
Software Evaluation Problem Situations

Ioannis Stamelos(+), Alexis Tsoukiàs(*)
(+) Dept. of Computer Science, Aristotle University of Thessaloniki

54006, Thessaloniki, Greece
e-mail: stamelos@csd.auth.gr

(*) LAMSADE - CNRS, Université Paris Dauphine
75775 Paris Cedex 16, France

e-mail: tsoukias@lamsade.dauphine.fr

Abstract

Evaluating software is a complex decision aiding activity which requires
the recognition of the problem situation in which the evaluation is requested,
the establishment of a set of problem formulations which represent the
client’s “problems” and, for a specific problem formulation, the construc-
tion of an evaluation model which indicates how such an evaluation will be
performed.

In this paper the first two aspects of such a process are discussed, pro-
viding a partial list of software evaluation problem situations, how they
are characterised and what problem formulations they allow. Moreover two
real case studies, concerning software evaluation, are briefly presented and
discussed under this point of view (how the problem is perceived and for-
mulated).
Keywords: Software Evaluation, Problem Formulation, Multiple Criteria
Methodology.

1



1 Introduction

Software evaluation is an increasingly important problem in any sector of
human activity. Industrial production, service provisioning and business
administration heavily depend on software which is more and more complex,
expensive and difficult to maintain.

In the present practice, evaluating software is seen as a simple process
consisting of adopting a quality model, measure some attributes and then
aggregate them following the quality model. Very little attention to the
motivations of software evaluation, the purposes and the evaluation process
itself is paid. The need for evaluating software may have different origins.
Moreover various components of the software itself, its production process
and its maintenance may be involved. The evaluation may be done for
various purposes. Different actors may be involved in the evaluation pro-
cess carrying different interests, problems and points of view. Evaluating
software therefore is not a simple technical (engineering) activity aiming to
define an “objectively good software”, but a decision process where sub-
jectivity, uncertainty and possibility for conflicts are present without any
possibility of arbitrary reduction. Under this perspective, the recently pro-
posed IUSWARE methodology (see [Morisio and Tsoukiàs 1997]) presents
an outline of how software evaluation can be modelled under a decision
aiding methodology.

However, from the point of view of a software engineer, it is not always
clear what consequences the different “problem situations” may generate
to his/her evaluations. The concept of “problem situation”, although intro-
duced by Roy ([Roy 1996]) and used by Morisio and Tsoukiàs ([Morisio and Tsoukiàs 1997]),
remains a methodological, but not an operational concept.

Up to now, the research effort has focused on the solution of specific soft-
ware evaluation problems ([Mosley 1992], [Poston and Sexton 1992], [Zahedi 1990],
[Kontio 1996], [LeBlank and Jelassi 1994]). Moreover, in general, no partic-
ular attention is paid to the context of the problem and to the impact this
context has on the evaluation approach, thus narrowing the scope of the
examined problem. In the field of software cost estimation, certain crite-
ria have been proposed for the evaluation of software cost models. Other
work ([Kitchenham 1987, Meskens 1994, Park and Lim, 1999]) is related to
the evaluation of a single software attribute (normally the quality or some
quality sub-attribute for a software product) or the evaluation of the result
of a software development activity ([Cardenas-Garcia and Zelkowitz 1991],
[Giakoumakis and Xylomenos 1996]). The paper is part of a large project
applying the Multiple Criteria Decision Aiding methodology in software eval-

2



uation (see [Morisio and Tsoukiàs 1997, Vlahavas et al. 1999, Stamelos et al. 2000,
Paschetta and Tsoukiàs, 2000, Blin and Tsoukiàs 2001]

The aim of this paper is to go deeper in analysing the contents of different
“problem situations” suggesting a basic classification of “software evaluation
problem situations”, mainly based on the experience of the first author in
the telecommunication industry. The reasons for such an analysis is twofold:
- to provide some hints to analysts involved in a software evaluation about
how their analysis would change assuming a specific problem situation;
- to provide a knowledge base for the construction of intelligent front end
tools in software evaluation support systems (of the type described for in-
stance in [Boloix and Robillard 1995] or in [Vlahavas et al. 1999, Stamelos et al. 2000]).

The main idea is that the same problem situation may contain different
possible problem formulations (for each of which different evaluation mod-
els can be conceived). An appropriate perception of the problem situation
may help in defining a suitable set of problem formulations among which
the client and/or the evaluator may choose the one better fitting his/her
necessities.

Similar concerns as ours are presented in [Basili 1995]. In that paper,
the Goal-Question-Metric (GQM) paradigm for software evaluation through
metrics is discussed. This approach focuses on the establishment of links
between the managerial and technical goals of a specific project and the
software measurements needed to provide the necessary information for the
project. These links are modelled by a directed graph, where the entry
points are goals, the intermediate nodes are questions and the exit points
are metrics. The GQM approach is well-suited for the generation of problem
descriptions and the respective constructive evaluation models. However,
evaluation problem descriptions are non-formal (templates are used) and the
focus is mainly on the necessary measurements rather than on the analysis
of the problem situation and the underlying problem element associations.

