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Abstract 

Solving software evaluation problems is a particularly difficult software engineering process and 

many contradictory criteria must be considered to reach a decision. Nowadays, the way that decision 

support techniques are applied suffers from a number of severe problems, such as naive interpretation 

of sophisticated methods and generation of counter-intuitive, and therefore most probably erroneous, 

results. In this paper we identify some common flaws in decision support for software evaluations. 

Subsequently, we discuss an integrated solution through which significant improvement may be 

achieved, based on the Multiple Criteria Decision Aid methodology and the exploitation of packaged 

software evaluation expertise in the form of an intelligent system. Both common mistakes and the way 

they are overcomed are explained through a real world example.  
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1. Introduction 

The demand for qualitative and reliable software, compliant to international standards and easy to 

integrate in existing system structures is increasing continuously. On the other hand, the cost of 

software production and software maintenance is raising dramatically as a consequence of the 

increasing complexity of software systems and the need for better designed and user friendly 

programs. Therefore, the evaluation of such software aspects is of paramount importance. We will use 

the term software evaluation throughout this paper to denote evaluation of various aspects of software 

systems. 

Probably the most typical problem in software evaluation is the selection of one among many 

software products for the accomplishment of a specific task. However, many other problems may 

arise, such as the decision whether to develop a new product or acquire an existing commercial one 

with similar requirements. On the other hand, software evaluation may have different points of view 

and may concern various parts of the software itself, its production process and its maintenance. 

Consequently, software evaluation is not a simple technical activity, aiming to define an "objectively 

good software product", but a decision process where subjectivity and uncertainty are present without 

any possibility of arbitrary reduction.  

In the last years, research has focused on specific software characteristics, such as models and 

methods for the evaluation of the quality of software products and software production process [2, 6, 

7, 9, 11, 12, 23]. The need for systematic software evaluation throughout the software life cycle has 

been recognised and well defined procedures have already been proposed [22] while there are on-

going standardisation activities in this field [7].  

However, although the research community has sought and proposed solutions to specific 

software evaluation problems, the situation in this field, from the point of view of decision support, is 

far from being satisfactory. Various approaches have been proposed for the implementation of 

decision support for specific software evaluation problems. Typically, the evaluator is advised to 

define a number of attributes, suitable for the evaluation problem at hand. In certain cases [7, 14], a set 

of attributes is already proposed. The evaluator, after defining the alternative choices, has to assign 

values and, sometimes, relative weights to the attributes and ultimately combine (aggregate) them to 

produce the final result. The problem is that, in practice, this is frequently accomplished in a wrong 

way, as it will be exemplified in this paper.  

The authors have participated extensively in software system evaluations, either providing 

decision aid to the evaluators or as evaluators themselves. After reviewing the relative literature, it 

seems that the most commonly used method is the Weighted Average Sum (WAS), known also as 

Linear Weighted Attribute (LWA), or similar techniques, such as Weighted Sum (WS) (see [11]). 
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Another frequently used method is Analytical Hierarchy Process (AHP, see [17,23]) where priorities 

are derived from the eigenvalues of the pairwise comparison matrix of a set of elements when 

expressed on ratio scales. WAS and AHP fall into a class of techniques known under the name 

Multiple-Criteria Decision Aid (MCDA, [16, 20]). This methodology is applied in the evaluation 

problems where the final decision depends on many, often contradictory, criteria. 

This paper identifies some common flaws in decision support for software evaluation. Our 

approach consists in exploiting packaged evaluation expertise in the form of an intelligent system, in 

order to avoid common mistakes and to speed up the evaluation process. We have developed ESSE, an 

Expert System for Software Evaluation, which supports various methods of the MCDA methodology 

and we present its use in a real example, the evaluation of five different proposals for the information 

system modernisation in a large transport company.  

The rest of the paper is organised as follows: Section 2 introduces decision support for software 

evaluation and discusses some common errors during the implementation of a decision process for 

software evaluation. Section 3 highlights the manifestation of these errors in a practical example, 

while section 4 presents briefly ESSE. Section 5 shows the generation of a correct evaluation model 

using this tool. Finally, section 6 concludes the paper and poses future directions 

2. Decision Making for Software System Evaluations 

Given the importance of software, it is necessary to evaluate software products and related 

processes in a systematic way. Various criteria must be analysed and assessed to reach the final 

decision. As already mentioned, software evaluation problems fall into the class of decision making 

problems that are handled through the MCDA methodology. In order to render this paper self-

contained, the basic steps of a systematic MCDA decision process are described in section 2.1. 

Finally, section 2.2 discusses the current situation in software industry regarding decision making and 

identifies a list of typical wrong steps, taken frequently in nowadays decision making for software 

evaluation.  

 

2.1. Steps of a Typical Decision Process 

An evaluation problem solved by MCDA can be modeled as a 7-ple {A,T,D,M,E,G,R} where 

[20]: 

- A is the set of alternatives under evaluation in the model 

- T is the type of the evaluation 
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- D is the tree of the evaluation attributes 

- M is the set of associated measures 

- E is the set of scales associated to the attributes 

- G is the set of criteria constructed in order to represent the user's preferences 

- R is the preference aggregation procedure 

In order to solve an evaluation problem, a specific procedure must be followed [12]: 

 

Step 1: Definition of the evaluation set A: The first step is to define exactly the set of possible 

choices. Usually there is a set A of alternatives to be evaluated and the best must be selected. The 

definition of A could be thought as first-level evaluation, because if some alternatives do not fulfill 

certain requirements, they may be rejected from this set. 

 

Step 2: Definition of the type T of the evaluation: In this step we must define the type of the 

desired result. Some possible choices are the following: 

- choice: partition the set of possible choices into a sub-set of best choices and a sub-set of not 

best ones. 

- classification: partition the set of possible choices into a number of sub-sets, each one having a 

characterization such as good, bad, etc. 

- sorting: rank the set of possible choices from the best choice to the worst one. 

- description: provide a formal description of each choice, without any ranking. 

