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Abstract

This paper presents a fuzzy logic useful for

preference modelling from possibly incom-

plete or conicting sources of information.

This logic is based on the standard pred-

icate language with a semantic admitting

an in�nite number of truth values de�ned

as convex combinations of reference values

ftrue; false; contradictory; unknowng. This
logic is introduced as a fuzzy extension of Bel-

nap's four valued logic and its speci�c interest

for multidimensional preference modelling is

discussed.

Introduction

You do not know who Anaxagoras is. But someone

told you that he is intelligent. Therefore if they ask

you if Anaxagoras is intelligent you may answer \yes"

(being con�dent to the one who told you that ...). On

the contrary someone else told you that Anaxagoras is

not intelligent. Your answer now should be \no" (same

con�dence of course). But suppose you have been told

both that Anaxagoras is intelligent and that he is not

intelligent (two equally reliable information sources).

Then your answer will be \yes" and \no", \perhaps"

or something like this. Finally, if no one tolds you

anything about Anaxagoras, your answer should be \I

do not know".

This small example represents a well known prob-

lem used by Belnap in order to introduce his four-

valued paraconsistent logic (see [2]). In this logic,

the four possible interpretations of an atomic formula

are \true", \false", \contradictory", \unknown", cor-

responding to the four situations listed in the previous

example. However, there are some problems that may

be present and which we want to discuss here. Com-

ing back to the initial example, the following questions

can be raised:

1. How con�dent are the two potentially conicting

sources of information? When it is possible to es-

tablish a degree of \con�dence" in the two sources

of information, how can we \measure" the credi-

bility of the sentence \Anaxagoras is (not) intel-

ligent"?

2. What does the statement\Anaxagoras is (not) in-

telligent" really mean? Intelligence is not a clear

and well established attribute. It is easier to state

that someone is more or less intelligent or that he

is intelligent to a certain degree. Under this per-

spective \Anaxagoras is (not) intelligent" is not a

crisp sentence since the predicate intelligent(x)

is ill-de�ned. When it is possible to establish

a degree of \intensity" or \importance" of the

positive and negative arguments related to this

statement, how can we \measure" the intensity

to which \Anaxagoras is (not) intelligent"?

In the �rst case the problem of attaching an uncer-

tainty distribution to the sentence \Anaxagoras is

(not) intelligent" is addressed. In the second case a

continuous modulation of the predicate intelligent(x)

has to be established. In both the cases it seems nec-

essary to introduce a continuous extension of the four

crisp cases introduced by Belnap. In this paper, we

mainly focus on the second case, trying to de�ne the

intensity of truth, contradiction, unknown and falsity

in each logical formula.

This type of question is of particular interest for pref-

erence modelling in real decision problems where par-

tial information and conicting opinions are always

present. This statement has led many authors to ex-

tend the standard predicate logic used for preference

modelling.

On the one hand, the usefulness of four valued logics

for preference modelling in the context of multicriteria

decision making is well illustrated in [13] and [14]. In

this context, the natural state of the overall preference

aPb may be \unknown" (lack of information) or \con-



tradictory" (conicting criteria) as well as \true" or

\false".

On the other hand, the interest of considering a contin-

uous extension of the standard binary predicate logic

for preference modelling has been illustrated by many

authors (see e.g. [7], [8], [12], [6], [3], [11]).

Fuzzy preference relations allow either the represen-

tation of uncertainty about the preferences between

alternatives whose consequences are ill-known, or the

representation of intensity of preferences between al-

ternatives whose consequence are perfectly known. In

the �rst case, fuzziness of preference reects the un-

certainty in a statement that would be crisp with a

complete information. In the second case, fuzziness

reects the graduality of preference and allow contin-

uous transitions from non-preference to preference sit-

uations.

In this paper, we investigate the possibilities provided

by the merging of these two parallel extensions. The

aim of the paper is to de�ne a fuzzy logic for prefer-

ence modelling where truth values are fuzzy subsets

of ftrue; false; unknown; contradictoryg. In the �rst

part of this paper, we recall the semantic of Belnap's

four-valued logic (x 1), introduce the fuzzy extension

of this semantic (x 2) for atomic formulae, and discuss

the extension to more complex formulae (x 3).