The paper is organised as follows. Section 2 presents a brief description
of the “problem situation” and “problem formulation” concepts as intro-
duced in the IUSWARE approach (for more details on the general deci-
sion support framework to which IUSWARE belongs the reader might see
[Tsoukiàs, 1997, Bouyssou et al., 2000], but also [Beroggi, 1999]). Section 3
presents a set of different “software evaluation problem situations” charac-
terised by the two concepts introduced in the previous section. Section 4
presents two real case studies in which different problem formulations have
been simulated during the decision process in order to clarify and better
understand the evaluation model under construction. Section 5 presents a
discussion of how the concepts introduced in the paper could be used oper-

3



ationally. Some future research directions are included in the conclusions.

2 Problem Situation and Problem Formulation

Following the IUSWARE (see [Morisio and Tsoukiàs 1997]) terminology, a
problem situation PS is a triplet 〈APS , OPS , RS〉 where:
APS : are the actors involved;
OPS : are the objects (problems, interests, opportunities, stakes) introduced
by each actor (for instance in buying a software an actor may be concerned
with the software maintenance, while another actor may be concerned by
the organisation changes the software may induce);
RS: are the resources allocated by each actor to each object concerning
him/her (as for instance knowledge, money, decision power etc.).

For a problem situation and for a given time and a given client (decision
maker), one or more problem formulations Γ can be defined, which are
triplets 〈AΓ, VΓ, ΠΓ〉, where:
AΓ is the set of potential alternatives (actions) to consider;
VΓ is the set of points of view or dimensions under which the evaluation has
to be done;
ΠΓ represents the scope of the evaluation expressed in a more or less formal
way (a problem statement). Typical problem statements include, but are
not limited to, choice, ranking, absolute evaluation, rejection, description
etc..

A problem formulation therefore translates the concerns expressed in the
problem situation model in a “formal” problem on which it is possible to
apply some techniques such as statistics, measurement, operational research,
simulation, etc.

Usually AΓ results from specific suggestions done by the client and/or
other actors. It may also result as a consequence of the actors’ concerns,
but in such a case the alternatives thus conceived are rather hypothetical
than real actions to be undertaken.

The actors’ concerns are usually transformed in VΓ. Such a process
(normally supported by an analyst) combines the intuitive knowledge of the
client (and/or the other actors) about the problem situation, the domain
knowledge of the actors involved in the decision process and the method-
ological knowledge of the analyst. Just to give an example in a software
acquisition situation, a concern of the client might be “cost reduction for

4



the company”; the analyst might derive and define with the client two sepa-
rable points of view: real costs and software productivity (estimated savings
due to the new software). Such points of view might be further analysed
in precise evaluation dimensions and criteria, but this is relevant to the
construction of an evaluation model.

Finally the problem statement belongs to the client. As soon as the set
AΓ is established the analyst should define with the client the use of such a
set and what it is expected as a result. The evaluation model will become
a resource for the client in the problem situation where such a model is
going to be used. It is “something” the client “needs” and is consequently
established.

Once a problem formulation is established an evaluation model M can
be built, consisting of a n-uple 〈A∗, D,M,E, G,U,R〉 where:
- A∗ are the alternatives to be evaluated under this specific model;
- D are the evaluation dimensions considered (usually an hierarchy);
- M and E are the available measures at the leaves of the dimensions’ hier-
archy (possibly at the intermediate nodes as well) and the associate scales
(metrics);
- G are the criteria defined in order to evaluate a decision about the set A∗;
- U is the uncertainty (if any) associated to the available information;
- R are the aggregation procedures used in order to aggregate the measures
(where necessary) or the preferences (where necessary).

Problem Situation, Problem Formulation and Evaluation Model can be
seen as results of a process (a decision process) at three different steps.
Very little is known however on how such a process is structured and whether
there are any invariants in this process. Such information could facilitate the
identification of specific support tools for analysts and/or decision makers
(clients) involved in decision processes. Our paper aims to contribute in
such a direction providing a (non exhaustive) list of problem situations and
relative problem formulations. The list is obtained on an empirical basis.

3 Problem Types

Typical situations of software evaluation include the following (the list not
being exhaustive):

• keep or change;

5



• make or buy;

• commercial product evaluation;

• tender evaluation;

• software certification;

• software process evaluation;

• software system design selection.

In order to characterise such different problems we will use the problem
situation concept and try to outline a problem formulation for each.

3.1 Keep or change

This situation arises when a particular software product is already in place
and, due to certain business needs, it is questioned whether it is still valid
or it should be replaced by a new product. Such business needs may be
caused from pressure exercised by a competitor, new technology or market
growth, and may lead to such requirements as additional complex function-
ality, management of new types of corporate data, interfaces with external
devices and systems, and increased capacity in terms of number of users,
volumes of customers, etc.

This kind of problem has a lot of similarities with the make-or-buy situ-
ation (see next sub-section) since, if the keep decision is taken, all necessary
additional features will be implemented on the existing product. This deci-
sion means that the ability to develop software of adequate quality exists in
the company. If the change decision is taken, interaction with one or more
external suppliers will inevitably start. A supplier will procure the new
software product and will provide support for the installation and training.
Most probably a new hardware platform will be also needed (or an upgrade
of the existing one). Another external supplier (could be the procurer) will
undertake the customisation and adaptation of the product in the company.
If the problem is very important to the company, in order to make the
correct decision, the help of a consultant may be needed.

Activities related to this problem include benchmarking of the existing
and new products and comparison of the former against the latter, as well as
evaluation of development against acquisition cost and cost/benefit analysis.

6



APS Is a set of actors mainly limited only to elements (people, depart-
ments) internal to the organisation interested in the software product.
External actors may be consultants.

