In result of application of these rules to a new set of potential
actions, we get afour-valued outranking relation.

In this paper, we dealt with the problem of obtaining a recommendation from
the above four-valued outranking relation. With this aim we proposed an
exploitation procedure for ranking and choice problems based on a specific net
flow score. Furthermore, we proved that this procedure is the only one which is
neutral, strongly monotonic and independent of circuits.
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