 

Step 3: Definition of the tree of evaluation attributes D: In this step the attributes that will be 

taken into account during the evaluation and their hierarchy must be defined. Attributes that can be 

analyzed in sub-attributes are called compound attributes. Sub-attributes can also consist of sub-sub-

attributes and so on. The attributes that can not be divided further are called basic attributes. An 

example of such an attribute hierarchy is shown in figure 1. 

It should be noted that there exist mandatory independence conditions, such as the separability 

condition, and contingent independence conditions, depending on the aggregation procedure adopted 

(see [18]).  
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Entity to
be evaluated

Quality
(compound)

Cost
(basic)

Functionality
(compound)

Reliability
(compound)

Usability
(compound)

Efficiency
(compound)

Understandability
(compound)

Learnability
(compound)

Operability
(compound)

Portability
(compound)

Usability of manual
(compound)

On line help
(basic)

Fog index
(basic)

Examples/command
(basic)

Index entries/command
(basic)

 

Figure 1: Example of an attribute hierarchy 

 

Step 4: Definition of the set of measurement methods M: For every basic attribute d we must 

define a method Md that will be used to assign values to it. There are two kinds of values, the 

arithmetic values (ratio, interval or absolute) and the nominal values. The first type of values are 

numbers, while the second type are verbal characterizations, such as "red", "yellow", "good", "bad", 

"big", "small", etc.  

A problem with the definition of Md is that d may not be measurable, because of its measurement 

being non-practical or impossible. In such cases an arbitrary value may be given, based upon expert 

judgment, introducing a subjectivity factor. Alternatively, d may be decomposed into a set of sub-

attributes d1, d2, � dn, which are measurable. In this case the expression of arbitrary judgment is 

avoided, but subjectivity is involved in the decomposition. 

 

Step 5:  Definition of the set of measurement scales E: A scale ed must be associated to every 

basic attribute d. For arithmetic attributes, the scale usually corresponds to the scale of the metric used, 

while for nominal attributes, ed must be declared by the evaluator. Scales must be at least ordinal, 

implying that, within ed, it must be clear which of any two values is the most preferred (in some cases 

there are different values with the same preference). For example, for d = 'operating system', ed could 
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be [UNIX, Windows NT, Windows-95, DOS, VMS] and a possible preference could be [UNIX = 

Windows NT > Windows-95 = VMS > DOS].  

 

Step 6: Definition of the set of Preference Structure Rules G: For each attribute and for the 

measures attached to it, a rule or a set of rules have to be defined, with the ability to transform 

measures to preference structures. A preference structure compares two distinct alternatives (e.g. two 

software products), on the basis of a specific attribute. Basic preferences can be combined, using some 

aggregation method, to produce a global preference structure. 

For example, let a1 and a2 be two alternatives and let d be a basic attribute. Let also md(a1) be the 

value of a1 concerning d and let md(a2) be the value of a2 concerning d. Suppose that d is measurable 

and of positive integer type. In such a case, a preference structure rule could be the following: 

• product a1 is better than a2 on the basis of d, if md(a1) is greater than md(a2) plus K, where K is a 

positive integer 

• products a1 and a2 are equal on the basis of d, if the absolute difference between md(a1) and md(a2) 

is equal or less than K, where K is a positive integer 

 

Step 7: Selection of the appropriate aggregation method R: An aggregation method is an 

algorithm, capable of transforming the set of preference relations into a prescription for the evaluator. 

A prescription is usually an order on A. 

The MCDA methodology consists of a set of different aggregation methods, which fall into three 

classes. These are the multiple attribute utility methods [8], the outranking methods [20] and the 

interactive methods [19] (although originated by different methodological concerns we may consider 

AHP as a multi-attribute utility method since priorities computed by this procedure define a value 

function). The selection of an aggregation method depends on the following parameters [20]: 

• The type of the problem 

• The type of the set of possible choices (continuous or discrete) 

• The type of measurement scales 

• The kind of importance parameters (weights) associated to the attributes 

• The type of dependency among the attributes (i.e. isolability, preferential independence) 

• The kind of uncertainty present (if any) 

Notice that the execution of the steps mentioned above is not straightforward. For example, it is 
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allowed to define first D and then, or in parallel, define A, or even select R in the middle of the 

process.  

2.2. Current Practice and Common Problems in Decision Making for Software Evaluation 

Although the need for a sound methodology is widely recognised, the evaluators generally avoid 

the use of MCDA methods. In [5] it was observed that only two MCDA methods were used by the 

decision makers, while [10] reported that even unsophisticated MCDA tools were avoided. 

Nevertheless, a lot of research has been dedicated to the problem of selecting the best method for 

software evaluation. During controlled experiments, it was found that, generally, different methods 

gave similar results when applied to the same problem by the researchers themselves. During a study 

by [11] it was empirically assessed that the above statement was true for evaluations made by 

independent decision makers as well. Yet, the degree of the application difficulty differs between the 

MCDA techniques and, in certain cases, a particular MCDA method is recommended. As an example, 

in [18] the use of the Multiple Attribute Utility Technique (MAUT) is suggested, while in [23] the AHP 

method has been adopted.  

In many cases no systematic decision making method is used at all. Evaluations are based purely 

on expert subjective judgement. While this approach may produce reliable results, it is more difficult 

to apply (because experts are not easily found, formal procedures are hard to define) and has a number 

of pitfalls, like: 

− inability to understand completely and reproduce the evaluation results, 

− poor explanation of the decision process and the associated reasoning, 

− important problem details for the evaluation may be missed, 

− high probability that different experts will produce different results without the ability to decide 

which one is correct, 

− difficulty in exploiting past evaluations, 

− risk to produce meaningless results. 

The number of top-level attributes used in the evaluation model plays a significant role in 

software evaluation problems. It may seem reasonable to presume that the higher the number of 

attributes used, the better the evaluation will be. However, our experience in applying MCDA has 

demonstrated that at most seven or eight top-level attributes must be employed. The reason is that this 

number of attributes is sufficient to express the most important dimensions of the problem. The 

evaluator must focus on a relatively limited set of attributes and must avoid wasting time in low 

importance analysis. If necessary, broader attributes may be defined, incorporating excessive lower 

importance attributes. The latter may be accommodated in lower levels of the hierarchy tree of figure 

1. Another weak choice is to include in the model attributes for which the alternative solutions in the 

choice set A can not be differentiated. The result is the waste of evaluation resources without adding 
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any value to the decision process. Finally, custom evaluation attribute sets (e.g. [14]) are rarely used in 

practice, meaning that packaged evaluation experience is not adequately exploited. 