OPS Are strategic goals of the organisation, power distribution in the or-
ganisation.

RS Are knowledge, information, time, power.

A Is a set of possible decisions: {keep, change, deeper analysis}. How-
ever, the change option may contain more than one alternative, if more
change scenarios are possible.

V The evaluation dimensions represent the various strategic goals of the
organisation affected by such decision and the various evolution sce-
narios of the organisation and its context. Different alternatives are
always evaluated as different scenarios.

Π The scope of the evaluation may be either a constructive description
of the different scenarios, or a choice among them.

3.2 Commercial product evaluation

In this typical case, a number of commercially available software products
must be evaluated. After the acquisition of one of them, customisation may
be necessary.

APS In this case, besides the internal actors (internal client, acquisition
manager, legal adviser, etc.), certain external actors may be present
such as consultants, potential suppliers, legal authorities (as in the
case of acquisitions in the public sector) and others.

OPS Besides any individual interests of the participating actors, a corpo-
rate objective should be identifiable (why and what to buy) and an
acquisition policy (vendor rating, co-makership, etc.).

RS An acquisition budget should be included among the other resources,
even if it is not sure whether an acquisition will effectively occur.

A Is a set of offers concerning existing commercial software products,
received on a more or less formal basis (call for offers or informal
contacts with suppliers). Offer combinations may also be possible.

7



V The evaluation dimensions may include specifically costs, quality, com-
pliance to international standards, adequacy to the acquisition policy,
etc.

Π The scope of the evaluation could be one among the following:
- choose one of the products (unique important acquisition);
- rank the products (repetitive acquisition) in order to combine them
with suppliers (acquisition policy);
- absolute evaluation in order to find the “good” products so as to
enable further negotiations on them;
- absolute evaluation in order to reject the “bad” products before car-
rying a deeper analysis;
- synthetic description of existing products.

3.3 Make or buy

This situation arises when a particular software product is required due
to the business needs of a company and a decision must be made: should
the product be acquired from a choice available in the market or should the
product be developed under the control of the company? If the latter path is
selected, then should the product be developed internally (assuming that the
company possesses the necessary structure, e.g., a Design and Development
group under an Information Systems Department) or should it be developed
by an external software supplier? In both cases, the software might be
developed starting from scratch or (if possible) it could be built based on an
existing similar product or development platform. Strategic aspects are the
availability of good (reliable, cheap, financially healthy) software suppliers,
the existence of a supplier that has already worked for the company (with
known quality, cost, respect of delivery schedules, know-how, available man-
power), the will to start or continue autonomous software development.

APS Is a set of actors mainly limited only to elements (people, departments)
internal to the organisation interested in the software product. Exter-
nal actors may be consultants or potential suppliers in the case where
some buying scenarios have to be simulated.

OPS Are strategic issues of the organisation, power distribution in the or-
ganisation.

RS Are knowledge, information, time, power.

8



A Is a set of possible decisions: {make alone, make outside, buy, deeper
analysis, abandon}. It should be noticed that in this case the set of
alternatives may be fragmented, in the sense that the decision maker
may combine the acquisition of off-the-shelf software components with
the development of ad-hoc ones.

V The evaluation dimensions represent the various strategic goals of the
organisation affected by such decision and the various evolution sce-
narios of the organisation and its context. Moreover some financial
dimension may emerge easily apart from some dimensions concern-
ing timing and vendor rating. Different alternatives are evaluated as
different scenarios.

Π The scope of the evaluation may be either a synthetic description of
the different scenarios, or a choice among them.

3.4 Tender evaluation

Such a situation occurs mainly after an “external buy” decision is under-
taken. Various suppliers are contacted in a formal way and offers are pro-
vided by them. We will assume that these offers concern software which has
still to be written. They are projects for the creation of the desired software
and not existing products.

APS Among the internal actors may be found the internal client (internal
user who needs the software and indicated the requirements list), the
evaluation team, the technical and the legal staff. The various tenders
have also to be considered.

OPS Among the interests and problems we have to include: the software
specifications to be used, the call for tenders and the acquisition policy.

RS The acquisition budget (if any) should be included among the re-
sources.

A Is a set of offers received.

V The evaluation dimensions are similar to the commercial product eval-
uation problem. However, since we have assumed that the offers con-
cern non existing products (on which it is possible to make tests and
measures), more qualitative dimensions may arise. Of course, the eval-
uation of the tender itself is a very important dimension. Moreover,

9



the evaluation of the proposed production process and the ability to
monitor it should be taken into account.

Π Usually the scope is the selection of one of the tenders. Alternatively,
it could be an absolute evaluation either in order to choose the “good”
offers for further negotiations, or to reject the “bad” ones before the
selection of a tender is decided.

3.5 Software certification

This is typically an activity carried on by a testing laboratory either spe-
cialised in specific application software, or of general purpose (i.e., dealing
with commercial products).

APS The external actors include the software producers, national and/or
international standard organisations and possibly the demander of the
certification (a producer or a consumer or even the specialised press).

OPS The set includes, among others, the different international quality
standards, the certification process, the legitimation offered and de-
manded, the product(s) to be certified.

RS Knowledge, certification authority, time should be included among the
resources.

A Is a set of products to be certified.

V The evaluation dimensions constitute an hierarchy of quality dimen-
sions concerning either the software products, or the software produc-
tion process itself.