Then we provide illustrations of the use of such ex-

tended logics for preference modelling in decision prob-

lems with multiple criteria or multiple judges (x 4).

1 Semantic of the four-valued logic

The basic idea in the paraconsistent approach is to

distinguish between negation and complement in order

to avoid inconsistency of the sentence �^:�. From a

set theory point of view that means the extension of

a predicate (in a speci�c domain) and the extension

of its negation do not form a partition (of the speci�c

domain), but have a non empty intersection and their

union is a proper subset of the domain.

More formally, suppose that L is a �rst order language.

A similarity type � is a �nite set of predicate constants

S where each S has an arity ns. Relative to a given

similarity type �, S(x1; :::; xm) is an atomic formula

i� x1; :::; xm are individual variables, S 2 � and ns =

m. Formula will be denoted by letters �; �; ; Æ; :::. A

structure, for similarity type �, consists of a non empty

domain X of tuples, and for each predicate symbol

S 2 � an ordered pair hS+; S�i of sets of ns-tuples

from X . Intuitively S+ represents the models of the

predicate S and S� the models of :S, the negation

of S. Within X , the complement of a subset S of X

is denoted � S = X n S. Hence, the ordered pairs

h(:S)+; (:S)�i and h(� S)+; (� S)�i are de�ned by:

(:S)+ = S�; (:S)� = S+ (1)

(� S)+ = � (S+); (� S)� = � (S�) (2)

Following the paraconsistent approach we do not im-

pose that S+ and S� form a partition of X . In the

general case indeed, S� 6= � (S+). Given a m-tuple

x = (x1; :::; xm) a substitution � is a mapping from

the set of variables to the set X . We denote the re-

sulting instance as �(x) = (�(x1); :::; �(xm)). We are

able now to introduce two membership functions:

�S+ : X ! [0; 1] �S� : X ! [0; 1]

a 7! �S+(a) a 7! �S�(a)

where a = �(x) is an instance of the x tuple. These

functions evaluate the degree of membership of the

instance a to the sets S+ and S� respectively. Intu-

itively, quantities �S+(a) and �S�(a) reect the degree

to which we believe in S(a) and not S(a) respectively.

For this reason, we use also the following notation:

�S+(a) = B(S(a)) �S�(a) = B(:S(a))

where :S(a) represents the negation of S(a).

In Belnap's logic, S+ and S� are crisp subsets of X

and B(S(a)) equals 0 or 1, as well as B(:S(a)). In

this case the domain X is partitioned in four sets (with

respect to the predicate S) which are:

St = S+ \ � (S�) (3)

Sk = S+ \ S� (4)

Su = � (S+) \ � (S�) (5)

Sf = � (S+) \ S� (6)

Hence we get the following relations:

St [ Sk = S+ (7)

Sf [ Sk = S� (8)

St [ Su = � (S�) (9)

Sf [ Su = � (S+) (10)

St \ Sk = ; (11)

St \ Su = ; (12)

St \ Sf = ; (13)

Sf \ Sk = ; (14)

Sf \ Su = ; (15)

Sk \ Su = ; (16)

St [ Sk [ Su [ Sf = X (17)

and from equations (1{6) we get:

St = (:S)f = (� S)f (18)



Sk = (:S)k = (� S)u (19)

Su = (:S)u = (� S)k (20)

Sf = (:S)t = (� S)t (21)

2 Continuous extension of the

four-valued logic

In our fuzzy extension, we want to consider S+ and

S� as fuzzy subsets of X . Hence we have to de�ne

the fuzzy subsets St; Sk; Su; Sf of X so as to extend

equations (3{17). This implies to extend intersection,

union, and complementation to fuzzy subsets of X . A

standard de�nition of these operations is provided by

considering a De Morgan triple (N;T; V ) where N is a

strict negation on [0; 1], T a t-norm and V the conorm

of T for negation N . In this case we get:

�
�S(a) = N(�S(a)) (22)

�S\S0(a) = T (�S(a); �S0(a)) (23)

�S[S0(a) = V (�S(a); �S0(a)) (24)

If we try to combine equations (22-24) with (3), (4)

and (7) denoting u = �St(a), v = �Sk(a), x = �S+(a),

y = �S
�(a), we have:

u = T (x;N(y))

v = T (x; y)

x = V (u; v)

Hence, we get the following functional equation:

8x; y 2 [0; 1]; x = V (T (x;N(y)); T (x; y))

Unfortunately, it is easy to prove that this equation

has no solution (see [1]). Therefore, we must investi-

gate partial solutions relaxing some constraints of the

problem. Similar investigations have been considered

in the context of fuzzy preference modelling. In this

context, many studies consider the fuzzy partition of

a cartesian product into three fuzzy binary relations

(preference, indi�erence and incomparability) and pro-

vide solutions that could be imported in our context

(see [9], [10], [12], [6], [3], [11]). As an example, we in-

troduce now a useful result which directly follows from

those obtained in [9], [10] and [6].

Denoting � = S(a), t(�) = �St(a), k(�) = �Sk (a)

u(�) = �Su(a), f(�) = �Sf (a), our aim is to de�ne

quantities t(�), k(�), u(�), f(�) as functions of quan-

tities B(a) and B(:�) and viceversa. Considering the

negative result presented before, a more general hy-

pothesis to investigate possibilities of deriving a con-

tinuous extension of (3{24) is the following:

t(�) = T1(B(�); N(B(:�))) (25)

k(�) = T2(B(�); B(:�)) (26)

u(�) = T3(N(B(�)); N(B(:�))) (27)

f(�) = T4(N(B(�)); B(:�)) (28)

where T1; T2; T3; T4 are continuous t-norms and N is a

strict negation.

As a consequence of (18{21) we want:

t(�) = f(:�) = f(� �) (29)

k(�) = k(:�) = u(� �) (30)

u(�) = u(:�) = k(� �) (31)

f(�) = t(:�) = t(� �) (32)

Moreover, the translation of equations (7{10) using

(22{24) gives:

B(�) = V (t(�); k(�)) (33)

B(:�) = V (f(�); k(�)) (34)

N(B(�)) = V (t(�); u(�)) (35)

N(B(:�)) = V (f(�); u(�)) (36)

Finally, because it makes no sense to consider situa-

tions admitting simultaneously \unknown" (lack of in-

formation) and \contradiction" (excess of information)

for a same formula, we translate (16) to the strong con-

dition:

8�; min(u(�); k(�)) = 0 (37)

Proposition 2.1 < T1; T2; T3; T4; T; V;N > is solu-

tion of equations (22{37) if and only the following con-

ditions hold:

N = N�

T = T2 = T3 = LT�

V = LV�

T1 = T4 = min

where (N�; LT�; LV�) is a Lukasiewicz triple, i.e.:

LN�(x) = ��1(1� �(x))

LT�(x; y) = ��1(max(�(x) + �(y)� 1; 0))

LV�(x; y) = ��1(min(�(x) + �(y); 1))

where � is an automorphism of [0; 1].

For the sake of simplicity, we will only consider here

�(x) = x for all x in [0, 1] but the following results

can easily be extended for any automorphism � of the

unit interval. From (25{28) we get:

t(�) = min(B(�); 1�B(:�)) (38)

k(�) = max(B(�) +B(:�) � 1; 0) (39)

u(�) = max(1�B(�) �B(:�); 0) (40)

f(�) = min(1�B(�); B(:�)) (41)



Remark 2.1 If B(�), which may reect uncertainty

in �, is seen as the probability P (�), we get B(�) +

B(:�) = 1 and therefore:

t(�) = P (�)

k(�) = 0

u(�) = 0

f(�) = 1� P (�)

Remark 2.2 If B(�), which may reect uncertainty

in �, is seen as a standard necessity, N(�) then 1 �
B(:�) is the possibility �(�) and B(�) +B(:�) � 1;

therefore we get:

t(�) = N(�)

k(�) = 0

u(�) = max(�(�) �N(�); 0)

f(�) = N(:�)