Another point concerning attributes is redundancy. Hasty definition and poor understanding of the 

evaluation attributes may lead to this common error. As an example, consider the quality attribute 

hierarchy described in [7], part of which is shown in figure 1. Suppose that the evaluator decides to 

utilise this schema in a software evaluation problem, in which, probably along with other attributes, he 

is considering Cost and Quality. Some of the quality sub-attributes are related to the attribute Cost. 

These are Usability, Maintainability, and partially, Portability, which are defined in [7] in terms of 

"...effort to understand, learn, operate, analyse, modify, adapt, install, etc.". If Cost is defined to 

comprise maintenance, installation, training, etc. costs, then the combined cost and quality attribute 

structure will force the evaluator to consider twice the above mentioned cost components. Although 

less critical, redundancy may also manifest in the form of metrics that are strongly related, e.g. 

�elapsed time from user query to initiation of system response� and �elapsed time from user query 

until completion of system response�. 

Another common source of errors is the use of arbitrary judgements instead of structural 

measurements. In general, arithmetic scales should be preferred to ordinal scales whenever possible, 

because of the subjectivity involved with the latter. On the other hand, there is already a large volume 

of literature for the use of structural metrics, such as the complexity and size metrics referred above, to 

compute or predict various software attributes. Although there is a lot of debate about their practical 

usefulness and measurements may require dedicated tools, these metrics should be assessed and used 

in software evaluations. However, in practice, most evaluators prefer the use of ordinal values, relying 

purely on subjective assessments and avoiding the overhead of software measurements. This may not 

necessarily lead to wrong results, provided that appropriate ordinal aggregation procedures are used. 

However, as mentioned above, software engineers are rarely aware of such techniques. The outcome is 

that the evaluation results are produced in subtle ways and the decision makers and their management 

are rarely convinced about their correctness.  

The most critical point in evaluation problems is the selection of the appropriate aggregation 

method, according to the specific problem. In practice, it seems that the most widely known method in 

the software community is the Weighted Sum, and consequently, whenever a systematic approach is 

taken, Weighted Sum or Weighted Average Sum is the most frequent choice. This is probably caused 

by the fact that Weighted Sum has been also used in various software engineering disciplines, such as 

Function Point Analysis [1]. 

As mentioned in step 7 of 2.1, the selection of a suitable aggregation method depends on a 

number of parameters, such as the type of attributes and the type of the measurement methods. In 

practice, frequently an inappropriate aggregation method is chosen and its application is subject to 
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errors. For example, WAS is applied with attributes for which, although initially an ordinal scale is 

assigned, an arithmetic scale is forced to produce values suitable for WAS application (good is made 

"equal" to 1, average to 2, �). As another example, an outranking method could be selected while 

trade-offs among the criteria are requested. In fact our criticism focuses on the unjustified choice of a 

procedure without verifying its applicability. For instance AHP requires that all comparisons be done 

in ratio scales. This is not always the case. If we apply such a procedure on ordinal information we 

obtain meaningless results. A more mathematical treatment of the above issues and a detailed analysis 

on aggregation problems and drawbacks can be found in [3] (see also [4, 13]). 

Finally, another issue in the software evaluation process is the management of the decision 

process. Typically, the effort and resources needed for an evaluation are underestimated. A software 

evaluation is a difficult task, requesting significant human effort. Systematic evaluation necessitates 

thorough execution of the seven process steps referred in 2.1, probably with computer support for the 

application of an MCDA method or the measurement of certain software attributes. Software 

evaluations are normally performed with limited staff, under a tight schedule and without clear 

understanding of the decision process and its implications. In general, managers seem to be mainly 

interested in the generation of a final result, i.e. they are willing to reach the end of the decision 

process, but they seem somewhat careless about the details, the data accuracy and the overall validity 

of the approach taken.  

3. A Real World Example: a Weak Evaluation Model 

Recently a large transport organisation was faced with a rather typical evaluation problem: the 

evaluation of certain proposals for the evolution of its information system. System specifications were 

prepared by a team of engineers, who defined also the evaluation model to be used (denoted by M in 

the following). A number of distinct offers were submitted by various vendors. A second team (the 

evaluators) was also formed within the organisation. They applied the imposed model, but the results 

they obtained were in contradiction with the common sense.  

At that point the evaluators contacted the authors, presenting their problem. The authors realised 

that a number of errors, akin to the issues discussed in section 2.2, were manifested in this model. The 

authors suggested to the evaluators the use of ESSE (Expert System for Software Evaluation, [21]), a 

system aiming to the automation of the software evaluation process. A new, quite satisfactory, 

evaluation model was generated with the assistance of ESSE. Section 3.1 gives a brief description of 

the information system, while section 3.2 presents the initial evaluation model and discusses the model 

problems. ESSE is described briefly in section 4 and the new model is presented in section 5. 
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3.1. Description of the Evaluation Problem 

The new information system was intended to substitute the legacy information system of the 

acquirer organisation. The old system was of the mainframe type, but the new one should support the 

development of client server applications, while maintaining the existing functionality. 

The main hardware components of the system were the central server machine, certain network 

components and a predefined number of client terminals and peripherals (various models of printers, 

scanners, tape streamers). In all cases there were various requests concerning the accompanying 

software, e.g. there were specific requests about the server's operating system, the communications 

software, etc. Additionally, some software components were also required: an RDBMS system, a 

document management system (including the necessary hardware), a specific package for electronics 

design and a number of programming language tools.  

An additional requirement was the porting of the existing application software, that used to run on 

the legacy information system, to the new system. No development of new functionality was foreseen. 

Finally, certain typical requirements were also included, regarding training, maintenance, company 

profile (company experience, company size, company core business, ability to manage similar 

projects), etc. 