Π Usually, the scope is an absolute evaluation with the objective to ver-
ify that a product is compliant (and to what extend) to a particular
standard. In the case of relative comparison of widely spread commer-
cial products (for instance in the case of tests published by specialised
magazines), the scope may be a ranking.

3.6 Software Process Evaluation

Software products are manufactured through software development pro-
cesses. In general, a software process consists of a software life cycle model
and a methodology (a set of rules, techniques, tools) to build software. Var-
ious such processes have been proposed and used in practice by software

10



developers. Moreover, international standards for software processes are
already becoming a reality. Evaluation of software processes is a type of
problem that occurs frequently. In fact, software process evaluation is itself
a typology of evaluation problems:

• a software manufacturer may wish to “design, adopt or adopt and
tailor” a process, i.e., ask his research and development team to design
their own process, adopt an already existing process as it is or adopt
and customise one, respectively.

• a software manufacturer may wish to “keep, improve or change” his
process (maintain the existing process, improve it or change it com-
pletely)

• a software manufacturer may wish to choose among n different alterna-
tive processes, for instance after having opted for the “adopt” option
of the first case

APS In this case, the participating actors are all internal to the manufac-
turer. External actors may be international standard organisations
and consultants that provide assistance for the acquisition of an exist-
ing process.

OPS The set includes productivity and product quality of the manufacturer
in the context of his(her) strategic issues concerning his(her) business.
Moreover, the various existing processes may be considered.

RS Cost, time and various issues related to the ability to manage the
transition to the new process.

A Is a set of possible decisions of the type: keep, change, adopt, adopt
and tailor) or the different processes to adopt.

V The evaluation dimensions include cost (process set-up cost, invest-
ment in hw/sw infrastructure and tools and people training, process
application cost), quality of delivered products, product development
time, compliance to standards and/or target user requirements. Pro-
cess learning curves should be taken into account.

Π The scope of the evaluation is the selection among one of the possible
software development processes.

11



3.7 Software System Design Selection

The design phase of a software system development cycle produces a de-
sign solution for the problem stated during the user requirements definition
phase. Typically, the design phase produces two main results, namely the
architectural design and the detailed design. In both cases, often more than
one alternatives are present and a decision must be taken.

Architectural solutions are differentiated through implementation of new
or modification of existing system layers (user interfaces, processing layers,
data layers, interfaces between systems). Such actions include allocation
and/or implementation of functionalities in different systems, creation or
modification of data flows between systems, data sharing between systems,
etc. Infrastructure layers are also considered (data networks, operating sys-
tems, protocols, databases, etc.). Different information system architectures
may vary in terms of cost (development, operation, maintenance costs), time
(time to develop, operate, maintain), quality (e.g., system availability) and
standards.

The detailed design phase follows the architectural design and produces
a system view that, typically, consists of hierarchies of design units that pass
parameters to each other, access stored data and implement the requested
functions. Different detailed designs for the same architectural solution may
differ in terms of development cost, development time, quality (e.g., coupling
and cohesion in structured design) and previously set design standards (that
may define various design limitations).

APS Internal actors are the members of an architecture/design group of a
software producer. External actors may be the people responsible for
the architecture development of the client’s information system and
the adherence to design standards.

OPS Two main problems have to be included: the functional and non-
functional user requirements to be respected and the design constraints
(deriving from standards, from the technical environment, etc.).

RS The available budget for system development should be included among
the resources, besides the availability of necessary tools (e.g., CASE
tools).

A Is a set of identified design solutions. However, in the case of archi-
tectural design, we may emphasise that such a set results from the
combination of different options concerning each architectural layer.

12



We face a problem known as ”fragmented alternatives evaluation” (see
[Vincke 1992]) as the evaluation of each combination is not simply the
sum of the options’ values included (e.g., operating system X is consid-
ered better than operating system Y, data base management system
Z is considered better than data base management system W, but the
combination of X and Z may not be the best solution).

V The evaluation dimensions are similar to the commercial products eval-
uation. However, since the offers are not products (on which it is pos-
sible to make tests and measures), more qualitative dimensions may
arise.

Π The scope is a choice, since, normally, only one design solution is
adopted.

The problem types presented, although covering a large range of possible
situations, do not constitute an exhaustive list. Moreover, it is possible
to find combined problem situations such as, for instance, combinations of
the “keep or change” and the “make or buy” situation or the “software
process evaluation” and the “commercial product evaluation” (tools for the
support of specific process activities may have to be acquired following the
selection of a process). However, it is clear that in all cases a specific problem
formulation has to be defined, on the basis of which it will be possible to
discuss with the client (decision maker) and reach his(her) consensus (besides
the other actors involved).

4 Two real case studies

In the following we present two real case studies dealing with the evaluation,
in the first case, of billing systems for a mobile telecommunication operator
and, in the second case, of geographical information systems for a large
hi-tech company. In both cases we will present the problem formulation
and structuring part of the decision aiding process. We will therefore try
to present how different problem formulations will provide quite different
evaluation models which could lead to different final decision and selection.
For such a reason we will simulate different problem formulations and discuss
the resulting evaluation models. We may emphasise that such simulations
have been partially conducted with the clients of the two studies in order to
convince them about the suitability of the problem formulation adopted.