From equations (38{41) we get the following properties

that can be seen as the multivalued counterpart of (7{

17):

t(�) + k(�) = B(�) (42)

f(�) + k(�) = B(:�) (43)

t(�) + u(�) = 1�B(:�) (44)

f(�) + u(�) = 1�B(�) (45)

min(k(�); u(�)) = 0 (46)

t(�) + k(�) + u(�) + f(�) = 1 (47)

3 Interpreting non-atomic formulae

Let M be the set of 2 � 2 matrices of reals whose

elements mij verify:

8i; j 2 f1; 2g; mij � 0

m11 +m12 +m21 +m22 = 1

minfm12;m21g = 0

Given a �rst order language L each atomic formula �

in the language can be evaluated using the interpreta-

tion v : L 7!M such that for each � 2 L

v(�) =

�
f(�) k(�)

u(�) t(�)

�

A a simple example, consider the truth values \true",

\contradictory", \unknown" and \false" de�ned by

matrices T , K, U , F respectively:

T =

�
0 0

0 1

�
K =

�
0 1

0 0

�

U =

�
0 0

1 0

�
F =

�
1 0

0 0

�

Moreover, to each atomic formula � corresponds the

ordered pair (B(�); B(:�)). Equations (42{43) de�ne
a one-to-one correspondence linking the two represen-

tations:

 : M ! [0; 1]� [0; 1]

v(�) 7! (B(�); B(:�))

Conversely,  �1 is de�ned by equations (38{41).

Consider (x; y) and (z; w) two ordered pairs of [0; 1]2.

We de�ne their lower and upper bound, and the

pseudo-complementation by:

?1[(x; y); (z; w)] = (minfx; zg;maxfy; wg)(48)

>1[(x; y); (z; w)] = (maxfx; zg;minfy; wg)(49)

N1(x; y) = (y; x) (50)

de�ning a pseudo-complemented lattice structure L1
on [0; 1]2.

In the same way, considering the Lukasiewicz triple

(LN;LT; LV ), we could de�ne a complemented lattice

structure L2 on [0; 1]2 as follows:

?2[(x; y); (z; w)] = (LV (x; z); LT (y; w))

>2[(x; y); (z; w)] = (LT (x; z); LV (y; w))

N2(x; y) = (LN(x); LN(y))

By  we can derive from each lattice Lj ; j = 1; 2 a

lattice structure LM
j

onM by setting, for all X , Y in

M:

?M
j
(X;Y ) =  �1(?j [ (X);  (Y )])

>M
j
(X;Y ) =  �1(>j [ (X);  (Y )])

NM
j
(X) =  �1(Nj [ (X)])

Knowing the interpretation of atomic formulae, we are

now able to extend the interpretation function v to any

complex formula in L involving connectives : (\not"),

^ (\and"), _ (\or") by setting:

v(:�) = NM1 (v(�)) (51)

v(� ^ �) = ?M1 (v(�); v(�)) (52)

v(� _ �) = >M1 (v(�); v(�)) (53)

Consider now the \truth" partial order � on [0; 1]2

de�ned by:

(x; y) � (z; w) , (x � z and y � w) (54)

Proposition 3.1 The relation �M de�ned on M by:

X �M Y ,  (X) �  (Y )

is a partial order.



Proposition 3.2 For all X;Y in M, we have:

X � Y , [?M1 (X;Y ) = Y and >M1 (X;Y )) = X ]

Therefore, relation �M partially orders formulae ac-

cording to their truth value. In order to make impli-

cation (denoted �) and equivalence (denoted �) com-

patible with the partial order �M we want:

v(�) �M v(�) ) v(� � �) = T (55)

v(�) = v(�) ) v(� � �) = T (56)

Remark that the second condition immediately derives

from the �rst one if we interpret A � B as (A �
B) ^ (B � A) Unfortunately, the �rst condition does

not hold if we set:

v(� � �) = >M1 [NM1 (v(�)); v(�)] (57)

There is a twofold technical reason for that:

� In Belnap's logic, since complementation di�ers

from negation: (:�_�) is not a tautology. There-
fore, assuming (� � �) can be rewritten as

(:� _ �) it contradicts condition (55).