Five offers (i.e. technical proposals, denoted by Pi, where i = 1,2,3,4,5) were submitted as a 

response to the request for tenders, consisting of a technical and a financial part. Only the technical 

part of the proposals was subject to the analysis examined in this paper. Of course, the final choice 

was decided taking into account both aspects. 

3.2. The Initial Evaluation Model 

The initial evaluation model consisted of 39 basic attributes, with various weights having been 

assigned to them. The proposed aggregation method was the Weighted Sum (WS). A full description of 

this model is shown in Appendix A.  

Although, at a first glance, the attributes seem to be organised in a hierarchy (e.g. NETWORK 

seems to be composed of Network design, Active elements, Requirements coverage), they are actually 

structured in a flat manner, due to the requirement for WS. This means that each top level attribute 

(denoted by bold letters in table 1) has an inherent weight, which equals the sum of the weights of its 

sub-attributes. This is depicted in Table 1.  

According to the model, an arithmetic value must be assigned to each attribute. Two types of 

arithmetic scales are permitted, ranging from 40 to 70 and 50 to 70 correspondingly, as shown in 

Appendix A. The weights were assigned in M with the intention to reflect the opinion of the people 

that assembled the model about the relative importance of the attributes. The problems related to M are 

the following: 
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Attributes Description Weight 
1 HARDWARE 64 
1.1 NETWORK 18 
1.2 SERVER 24 
1.3 WIRING - NETWORK 

INSTALLATION 
6 

1.4 CLIENT TERMINALS 7 
1.5 PRINTERS 3 
1.6 SENSOR DEVICES 1 
1.7 DOC. MGMT SYSTEM 

(HW) 
1 

1.8 PERIPHERALS 4 
2 SOFTWARE 27 
2.1 OPERATING SYSTEM 4 
2.2 PROGRAMMING TOOLS 18 
2.3 COMMUNICATIONS SW 3 
2.4 ELECTRONICS CAD 1 
2.5 DOC. MGMT SYSTEM (SW) 1 
3 LEGACY SW PORTING 1 
4 NETWORK MGMT SW 1 
5 TRAINING 3 
6 MAINTENANCE 1 
7 COMPANY PROFILE 3 
8 MISCELLANEOUS 3 

 

Table 1: Top level attribute inherent weights. 

1. The attribute structure is not an optimal one. Although the number of attributes used is relatively 

high, there is no real hierarchical structure. In addition, there is no balancing in the attribute 

analysis: certain attributes are decomposed in lower ones, while others are not. A direct side effect 

of this characteristic of M is that the attributes that are composed of lower ones are given a 

relatively high weight (the sum of the lower attribute weights) compared to the basic attributes. 

This generates the risk of assigning low importance to an attribute, simply because it cannot be 

easily decomposed. Another weak point is the inclusion in M of attributes, for which, although a 

significant importance had been assigned, it was inherently hard to propose more than one 

technical solutions, such as Programming Languages 1 and 2, with weight 3. 

2. There is some redundancy between certain attributes. For example, it is difficult to think that the 

selection of the network active elements and the network wiring are completely independent. 

3. Although the weights are supposed to reflect the personal opinion of the requirement engineers, 

they are evidently counter-intuitive and misleading. For example, consider the weight of  3, 

assigned to Company Profile and compare to the summary weights of Hardware (64) and Software 

(27). Company Profile is an important factor, affecting the entire project. In this setting, Company 

Profile counts approximately as 1/21 of Hardware and 1/30 of Hardware plus Software, meaning 

that it is practically irrelevant. Legacy Software Porting is assigned a weight of 1, implying that it 
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is 1/64 important in respect with Hardware and 1/91 with Hardware plus Software. However, 

failing to meet the requirements of this part of the project would cancel all benefits of the system 

modernisation. In general, attributes 3 to 8 in table 1, are severely penalised in respect with the first 

two.  

4. The specified measurement method generates side effects, which distort the evaluation result. 

Consider for example the effect of the lower limit of the two arithmetic scales. Suppose that, Pi and 

Pk offer poor technical solutions for two attributes C1 and C2 respectively and that the evaluator 

decides to assign the lowest possible rating, while still keeping alive the two proposals. Suppose 

also that C1 and C2 have been given an equal weight, but scale 40-70 is allowed for C1 and 50-70 is 

allowed for C2. Therefore, Pi is given a 40 for C1, while Pk is given a 50 for C2. This means that, 

although the evaluator attempts to assign a virtual zero value to both proposals, the net result is that 

Pk gains ten evaluation points more than Pi. If the weight of the two attributes is 6, this is translated 

to a difference of sixty points for Pk, a difference that could even result to the selection of this 

proposal, in case that the final scores of the proposals are too close to each other.  

5. The selected measurement and aggregation methods are inappropriate. No specific metrics have 

been proposed by the authors of M, implying that subjective assessments are to be used. However, 

arithmetic values are expected for the attribute quantification and, as already discussed above, this 

leads to the problem of translating a nominal scale to an arithmetic one, in order to apply the 

imposed aggregation method, i.e. Weighted Sum. 

Other similar cases, supporting the evidence that current practice in decision support for software 

is very error-prone have been observed by the authors.  

4. The Expert System for Software Evaluation (ESSE) 

ESSE (Expert System for Software Evaluation, [21]) is an intelligent system that supports various 

types of evaluations where software is involved. This is accomplished through the: 

• automation of the evaluation process, 

• suggestion of an evaluation model, according to the type of the problem, 

• support of the selection of the appropriate MCDA method, depending on the available 

information, 

• assistance provided by expert modules (the Expert Assistants), which help the evaluator in 

assigning values to the basic attributes of the software evaluation model, 

• management of past evaluation results, in order to be exploited in new evaluation problems, 

• consistency check of the evaluation model and detection of possible critical points. 
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user

Intelligent Front End (IFE)

IFE Tools
• Problem type selection
• Editing of attributes
• Definition of the

evaluation set
• Storing capabilities
• etc.
 

User Interface
• Menus
• Dialog boxes
• etc.