13



4.1 Selection of a Billing System

A new mobile telecommunication operator has been established in a small,
but highly competitive European market. One of the basic operational tools
of such companies is their billing system (BS). This system allows both
a structured accountancy of the traffic and a flexible policy towards the
existing and potential clients (enabling for instance a variety of services
over the basic ones, the creation of packages of services oriented to specific
market targets, the monitoring of each subscriber’s traffic).

Some years after the establishment of the company, the necessity to
upgrade or to substitute the existing billing system became evident to the
management. A decision process has therefore been triggered, and we have
been asked to provide decision support. The following problem situation
holds:

• The actors involved were:
- the acquisition (A) manager;
- the information systems (IS) manager;
- the marketing and sales (MS) manager;
- the software suppliers;
- the IS consultants.

• The objects involved in the process were:
- the market share of the company;
- the policy towards the suppliers;
- the company’s internal organisation;
- the billing system itself.

• The resources implied in the process included the necessary funds for
the billing system, the knowledge about billing systems and the rela-
tions with the software suppliers. The available time was very short,
since all decisions had to be taken in the less possible time due to the
extremely competitive environment.

The strategic decision with which the management was faced consisted
of choosing one among the following options: upgrade the existing BS, buy
and customise an existing BS, buy a BS created ad-hoc for the company by
an external supplier (bespoke system), develop an ad-hoc BS in collaboration
with an external supplier. However, the management was not able to choose
an option without analysing what the billing system would be eventually in
all such options. We therefore provided three problem formulations (the

14



fourth option being the upgrade of the existing BS, was considered familiar)
which we will call:
- B: buy (and customise an existing BS);
- M: make (externally a new ad-hoc BS);
- D: develop (a new ad-hoc BS in collaboration with a supplier).

In all the three cases, a call for tenders has been provided. The three
problem formulations become:

1. ΓB =< AB, VB,ΠB > where:

AB: offers proposed by specific suppliers of existing BS accompanied
by a proposal for the customisation phase.

VB: points of view of the evaluation:
- costs (including training, insurance fees and payment condi-
tions);
- quality (based on ISO9126 and benchmarks on the proposed
product);
- timing (of delivery, test and installation);
- installed base of the proposed BS (including performance re-
ports on already installed BS of the same type).

ΠB: ranking of the offers in order to enable further negotiations on
the price.

2. ΓM =< AM , VM , ΠM > where:

AM : offers proposed by specific software developers with a different
degree of experience in BS development.

VM : points of view of the evaluation:
- costs (including training, insurance fees and payment condi-
tions);
- requirements satisfaction (client driven requirements);
- timing (of delivery, test and installation);
- type of the supplier - developer (taking into account the com-
pany’s supplying policy);
- consequences on the company’s internal organisation (including
project management).

ΠM : selection of a supplier - developer with whom to establish a sup-
plying process (consisting of benchmarks, tests, training and de-
livery).

15



3. ΓD =< AD, VD, ΠD > where:

AD: set of suppliers with whom it could be possible to co-develop a
new BS.

VD: points of view of the evaluation:
- costs (distinguished in internal and external costs);
- requirements analysis and satisfaction;
- timing (including the time in which the product could be ready
for the market);
- type of the supplier - developer (including company’s supplying
policy);
- consequences on the company’s internal organisation (including
project management);
- benefits for the company by entering the market of billing sys-
tems as a supplier itself.

ΠD: selection of a co-developer to establish a co-makership policy and
therefore a long-term collaboration.

The client finally chose the first problem formulation, implicitly accept-
ing a pure buying policy with respect to the basic strategic choice. We
are not going to explain such a choice. We would like to emphasise two
observations:

1. From a general point of view, each problem formulation may gener-
ate a quite different evaluation model. The set of potential actions
is different (existing BS in ΓB, offers of non existing software in ΓM ,
co-developing suppliers in ΓD). The set of criteria may also be quite
different (it is sufficient to notice that the “make” and the “devel-
opment” option requires to consider as a criterion the implication of
the information systems department in the development process, a
fact that may alter the distribution of resources and responsibilities in
the company’s organisation or that the development option requires
to evaluate the eventual benefits of “selling” the new billing system).
The relative importance of the criteria may also be different, while
the aggregation procedures in each model have to be adapted to the
different problem statements and the different nature of the criteria.

2. From a software evaluation point of view, the different problem formu-
lations lead to different models as well. In the ΓB case, existing soft-
ware products must be compared (even if the one chosen will be cus-
tomised), a fact that allows the use of existing models (as the ISO9126

16



standard). Benchmark tests must be also performed. On the other
hand, in the ΓM case, the software artifact does not exist yet. The
attention of the evaluation will shift to the requirements satisfaction
during the software development, and therefore some quality require-
ments for the supplier have to be considered a priori. Finally, in the
ΓD case, the evaluation consists of the comparison of possible partners
for software development, implying the comparison of the compliance
of the partners software development process with the company’s stan-
dards (assuming that they exist).

Moreover, the priorities among the different criteria and attributes
will change from one problem formulation to another, independently
of the uncertainty associated to the available or required information.
Finally, in order to aggregate the different software measurements, dif-
ferent necessities arise from one problem formulation to another (for
instance, in the ΓB case, measurements may correspond to observa-
tions and therefore a functional aggregation can be allowed, while in
the ΓM and in the ΓD cases, the measurements are predictions or
estimations based on expert opinion, a fact that requires a different
treatment.