� In multivalued logics whose semantic is based on

the interpretation domain [0; 1], it is not possi-

ble to de�ne an idempotent disjunction such that

(:� _ �) is a tautology. More precisely, there ex-

ists no co-norm V verifying simultaneously:

8x 2 [0; 1]; V (x; x) = x (58)

8x 2 [0; 1]; V (1� x; x) = 1 (59)

In order to overcome the �rst diÆculty, we will sub-

stitute negation by complementation as suggested by

[4] and [5]. This amounts to interpreting (� � �) by

(� � _ �). In order to overcome the second diÆculty,

we will substitute in equation (55) >M1 by >M2 while

keeping disjunction unchanged in (53). This amounts

to use Lukasiewicz co-norm in (59) while keeping the

max co-norm in (58). This solution has been adopted

by many authors in the context of preference modelling

(see e.g. [7], [12], [6]).

Hence, we obtain the following result:

Proposition 3.3 Equations (55{56) hold when impli-

cation and equivalence are de�ned by:

v(� � �) = >M2 [NM2 (v(�)); v(�)]

v(� � �) = v((� � �) ^ v(� � �))

Hence we get the following formulae:

v(:�) =

�
t(�) k(�)

u(�) f(�)

�

t(� ^ �) = minft(�); t(�)g

k(� ^ �) = maxfminft(�) + k(�); t(�) + k(�)g

�minft(�) + u(�); t(�) + u(�)g; 0g

u(� ^ �) = maxfminft(�) + u(�); t(�) + u(�)g; 0g

�minft(�) + k(�); t(�) + k(�)g

f(� ^ �) = minfmaxff(�) + u(�); f(�) + u(�)g;

maxff(�) + k(�); f(�) + k(�)g

t(� _ �) = minfmaxft(�) + u(�); t(�) + u(�)g;

maxft(�) + k(�); t(�) + k(�)g

k(� _ �) = maxfminff(�) + k(�); f(�) + k(�)g

�minff(�) + u(�); f(�) + u(�)g; 0g

u(� _ �) = maxfminff(�) + u(�); f(�) + u(�)g; 0g

�minff(�) + k(�); f(�) + k(�)g

f(� _ �) = minff(�); f(�)g

t(� � �) = minff(�) + u(�) + t(�) + k(�);

f(�) + k(�); t(�) + u(�); 1g

k(� � �) = maxfminff(�) + u(�) + t(�) + k(�); 1g

�minff(�) + k(�) + t(�) + u(�); 1gg

u(� � �) = maxfminff(�) + k(�); t(�) + u(�)g; 1g

�minff(�) + u(�) + t(�) + k(�); 1gg

f(� � �) = minfmaxft(�) + k(�)� t(�)� k(�); 0g;

maxff(�) + k(�)� f(�)� k(�); 0gg

Remark 3.1 In order to give an example of how the

previous formulae are obtained we present extensively

the calculation of f(� ^ �).
From (41), f(�^�) = min(1�B(�^�); B(:(�^�)).
From (48) and (52) we get: 1 � B(� ^ �) = 1 �
min(B(�); B(�)) = max(1 � B(�); 1 � B(�)) =

max(f(�) + u(�); f(�) + u(�))

and also: B(:(� ^ �)) = max(B(:�); B(:�)) =
max(f(�) + k(�); f(�) + k(�)).

Finally, we de�ne the interpretation of a quanti�ed for-

mulae for a predicate S whose domain is A, as follows:

v(8xS(x)) = ?M1 fv(S(a)); a 2 Ag (60)

v(9xS(x)) = >M1 fv(S(a)); a 2 Ag (61)

This completes the de�nition of the interpretation of

�rst order logical formulae. For any formula �, v(�) is

a matrix ofM de�ned as a continuous function of the

truth values of atomic components of �.