Kernel

Knowledge Base

INFERENCE
ENGINE

Agenda

Working Memory

Instances

MCDA Knowledge Base
• MCDA application rules
• Check Rules (data integrity,

attribute association, etc)
• MCDA method selection rules

Domain Knowledge Base

• Types of evaluation problems
• Attribute structures
• Metrics

Expert Assistants
 

• Quality assistant
 

• Cost/Time assistant
 

 
 

Figure 2: The architecture of ESSE  

ESSE, is designed to support generic software evaluation problem solving. ESSE proposes default 

evaluation models based on certain fundamental software attributes (quality, cost, solution delivery 

time, compliance to standards), according to the evaluation problem. In addition, mechanisms are 

provided for flexible decision model construction, supporting the definition of new attributes and their 

structure. Furthermore, embedded knowledge provides support for attribute quantification. 

The advantages of ESSE lie in the built-in knowledge about software evaluation problem solving 

and in the flexibility in problem modeling, all in an integrated environment with a common user 

interface. The evaluator is allowed to define his own problem attributes, along with their measurement 

definition, providing maximum flexibility in problem formulation and subsequent decision making, 

permitting better representation and resolution of both high and low level contradicting attributes.  

Through these mechanisms, additional attributes may be easily introduced in the evaluation model 

and a well balanced evaluation result, with the optimum utilisation of the evaluation resources, may be 

obtained. Moreover, expert knowledge is provided, allowing the detection of critical points in the 

model, and, ultimately, the suggestion of the appropriate MCDA method and the quantification of 

software attributes. The architecture of ESSE is depicted in figure 2 and is described briefly in the 

following paragraphs. 

ESSE consists of two main components, the Intelligent Front End (IFE) and the Kernel. The role 

of IFE is to guide the evaluator in the correct application of the MCDA methodology and to provide 

expertise in software attribute evaluation. IFE supports the collection of the necessary information and 

the validation of the model created. Validation is achieved both through tutorials (on line help) and 

through expert rules that identify model critical points. 
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IFE consists of three modules, namely User Interface, IFE Tools and Expert Assistants. The User 

Interface is responsible for the communication between the user and the other modules of ESSE. The 

IFE Tools are invoked by the User Interface to perform tasks related with the construction and 

validation of the evaluation model, such as selection of a problem type, definition and modification of 

attributes, definition of the evaluation set, verification of the evaluation model and various storing 

tasks. Finally, the Expert Assistants support the assignment of values to basic attributes. Human 

knowledge, related to software evaluation attributes, has been accumulated in the past. ESSE includes 

expert assistants for the estimation of software development cost and time and software quality. 

The Kernel of ESSE consists of three parts: the Inference Engine, the Working Memory and the 

Knowledge Base. The Knowledge Base contains both domain knowledge and MCDA knowledge. 

Domain knowledge consists of structural knowledge in the form of frames, concerning the various 

types of evaluation problems, attribute definitions and corresponding metrics. MCDA knowledge 

consists of behavioral knowledge in the form of production and deductive rules. The rules can also be 

distinguished in MCDA application rules, evaluation model check rules and MCDA method selection 

rules. 

A detailed description of ESSE is given in [21]. 

5. Using ESSE to improve the Evaluation Model  

In this section we present the application of two evaluation models in the problem described in the 

third section. The first model is the initial model discussed in 3.2, while the second model is a new one 

obtained with the assistance of ESSE. The two models and the results they produced are presented in 

sections 5.1 and 5.2 correspondingly. 

5.1. Application of the initial evaluation model 

Initially (i.e. before consultation with the authors) the evaluators examined the technical contents 

of the five proposals. From this informal analysis it was quite evident that the second proposal (P2) 

was the best from the technical point of view. Subsequently, the evaluators assigned values to all basic 

attributes for the various alternatives and obtained the results of Table 2 (the entire model M is 

presented in Appendix A - the assigned values are not shown for simplicity). The results shown in 

Table 2 were against the initial informal judgement: proposal P3 was ranked first, while P2 was 

ranked second. Besides, the differences between the scores obtained for each proposal were quite 

small, giving the idea that the five proposals were very similar from the technical point of view. This 

may be true for the system software and client terminals, but not for other attributes. The results were 

not surprising given the criticism presented above against M and the expected distortion of the 

evaluators' opinion.  
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Proposal Score  

P3 6009 Evaluation Results:  

P2 6002  

P1 5903 P3 > P2 > P1 > P4 > P5 

P4 5890  

P5 5794  

 

Table 2: Results of the application of the initial evaluation model M, using Weighted Sum  

5.2. Generation and application of an improved evaluation model using ESSE 

The problem we are dealing with is characterised by ESSE as "Information Systems Evaluation" 

and is a sub-class of the more generic class of the "Commercial Product Evaluation" problems. The 

knowledge base of ESSE already contained past evaluation problems of the same type. The evaluators 

merely asked ESSE to propose an attribute hierarchy, together with the corresponding weights and 

scales, for this type of problems. The model proposed by ESSE consisted of a hierarchical attribute 

structure, with 8 top level attributes, decomposed in a number of sub-attributes. Additionally, certain 

model items concerning application software were expanded with predefined quality attribute 

structures, which were refined versions of the quality scheme of [7].  

The evaluators modified the proposed model, according to the special characteristics of the 

problem imposed by the initial model M. Essentially, they removed some attributes they considered 

irrelevant and they added some others, which they considered important. 

For example, ESSE suggested that top-level attributes such as 'Maintenance', 'Training' and lower 

level attributes such as 'Database Management System', 'Printers' etc. should be further analysed. 

Moreover, ESSE proposed different weights for the attributes and suggested measurement scales for 

the basic ones. The evaluators accepted the proposed analysis and they made few modifications to the 

weights, according to their own preferences. Finally, in some cases the evaluators did not accept the 

attributes proposed by ESSE and they removed them. 