4.2 Selection of a Geographical Information System

A large hi-tech company providing a network based service has decided to
buy a geographical information system to store all data and knowledge con-
cerning its network and related services. The acquisition consists of buying
a number of licenses (more than 100) and the related workstation equip-
ment. Actually, the desirable software product is a customised version of a
GIS system, including data base facilities and other options (some of them
mandatory). For this purpose a committee has been established, including
the acquisition manager, the information systems manager, a lawyer (due to
the importance of the allocated budget) and a delegate of the CEO (due to
the strategic importance of the project). The information systems manager
has been charged to provide information on the existing market products
and, in his turn, he charged his staff to perform an analysis among the ex-
isting possibilities. However, it soon appeared that, on the one hand, the
number of potential candidate products was incredibly high and that, on
the other hand, the customisation needs were such that a deeper investi-
gation was necessary. A call for tenders was arranged, to which a number
of suppliers answered. At this point, a selection problem was expressed.
Again we will not present in details the evaluation (for such details see

17



[Paschetta and Tsoukiàs, 2000]), but stress our attention on the decision
aiding process.

The problem situation appeared as follows.

1. The actors involved in the process were:
- the information systems manager;
- the acquisition manager;
- the technical staff supporting the IS manager;
- external consultants;
- the suppliers.

2. The objects of the process were:
- the technological expansion of the company;
- the acquisition budget of the company;
- the legitimation of the technical staff;
- the GIS products present in the market;
- the internal organisation of the company.

3. The resources implied in the process concerned mainly the knowledge
about GIS and the authority of the involved managers. The time was
relatively relaxed although a decision was expected in a year time.

Two different problem formulations have been considered. In the first
case, the problem consists of choosing directly a supplier to procure the
product and customise it. In the second case, the problem consists of pro-
viding a technical evaluation of each offer. The two problem formulations
become:

1. ΓC =< AC , VC , ΠC > where:

AC : offers proposed by specific suppliers of existing GIS products,
accompanied by a proposal for the customisation phase.

VC : points of view of the evaluation:
- the cost of each offer;
- the “quality” of each offer;
- the satisfaction of internal and external norms by each offer;

ΠC : selection of a supplier.

2. ΓS =< AS , VS , ΠS > where:

AS : offers proposed by specific suppliers of existing GIS products ac-
companied by a proposal for the customisation phase.

18



VS : points of view of the evaluation:
- different quality dimensions (requirements satisfaction);
- the results of different tests on the proposed software;
- the “quality of the supplier”;

ΠS : associate each offer to a profile on an ordinal scale of quality.

The reader may notice that the problem formulation ΓS can be consid-
ered as part of the problem formulation ΓC since it concerns one of the points
of view of the latter, i.e., ”quality”. Actually, this is what happened; the
technical staff worked on the problem formulation ΓS and the results have
been used by the IS manager in the meeting of the evaluation committee
where the problem formulation ΓC was adopted. Nevertheless, what we are
interested in, is to highlight the fact that, as far as software evaluation is
concerned, the two problem formulations could lead to different evaluation
models and more precisely that the point of view on quality in VC does not
necessarily coincide with the result of ΓS . It was only a specific choice of
the evaluators to make them coincide.

In fact the first attempt to model quality was in the VC frame (the
distinction among the two problem formulations was not yet clear). The
ISO9126 standard was adopted in order to obtain a ranking of the offers
on the six basic criteria (indicated by ISO9126) and then get a final overall
ranking. Such an approach was not satisfactory for two reasons:

1. the six basic criteria of the ISO9126 standard were not well adapted to
the particular case of the customised GIS offers (for instance the pur-
pose of the GIS to buy was such that some criteria were meaningless,
while other important features were neglected);

2. the type of comparisons provided using the ISO9126 results in a rank-
ing which is a relative evaluation of the offers and not an absolute one
(in the sense that we obtain a is better than b, but not that a is good
and b is bad).

It was only under the problem formulation ΓS that what the technical
staff was looking for appeared in a clear way:

• Make explicit the body of knowledge that the staff had concerning GIS
technology, through an hierarchy of attributes, i.e., those dimensions
with which they were comfortable and able to provide some measure-
ment (although often just ordinal) with a certain confidence.

19



• Manage to define a global scale of quality (although ordinal) on which
it was possible to give an absolute evaluation of each offer.

Last but not least, the change of perspective in the two problem formu-
lations led to the use of different aggregation techniques. In the ΓS case, it
was necessary to compare each offer to certain external profiles (the values
on the ordinal scales) and therefore a sorting procedure was adopted to each
level of the hierarchy of attributes. In the ΓC case, the acquisition man-
ager requested the establishment of trade-offs between cost and quality and
therefore a multiattribute value function was proposed (for details about the
MCDA methodology, see [Vincke 1992], [Roy 1996]).

5 Discussion

The purpose of this study was to establish whether it could be possible to
use the problem typology as a basis for the construction of Intelligent Front
Ends (IFEs) in decision support systems used in software evaluation prob-
lem situations (see [Vlahavas et al. 1999, Stamelos et al. 2000]). The idea
was that such IFEs should be able to provide the user a basis for construct-
ing her/his evaluation model though a guided questioning/answering on a
number of features characterising her/his problem.