4 Application to Preference Modelling

We illustrate now the use of our logic to model prefer-

ences in the context of group decision making.



Consider a set of alternatives A = fa; b; c; dg and a set

of 100 voters whose preferences can be synthesized as

follows:

46 voters have the preference a � b � c � d

17 voters have the preference b � c � d � a

18 voters have the preference c � d � a � b

19 voters have the preference d � a � b � c

The problem is now to elaborate an overall preference

model reecting the collective opinion of the popula-

tion of voters.

For all (x; y) in A�A, a voter is supposed to support

the preference of x over y (denoted P (x; y)) if he ranks

x strictly before y. The total number of voters sup-

porting P (x; y) is denoted xy. Conversely, a voter is

supposed to be opposed to the preference P (x; y) if he

ranks y strictly before x. In this problem we suppose

that, for each voter j, the strength of this opposition

is proportional to the rank di�erence between x and

y and can be represented, for any j 2 [1; 100], by the

normalized di�erence:

Æxy(j) = maxfrj(x)� rj(y); 0g=3

Therefore, the overall opposition to P (x; y) within the

population of voters is given by:

Æxy =

100X
j=1

Æxy(j)

Remark 4.1 8x; y 2 A; xy + Æxy � 100

For any ordered pair (x; y) we believe that x is pre-

ferred to y by the population when xy is \large

enough". Independently, we believe that x is not pre-

ferred to y when Æxy is \signi�cant". This implicitly

implies to consider thresholds separating \large" and

\not large" proportions of voters on the one hand, \sig-

ni�cant" and not \signi�cant" oppositions on the other

hand. Since such thresholds cannot be determined pre-

cisely, we will represent these notions with fuzzy sub-

sets of [0; 100]. We suppose here that a proportion of

voter below 50% is not large enough to support the

preference P (x; y) and becomes more and more cred-

ible when it raises to 70%. If the proportion exceeds

70% we totally believe in P (x; y). Moreover, we will

consider here that an opposition of strength Æxy � 30

vetoes the preference P (x; y) whereas an opposition

Æxy � 15 is not signi�cant. Thus, we set:

B(P (x; y)) =

8<
:

0 if xy � 50
xy�50

20
if 50 � xy � 70

1 if xy � 70

B(:P (x; y)) =

8<
:

0 if Æxy � 15
Æxy�15

15
if 15 � Æxy � 30

1 if Æxy � 30

Hence we get the following results (see table 1).

Table 1: Truth values for preference

� B(�) B(:�) t(�) k(�) u(�) f(�)

P(a, b) 1.00 0.13 0.87 0.13 0.00 0.00

P(a, c) 0.75 0.56 0.44 0.31 0.00 0.25

P(a, d) 0.00 0.20 0.00 0.00 0.80 0.20

P(b, a) 0.00 0.84 0.00 0.00 0.16 0.84

P(b, c) 1.00 0.20 0.80 0.20 0.00 0.00

P(b, d) 0.65 0.64 0.36 0.29 0.00 0.35

P(c, a) 0.00 1.00 0.00 0.00 0.00 1.00

P(c, b) 0.00 0.82 0.00 0.00 0.18 0.82

P(c, d) 1.00 0.27 0.73 0.27 0.00 0.00

P(d, a) 0.20 1.00 0.00 0.20 0.00 0.80

P(d, b) 0.00 1.00 0.00 0.00 0.00 1.00

P(d, c) 0.00 0.80 0.00 0.00 0.20 0.80

Concerning the pair (a; b) we can observe that prefer-

ence is well established since t(P (a; b)) = 0.87. This

seems consistent with the rules de�ned previously since

the large majority of voters support this preference and

the opposition is weak (Æab = 17).

Concerning the pair (a; c), the preference is not so well

established. k(P (a; c)) = 0.31 reects a conict of ar-

guments in the evaluation of preference. This seems

consistent with the initial information since a major-

ity of criteria support this preference (65%) but a sig-

ni�cant discordant coalition (Æac = 27:33) is conict-

ing with this preference. Moreover, since the major-

ity is weak and the opposition is signi�cant, it seems

also natural to observe that f(P (a; c)) = 0:25 whereas

t(P (a; c)) = 0:44.