To illustrate this more clearly, consider attribute 'Maintenance'. In the initial model M this 

attribute was a top-level attribute without further analysis. Its measurement scale was the range [40, 

70]. ESSE proposed to analyse 'Maintenance', as it is shown in Table 3.  
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Attribute Description Weight Scales 
6 MAINTENANCE 6  

6.1 24 hours service 2 {yes, no} 
6.2 spare part availability 2 12-36 months 
6.3 average response time 3 6-48h 
6.4 backup system 3 {yes, no} 

 

Table 3: The suggestion of ESSE for attribute 'Maintenance' 

The evaluators accepted the above analysis, except for the sub-attribute 'backup system', which 

they considered irrelevant and they removed it. Moreover, they accepted the proposed scales but they 

gave a weight of 4 to the sub-attribute '24 hours service', because they considered it more important.  

The complete improved model (denoted by M') is shown in Appendix B, while a top level view 

may be found in Table 4.  

Index Attributes Weights 
1 NETWORK 6 
2 SERVER 6 
3 CLIENT TERMINALS 

AND PERIPHERALS 
4 

4 SYSTEM SOFTWARE 6 
5 APPLICATION 

SOFTWARE 
6 

6 MAINTENANCE 6 
7 TRAINING 4 
8 COMPANY PROFILE 

& PROJECT 
MANAGEMENT 

5 

 

Table 4: Top level view of the improved evaluation model M' 

The aggregation method proposed by ESSE is of the ELECTRE II type [15], because of the 

presence of ordinal scales and of ordinal importance parameters. A brief presentation of the method is 

provided in Appendix C.  

The evaluators assigned values to all basic attributes of M' for the various alternatives (not shown 

here for simplicity). According to the method, for each pair of alternatives (x,y) and for each attribute 

j, a relation Sj may hold, meaning that the alternative x is at least as good as the alternative y, with 

respect to the attribute j. Table 5 shows for each pair (x,y) of alternatives, which of the relations Sj(x,y), 

j=1..8, hold for the various top level attributes. These relations have been extracted by setting the 

concordance threshold to the value c=0.8 and without having veto conditions.  
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Sj(x,y) y 
x  

P1 P2 P3 P4 P5 

P1   5 1,2,3,4,5,6,7,8 3,7,8 
P2 1,2,3,4,5,6,7,8  3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 
P3 1,2,3,4,5,6,7,8 1,2,3,8  1,2,3,4,5,6,7,8 1,2,3,4,7,8 
P4 1,3,4,5,6,7,8  5  1,3,7,8 
P5 1,2,3,4,5,6,7,8 6 4,5,6 1,2,3,4,5,6,7,8  

 

Table 5: The Sj(x,y) relations for the top-level attributes of model M'  

At each entry of Table 5, the numbers indicate the top level attributes for which a relation Sj(x,y) 

holds. For example, the entry in row P5 and column P3 with values 4, 5 and 6 indicates that the 

relations S4(P5,P3), S5(P5,P3) and S6(P5,P3) hold, i.e. P5 is at least as good as P3 with respect to the 

attributes 4 ('System Software'), 5 ('Application Software') and 6 ('Maintenance'). 

Having computed the Sj(x,y) relations for the top level attributes and taking into account their 

weights, we can compute general S relations with respect to all the top level attributes simultaneously. 

These are the following: 

S(P1, P4) 

S(P2, P1), S(P2, P3), S(P2, P4), S(P2, P5) 

S(P3, P1), S(P3, P4), S(P3, P5) 

S(P4, P1) 

S(P5, P1), S(P5, P4) 

From these relations and by using an exploitation procedure we can extract an ordering on the set 

of the alternatives. In our case, we can assign to each alternative a score, according to the formula: σ(x) 

= |{ y: S(x,y)}| - |{ y: S(y,x)}|, x ∈ A. Taking into account the above relations, the following scores are 

computed: 

σ(P1) = -3, σ(P2) = 4, σ(P3) = 2, σ(P4) = -3, σ(P5) = -1 

leading to the final ordering: 

P2 > P3 >P5 > P1 = P4 

This ordering was in accordance with the evaluators' intuition, ranking proposal P2 first and 

proposal P3 second. We also observe that there are differences in the lower positions of the ordering in 

respect with the results obtained by the initial model M, while there is also indifference between P1 

and P4. 

- 17 - 



6. Conclusions - Future Research 

In this paper we have discussed common errors made during the evaluation of software systems. 

These errors are caused because of insufficient understanding of certain fundamental principles of 

decision support methodologies and wrong practical application of evaluation techniques in the 

software industry. The manifestation of these problems has been exemplified through a real world 

example: a tender evaluation concerning the acquisition of a new information system for a large 

organisation. The pitfalls of a specific evaluation model have been pinpointed and it has been shown 

how an improved model has been generated with the use of an intelligent system, which exploits 

successfully packaged knowledge about software problem solving. 

We plan to examine more evaluation situations in order both to enhance the knowledge bases of 

ESSE and to obtain more feedback on the benefits of the adoption of a knowledge based solution 

combined with a sound decision support methodology.  

Moreover, we plan to study and implement evaluation knowledge maintenance within ESSE. 

Currently, the system proposes an evaluation model obtained by a specific past evaluation problem or 

defined by an expert. Our intention is to derive an evaluation model from various past evaluation 

problems of the same type, in order to exploit the expansion of the knowledge base of the system. 

Finally, more MCDA methods will be implemented within ESSE, along with the necessary 

knowledge for their correct application.  
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Appendix A 

Initial Evaluation Model M: List of attributes and associated weights and scales. The aggregation 

method is Weighted Sum. 