Such DSSs contain pre-defined evaluation modules so that as soon as
the user identifies her/himself in one of the above mentioned problem for-
mulations a number of issues of the evaluation model are already established
(such as some of the evaluation dimensions or criteria, a set of aggregation
procedures etc.). For example, consider a problem formulation that falls in
the Make or Buy type, which involves cost as an evaluation dimension. A
DSS module would propose a possible composition of cost into cost for ac-
quisition, customisation, training, operation and maintenance. Further on
the module would propose to the user an approach for the difficult task of
estimating the cost for customisation. Such an approach might be based on
the characterisation and sizing of the software through Function Point Anal-
ysis and, subsequently, through the comparison with other similar historical
cases for which the cost is already known ([Shepperd and Schofield, 1997]).
In this way the user is guided to cope with one important evaluation dimen-
sion in a structured and informed way.

However, the experimental validation of such DSSs (see [Vlahavas et al. 1999,
Stamelos et al. 2000, Paschetta and Tsoukiàs, 2000]) showed that, although
the users appreciate the existence of such pre-defined modules, they rarely
use them as such. It seems that they are used more in order to understand

20



a number of issues (usually of quantitative nature) than as real evaluation
models. Users try to define a definitely custom evaluation model.

From such an experience and the two case studies, it is possible to get
two empirical results.

1. Trying to apply pre-defined software evaluation models on such general
issues as software quality may be a wrong approach. The more general
the characteristic of the software to evaluate the more, it is context
dependent, in the sense that the problem formulation may produce
different elements in the evaluation model. To take just as an example
the concept of software quality, we claim that it could be a useless
effort to define a unique model of quality. This is not to say that
quality standards are useless, but to argue that they should be used
as guidelines and as a basis for customisation. It is clear that the
problem situation and the problem formulation adopted will provide
the specific contents for the quality model.

Further on, we want to stress that the definition of a quality model has
to include objects which are often neglected such as the aggregation
procedures. The choice of such procedures is very important, they are
part of the model and their choice has to be as accurate as for the rest.
In fact quality models are evaluation models and a rigourous definition
of all their components is necessary.

2. We claim that an accurate definition of the problem situation may
provide the software engineer involved in software evaluation the nec-
essary elements by which (s)he may be able to build useful and reliable
evaluation models. In this process an important aspect is the genera-
tion of a set of realistic problem formulations on which the consensus
of the client has to be reached. Evaluating a software can be a resource
consuming activity and therefore must have a clear goal and purpose.

However, an important issue remains open. Is it possible to give a more
formal definition of the software evaluation process? At a first glance it
seems that the identification of the problem situation and the construction
of the problem formulation are activities where more craft is requested than
formalisms. This is less true in the construction of the evaluation model
since in this case the axioms of measurement theory, preference modelling
and aggregation, criteria coherence, alternative independence, etc. are ap-
plicable, which provide the basis for a “correct” and “meaningful” model.
But what about the first two activities?

21



Although an exhaustive answer is impossible in the frame of this paper,
we will try to outline some elements at least as far as the construction of
the problem formulation is concerned, given an identified problem situation.
The reader is reminded that a problem formulation Γ is a triplet 〈A, V, Π〉
where A is the set of alternatives, V is the set of points of view and Π is a
problem statement (the scope of the evaluation).

• Construction of A. Normally, in order to build the set of alternatives,
we have to identify among the participating actors APS the actors
having an active role, besides the power (or the authorisation) to sug-
gest solutions. They will indicate the frame in which it is possible to
establish the set of feasible solutions. Going back to the GIS case, it
is easy to observe that in order to establish the set A a call for tenders
has been realised, procedure which actually specified in this context
the above suggestion.

• Construction of V . Such a set can be constructed considering the com-
bination of APS and OPS . The latter can be viewed as the concerns
of the participating actors. Of course a problem formulation cannot
represent all concerns of all actors and a choice has to be done. Once
the actor(s), whose preferences and values are going to be considered,
are chosen, the objects (the concerns) associated to them will provide
the basis for the construction of V . Such a set has to represent in fact
the points of view of the “decision maker” or “client”. However, it may
happen that concerns belonging to other actors may participate in the
construction of the set V in order to prevent conflicts and facilitate
further negotiations in a later stage of the decision process.

• Construction of Π. Here all elements of PS are involved. First of all,
because the problem statement has to be associated to the actor(s)
qualified as decision maker or client. Second, the concerns of such
actors, besides helping us in establishing the set V , will help us also in
the definition of Π. Third, because the resources allocated by the client
to his/her concerns will affect such a definition. More specifically we
can observe that the different concerns of the client can be associated
to more general (or strategic) concerns up to a unique “problem” which
will provide the problem statement requested.

The previous informal description is far from providing a complete pro-
cedure for the construction of Γ. However, we believe that it contains the
essential elements for such a procedure.

22



6 Conclusion

In this paper, we presented a (partial) list of software evaluation problem
situations identified on an empirical basis, using the concepts of problem
situation and problem formulation presented in the IUSWARE approach.

A primary objective of such a description was to highlight the great
variety of situations under which a software evaluation may occur and how
completely different evaluation models can be defined. In order to provide
empirical evidence to our claim, two real case studies are briefly reported,
illustrating such differences.

Further, we emphasised the lack of any formal aid in identifying the
problem situation and the associated problem formulations. Although it is
not possible to provide a complete answer to such a problem, we introduced
some elements (as essential components of any procedure that may be es-
tablished). This is also one of our main research directions for the future.
Another interesting research issue are the side effects of evolutive choice sets,
i.e., sets of alternatives that change dynamically during the decision making
process.