Concerning the preference P (a; d), only a minority of

criteria support this assertion but the opposition is

weak. The above rules do not allow to establish that a

is better than d but they provide very few arguments

against this preference. Therefore it seems consistent

to observe u(P (a; d)) = 0:80 and f(P (a; d)) = 0:20.

Suppose now that we have to decide which is the best

alternative on the basis of this information. One can

try to identify a Condorcet Winner i.e an alternative

which is preferred to all other alternatives. In our

language, the extend to which an alternative is a Con-

dorcet Winner can be evaluated in M by the truth

value:

CW (a) = v(8x 2 A n fag; P (a; x))

From equation (60) and table 1 we get the following

results (see table 2):



Table 2: Search of a Condorcet Winner

� t(�) k(�) u(�) f(�)

CW(a) 0.00 0.00 0.44 0.56

CW(b) 0.00 0.00 0.16 0.84

CW(c) 0.00 0.00 0.00 1.00

CW(d) 0.00 0.00 0.00 1.00

Since there is no obvious Condorcet winner, we can ex-

tend Orlovski's choice function (see [7]) in this context

by de�ning in our logic the set ND of non-dominated

alternatives as follows:

ND = fa 2 A;8x 2 A n fag;:P (x; a)g

Thus, for each element a 2 A, membership in ND is

measured by the truth value ND(a) 2M de�ned by:

ND(a) = v(8x 2 A n fag;:P (x; a))

From table 1 propositions of type :P (x; y) must be

interpreted as follows (see table 3):

Table 3: Truth values for non preference

� t(�) k(�) u(�) f(�)

:P(b, a) 0.84 0.00 0.16 0.00

:P(c, a) 1.00 0.00 0.00 0.00

:P(d, a) 0.80 0.20 0.00 0.00

:P(a, b) 0.00 0.13 0.00 0.87

:P(c, b) 0.82 0.00 0.18 0.00

:P(d, b) 1.00 0.00 0.00 0.00

:P(a, c) 0.25 0.31 0.00 0.44

:P(b, c) 0.00 0.20 0.00 0.80

:P(d, c) 0.80 0.00 0.20 0.00

:P(a, d) 0.20 0.00 0.80 0.00

:P(b, d) 0.35 0.29 0.00 0.36

:P(c, d) 0.00 0.27 0.00 0.73

From equation (60) and table 3 we get the following

results (see table 4):

Table 4: Non-dominated alternatives

� t(�) k(�) u(�) f(�)

ND(a) 0.80 0.04 0.00 0.16

ND(b) 0.00 0.13 0.00 0.87

ND(c) 0.00 0.20 0.00 0.80

ND(d) 0.00 0.20 0.00 0.80

Clearly a is the best non-dominated alternative.

Conclusions

A fuzzy extension of Belnap's logic is presented in the

paper mainly in order to model a continuous \inten-

sity" of truthness and knowledge in a sentence. Such

a logic has been conceived mainly for preference mod-

eling purposes, since it is a �eld where a continuous

\modulation" of the concept of preference is very use-

ful.

As shown by some little examples, our fuzzy logic

makes explicit the truth, falsity, unknown and con-

tradictory parts in any �rst order logical formula and

thus provides useful and synthetic information about

the real nature of arguments supporting this formula.

Moreover the calculus of a truth value involves only

continuous functions and make it impossible that small

variations in the initial information lead to drastic

changes in the output. This seems well �tted to the

context of preference modelling.

Several problems are of course open, including:

- the experimentation of di�erent families of De

Morgan triples, basically in the case where \un-

certainty" instead of \intensity" has to be mod-

eled;

- a complete truth calculus for logics conceived as

fuzzy extensions of four valued paraconsistent log-

ics;

- a more thorough investigation of valued sets and

valued relations (when the valuation domain is

M) and their potential use in the context of pref-

erence modelling.
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