 
Attributes Description Weight Scale 

1.8 PERIPHERALS   

1.8.1 Scanners 1 40 - 70 

1.8.2 Auxilliary Memory Devices 1 40 - 70 

1.8.3 UPS 1 40 - 70 

1.8.4 Tape Streamers 1 40 - 70 

2 SOFTWARE   

2.1 OPERATING SYSTEM 4 40 - 70 

2.2 PROGRAMMING TOOLS   

2.2.1 Progr. Language 1  3 50 - 70 

2.2.2 Progr. Language 2 3 50 - 70 

2.2.3 Data Base   

2.2.3.1 Data Base Mgmt System 3 50 - 70 

2.2.3.2 Development Tools 3 50 - 70 

2.2.3.3 Auxilliary Tools 3 50 - 70 

2.2.3.4 Installed Base/Experience 3 50 - 70 

2.3 COMMUNICATIONS SW 3 40 - 70 

2.4 ELECTRONICS CAD 1 40 - 70 

2.5 DOC. MGMT SYSTEM (SW) 1 40 - 70 

3 LEGACY SW PORTING 1 40 - 70 

4 NETWORK MGMT SW 1 40 - 70 

5 TRAINING 3 50 - 70 

6 MAINTENANCE 1 40 - 70 

7 COMPANY PROFILE 3 50 - 70 

8 MISCELLANEOUS   

8.1 System Delivery Schedule 1 40 - 70 

8.2 Project Plan 1 40 - 70 

8.3 Solution Homogeneity 1 40 - 70 

Attrib. Description W Scale 

1 HARDWARE   

1.1 NETWORK   

1.1.1 Design 6 50 - 70 

1.1.2 Active elements 6 50 - 70 

1.1.3 Requirements coverage 6 50 - 70 

1.2 SERVER   

1.2.1 Central Unit 6 50 - 70 

1.2.2 Disk Storage 6 50 - 70 

1.2.3 Other magnetic storage 6 50 - 70 

1.2.4 Requirements coverage 6 50 - 70 

1.3 WIRING - NETWORK 
INSTALLATION 

  

1.3.1 Design 3 50 - 70 

1.3.2 Requirements coverage 3 50 - 70 

1.4 CLIENT TERMINALS   

1.4.1 Low capability model 3 40 - 70 

1.4.2 Average model 3 40 - 70 

1.4.3 Enhanced model 1*  40 - 70 

1.5 PRINTERS   

1.5.1 Low capability model 1 40 - 70 

1.5.2 Average model 1 40 - 70 

1.5.3 Enhanced model 1 40 - 70 

1.6 SENSOR DEVICES 1 40 - 70 

1.7 DOC. MGMT SYSTEM (HW) 1 40 - 70 

 

 

 

                                                      

* Weight 1 is due to the fact that only few terminals of this type were about to be purchased. 

- 20 - 



Appendix B 

Improved Evaluation Model, M', generated with the support of ESSE: List of attributes and 
associated weights and scales. The aggregation method is Electre II. 
Attrib Description Weight Scales 
1 NETWORK 6  
1.1 Network design 2  
1.1.1 MAC Protocol 1 {Ethernet,  

Token Bus, 
TokenRing} 

1.1.2 Cable type 1 {Fiber optic, Broadband 
Coaxial Cable, Base band 

coaxial cable, Twistaid pair} 
1.1.3 Wiring requirements coverage 1 {high, average, low} 
1.2 Active elements 2  
1.2.1 Repeaters 1 {yes, no} 
1.2.2 Bridges 1 {yes, no} 
1.2.3 Gateways 1 {yes, no} 
1.3 Protocols 2  
1.3.1 TCP/IP 1 {yes, no} 
1.3.2 IPX 1 {yes, no} 
1.3.3 NETBEUI 1 {yes, no} 
1.4 Network Management Software 3 {Novell, MS-Windows, 

VINES} 
2 SERVER 6 - 
2.1 CPU 2 - 
2.1.1 Number of CPUs  1 1-4 
2.1.2 CPU type 1 {Pentium,Alpha, UltraSparc, 

...} 
2.1.3 CPU frequency 1 200-500 MHz 
2.2 Memory 2 32-256 MB 
2.3 Total Disk Capacity 1 10-50 GB 
2.4 Requirements coverage 2 {high, average, low} 
3 CLIENT TERMINALS AND 

PERIPHERALS 
4  

3.1 Low capability PC model 3  
3.1.1 CPU clock 2 80-133 MHz 
3.12 Memory 3 8-32 MB 
3.1.3 Total Disk Capacity 2 1-3 GB 
3.1.4 CD ROM speed 1 8x-24x 
3.1.5 Monitor 1 - 
3.1.5.1 Diameter 2 14-15" 
3.15.2 Radiation 1 {low, average, high} 
3.1.5.3 Overall quality 2 {high, average, small} 
3.1.6 VGA card 1 - 
3.1.6.1 card memory 1 512-2048 KB 
3.1.6.2 graphics acceleration 1 {high, average, small} 
3.2 Average PC mocel 4  
3.2.1 CPU clock 2 80-133 MHz 
3.22 Memory 3 8-32 MB 
3.2.3 Total Disk Capacity 2 1-3 GB 
3.2.4 CD ROM speed 1 8x-24x 
3.2.5 Monitor 1 - 
3.2.5.1 Diameter 2 14-15" 
3.25.2 Radiation 1 {low, average, high} 
3.2.5.3 Overall quality 2 {high, average, small} 
3.2.6 VGA card 1 - 
3.2.6.1 card memory 1 512-2048 KB 
3.2.6.2 graphics acceleration 1 {high, average, small} 
3.3 Enhanced PC model 5  
3.3.1 CPU clock 2 133-266 MHz 
3.3.2 Memory 3 16-32 MB 
3.3.3 Total Disk Capacity 2 1-3 GB 
3.3.4 CD ROM speed 1 8x-24x 
3.3.5 Monitor 1 - 
3.3.5.1 Diameter 2 14-15" 
3.35.2 Radiation 1 {low, average, high} 
3.3.5.3 Overall quality 2 {high, average, small} 
3.3.6 VGA card 1 - 
3.3.6.1 card memory 1 512-2048 KB 
3.3.6.2 graphics acceleration 1 {high, average, small} 
3.4 Low capability printer (dot 

matrix) 
2 - 

3.4.1 type 2 {line, character} 
3.4.2 pins 1 9-24 
3.4.3 speed 1 1-10 p/s 
3.5 Average printer model 3 - 
3.5.1 type 3 {laser,inkjet} 
3.5.2 resolution 2 300-600 dpi 