A more general problem concerns the fusion of different knowledge basis
for the construction of the problem formulation and the relevant evaluation
model. As already mentioned in the paper at least three different sources of
knowledge are combined: the intuitive knowledge of the actors concerned,
the domain knowledge on the problem situation and the analyst’s method-
ological knowledge. The study of the formal properties of such knowledge
and the precise way by which it might be possible to combine them repre-
sents a future research challenge.

References

[Basili 1995] Basili V.R., “Applying the GQM paradigm in the experience
factory”, in N. Fenton, R. Whitty and Y. Iizuka eds., Software Qual-
ity Assurance and Measurement, Thomson Computer Press, London,
1995, 23-37.

[Beroggi, 1999] Beroggi G., Decision Modeling in Policy Management. An
Introduction to the Analytic Concepts, Kluwer Academic, Dordrecht,
1999.

23



[Blin and Tsoukiàs 2001] Blin M-J., Tsoukiàs A., “Multicriteria Methodol-
ogy Contribution to Software Quality Evaluations”, Software Quality
Journal, vol. 9, 113 - 132, 2001.

[Boloix and Robillard 1995] Boloix G., Robillard N.P., “A Software Evalu-
ation Framework”, IEEE Computer, vol. 28, (1995) 17-26.

[Bouyssou et al., 2000] Bouyssou D., Marchant Th., Perny P., Pirlot M.,
Tsoukiàs A., Vincke Ph., Evaluation and Decision Models: a critical
perspective, Kluwer Academic, Dordrecht, 2000.

[Cardenas-Garcia and Zelkowitz 1991] Cardenas-Garcia S., Zelkowitz V.,
“A management tool for evaluation of software designs”, IEEE
Transactions on Software Engineering, vol. 17, (1991), 961-971.

[Giakoumakis and Xylomenos 1996] Giakoumakis E.A., Xylomenos G.,
“Evaluation and selection criteria for software requirements speci-
fication standards”, Software Engineering Journal, (1996), vol. 11,
307-319.

[ISO 9126] ISO/IEC 9126-1, Information Technology - Software quality
characteristics and sub-characteristics (1996).

[Kitchenham 1987] Kitchenham B., “Towards a constructive quality model.
Part 1: Software quality modeling, measurement and prediction”,
Software Engineering Journal, (1987), 105 - 112.

[Kontio 1996] Kontio, A., “A Case Study in Applying a Systematic Method
for COTS Selection”, Proceedings of the IEEE International Confer-
ence on Software Engineering, (1996), 201 - 209.

[LeBlank and Jelassi 1994] Le Blank L., Jelassi T., “An empirical assess-
ment of choice models for software selection: a comparison of the
LWA and MAUT techniques”, Revue des systèmes de decision, vol.3,
(1994), 115-126.

[Meskens 1994] Meskens N., “A knowledge-based system for measuring the
quality of existing software”, Revue des systèmes de decision, vol.3,
(1994), 201-220.

[Morisio and Tsoukiàs 1997] Morisio M. and Tsoukiàs A., “IusWare, A
methodology for the evaluation and selection of software products”,
IEE Proceedings on Software Engineering, vol. 144, (1997), 162-174.

24



[Mosley 1992] Mosley V., “How to assess tools efficiently and quantitavely”,
IEEE-Software, (1992), vol. 9, 29-32.

[Park and Lim, 1999] Park K., Lim C., “A Structured Methodology for
Comparative Evaluation of User Interface Designs Using Usabil-
ity Criteria and Measures”, International Journal of Industrial Er-
gonomics, (1999), vol. 23, 379-389.

[Paschetta and Tsoukiàs, 2000] Paschetta E., Tsoukiàs A., “A Real World
MCDA Application: Evaluating Software”, Journal of Multi-
Criteria Decision Analysis, vol. 9, (2000), 205-226.

[Poston and Sexton 1992] Poston R.M., Sexton M.P., “Evaluating and se-
lecting testing tools”, IEEE Software, (1992), vol. 9, 33-42.

[Roy 1996] Roy B., Multi-criteria Methodology for Decision Aiding, Kluwer
Academic, Dordrecht, 1996.

[Shepperd and Schofield, 1997] Shepperd M.J., Schofield C., “Estimating
Software Project Effort Using Analogies”, IEEE Transactions on
Software Engineering, (1997), vol. 23, 736-743.

[Stamelos et al. 2000] Stamelos I., Vlahavas I., Refanidis I., Tsoukiàs A.,
Knowledge Based Evaluation of Software Systems: a case study, n
Information and Software Technology, vol. 42, (2000), 333-345.

[Tsoukiàs, 1997] Tsoukiàs A., “Sur la généralisation des concepts de con-
cordance et discordance en aide multicritr̀e à la décision”, Mémoire
HDR, Université Paris Dauphine, 1997, appeared also as Document
du LAMSADE n. 117.

[Vincke 1992] Vincke Ph., Multicriteria Decision Aid, J. Wiley, New York,
1992.

[Vlahavas et al. 1999] Vlahavas I., Stamelos I., Refanidis I., Tsoukiàs A.,
“ESSE: An Expert System for Software Evaluation”, Knowledge
Based Systems, vol. 12, (1999), 183-197.

[Zahedi 1990] Zahedi F., “A method for quantitative evaluation of expert
systems”, European Journal of Operational Research, vol. 48, (1990),
136-147.

25