3.5.3 speed 2 4-12p/s 
3.5.4 color 1 {yes, no} 
3.6 Enhanced printer model 4 - 
3.6.1 type 3 {laser,inkjet} 
3.6.2 resolution 2 600-1200 dpi 
3.6.3 speed 2 8-16p/s 
3.6.4 color 1 {yes, no} 
3.7 Scanner 2 - 
3.7.1 type 1 {desktop, hand} 
3.7.2 resolution 1 300-1200 dpi 
3.7.3 colors 1 {24b, 16b, 8b, B/W} 
3.8 Jukebox CD-ROM device 2 - 
3.8.1 Number of drives 2 6-64 
3.8.2 Speed 1 8x-24x 
3.9 Tape streamers 1 - 
3.9.1 Capacity 2 500-4000 KB 
3.9.2 Write speed 1 10-50 MB/min 
3.9.3 Read spead 1 10-50 MB/min 
3.10 UPS 2  
3.10.1 power 1 1000-5000 VA 
4 SYSTEM SOFTWARE 6  
4.1 OPERATING SYSTEM 6 {NT, Novell, Unix,...} 
4.2 C compiler 3  
4.2.1 interface 1 {graphics, text} 
4.2.2 Visual programming 1 {yes, no} 
4.2.3 interface with other languages 1 {yes, no} 
4.2.4 intergrated environment 2 {yes, no} 
4.3 COBOL compiler 2  
4.3.1 interface 1 {graphics, text} 
4.3.2 interface with other languages 1 {yes, no} 
4.3.3 intergrated enveronment 2 {yes, no} 
5 APPLICATION SOFTWARE 6  
5.1 DBMS 3  
5.1.1 platform 2 {Oracle, Ingress, Access, 

SYBASE} 
5.1.2 functionality 3 {high, average, low} 
5.1.3 reliability 3 {high, average, low} 
5.1.4 usability 3 {high, average, low} 
5.1.5 efficiency 2 {high, average, low} 
5.1.6 portability 1 {high, average, low} 
5.2 DBMS Development Tools 2  
5.2.1 Schema editor 1 {yes, no} 
5.2.2 ER diagram editor 2 {yes, no} 
5.2.3 Case tools 1 {yes, no} 
5.3 Auxiliary Tools 2  
5.3.1 wordProcessor 2 {MS-Word, WordPerfect...} 
5.3.2 spreadsheet 2 {MS-Excel, Lotus123} 
5.3.3 image processing 1 {Photoshop, CorelPaint,  
5.3.4 intergration between tools 3 {high, average, low} 
5.4 maturity/Experience 1 {high, average, low} 
5.6 Doc. Mgmt system (Sw) 2  
5.6.1 security function 1 {yes, no} 
5.6.2 electronic mail 1 {yes, no} 
5.6.3 OCR success rate 1 85-100 
5.7 Doc. Mgmt system (Hw) 2  
5.7.1 rewritable optical disks 1 {yes, no} 
5.7.2 storage expandability rate 1 0-100 
5.7.3 hardware data compression 1 {yes, no} 
5.8 Legacy Software Porting 1  
5.8.1 experience 1 {high, average, low} 
5.8.2 project plan 1 {high, average, low} 
6 MAINTENANCE 6  
6.1 24h service 4 {yes, no} 
6.2 spare part availability 2 12-36 months 
6.3 average response time 3 6-48h 
7 TRAINING 4  
7.1 manmonths 3 10-100 
7.2 quality 2 {high, average. low} 
7.3 experience 1 {high, average, low} 
7.4 certification 1 {yes, no} 
8 COMPANY PROFILE & 

PROJECT MANAGEMENT 
5  

8.1 Company Profile 2 {high, average, low} 
8.2 Delivery Time 3 3-9 months 
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Appendix C: The ELECTRE II type method applied to the experiment 

 

ELECTRE II [15] provides a complete or a partial ordering of equivalence classes from the best 

ones to the worst ones. It considers ties and incomparable classes. Equivalent classes are composed of 

alternatives characterised by criteria. ELECTRE II calculates an ordering relation on all possible pairs 

built on the alternative set and constructs a preference relation on this set. 

More precisely consider a set of alternatives A and a set of criteria G. We denote by gj(x) the value 

of alternative x ∈ A under the criterion j ∈ G. Further on consider a binary relation S (to be read: �at 

least as good as�). Then for any pair of alternatives (x, y), we have: 

S(x,y) ⇔C(x,y) ∧ ¬ D(x,y) 

where: 

S(x,y): the alternative x is at least as good as y (x outranks y); 

C(x,y): concordance condition (in our specific case): 
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The conditions under which Sj(x,y) holds depend on the

is:  

- a weak order: Sj(x,y)⇔gj(x)≥gj(y), 

- a semi order: Sj(x,y)⇔gj(x)≥gj(y) - kj, 

- and so on with interval orders, pseudo orders, etc. 
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with: vj(x,y): veto condition on criterion gj ; vj: veto threshold on 

criterion gj ; tj: max value of criterion gj ; bj: min value of criterion gj; 
 preference structure of each criterion. If gj 
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Once the global outranking relation is obtained, we can deduce: 

- a strict preference relation p(x,y), between x and y: 

p(x,y) ⇔ s(x,y) ∧ ¬ s(y,x); 

- an indifference relation i(x,y), between x and y:  

i(x,y) ⇔ s(x,y) ∧ s(y,x); 

- an incomparability relation r(x,y) between x and y: 

r(x,y) ⇔ ¬s(x,y) ∧ ¬ s(y,x); 

The definition of the relation S(x,y) is such that only the property of reflexivity is guaranteed. 

Therefore, neither completeness nor transitivity holds, and thus S(x,y) is not an order on set A. In order 

to obtain an operational prescription, the relation s(x,y) is transformed in a partial or a complete order 

through an �exploiting procedure� which can be of different nature ([20]). In this specific case a �score 

procedure� has been adopted. More precisely consider a binary relation ≥ being a weak order. Then we 

have: 

≥(x,y) ⇔ σ(x) ≥ σ (y) 

where σ(x) = |{ y: S(x,y)}| - |{ y: S(y,x)}| . 

σ(x) being the �score� of x computed as the difference between the number of alternatives to which x is 

�at least as good as� and the number of alternatives which are �at least as good as� x.  

 


