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Abstract. The Degree Anonymity problem arises in the context of
combinatorial graph anonymization. It asks, given a graph G and two
integers k and s, whether G can be made k-anonymous with at most s
modifications. Here, a graph is k-anonymous if the graph contains for
every vertex at least k − 1 other vertices of the same degree. Comple-
menting recent investigations on its computational complexity, we show
that this problem is very hard when studied from the viewpoints of ap-
proximation as well as parameterized approximation. In particular, for
the optimization variant where one wants to minimize the number of
either edge or vertex deletions there is no factor-n1−ε approximation
running in polynomial time unless P = NP, for any constant 0 < ε ≤ 1.
For the variant where one wants to maximize k and the number s of
either edge or vertex deletions is given, there is no factor-n1/2−ε approxi-
mation running in time f(s) ·nO(1) unless W[1] = FPT, for any constant
0 < ε ≤ 1/2 and any function f . On the positive side, we classify the
general decision version as fixed-parameter tractable with respect to the
combined parameter solution size s and maximum degree.

1 Introduction

Releasing social network data without violating the privacy of the users
has become an important and active field of research [17]. One model
aiming for this goal was introduced by Liu and Terzi [15] who transferred
the k-anonymity concept from tabular data in databases [11] to graphs.
Herein, Liu and Terzi [15] require that a released graph contains for every
vertex at least k−1 other vertices with the same degree. The parameter k
controls how many individuals are at least linked to one particular degree
and thus higher values for k give higher levels of anonymity. We remark
that this model has also some weaknesses. Refer to Wu et al. [17] for more
details and further anonymization models.

Here, we study the following variant of the model of Liu and Terzi [15].



Degree Anonymity (Anonym)
Input: An undirected graph G = (V,E) and two positive inte-

gers k and s.
Question: Can G be transformed with at most s modifications into a

k-anonymous graph G′ = (V ′, E′), that is, for each vertex
in G′ there are k − 1 other vertices of the same degree?

We will use the name scheme Anonym-{E/V}-{Ins/Del/Edt} to dis-
tinguish the different graph modifications edge/vertex insertion/deletion/editing.
Liu and Terzi [15] studied edge insertions (Anonym-E-Ins), but also ver-
tex deletions (Anonym-V-Del) [3] and vertex insertions (Anonym-V-
Ins) [4, 7] have been considered. While the focus of previous work was on
experimentally evaluated heuristics and algorithms [14, 15] or computa-
tional complexity and fixed-parameter algorithms [3, 4, 13], we study the
polynomial-time and parameterized approximability of these problems.
To this end, we mostly concentrate on natural optimization variants of
the two problems where either edge deletions (Anonym-E-Del) or ver-
tex deletions (Anonym-V-Del) are allowed. Partially answering an open
question of Chester et al. [6], we show strong inapproximable results, even
when allowing the running time to be exponential in s. We remark that
our results do not transfer to the problem variants allowing to edit up to
s edges (Anonym-E-Edt) and the status of the (parameterized) approx-
imability of the corresponding optimization problems remains unsolved.

Related Work. The basic degree anonymization model was introduced by
Liu and Terzi [15] (also see Clarkson et al. [8] for an extended version);
they also gave an experimentally evaluated heuristic for Anonym-E-Ins.
One of the first theoretical works on this model was done by Chester
et al. [6]. They provided polynomial-time algorithms for bipartite graphs
and showed NP-hardness of generalizations of Anonym-E-Ins with edge
labels. In particular, they asked for effective approximation algorithms
for Anonym-E-Ins and generalizations. Hartung et al. [13] proved that
Anonym-E-Ins is NP-hard and W[1]-hard with respect to (w.r.t.) the
solution size s, even if k = 2. On the positive side, using the heuristic of
Liu and Terzi [15], they showed fixed-parameter tractability of Anonym-
E-Ins w.r.t. the maximum degree in the input graph.

Chester et al. [7] considered a variant of Anonym-V-Ins and gave an
approximation algorithm with an additive error of at most k. Bredereck
et al. [4] investigated the parameterized complexity of several variants of
Anonym-V-Ins which differ in the rules how the inserted vertices can be
made adjacent to existing vertices. The Anonym-V-Del variant studied
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by Bredereck et al. [3] turned out to be NP-hard even on very restricted
graph classes such as trees, split graphs, or trivially perfect graphs.

Our Results. We investigate the approximability of natural optimization
variants of Anonym-V-Del and Anonym-E-Del: Either the budget s
is given and one wants to maximize the level k of anonymity, or k is
given and the goal is to minimize the number of modifications s. The
optimization problems maximizing k with a given budget s are denoted
by Max Anonym-V-Del and Max Anonym-E-Del. The variants min-
imizing s with given k are denoted by Min Anonym-E-Del and Min
Anonym-V-Del.

We show that one cannot approximate Max Anonym-E-Del (Max
Anonym-V-Del) within a factor of n1−ε (n1/2−ε) in f(s)nO(1) time unless
FPT = W[1], for any function f and any 0 < ε ≤ 1 (0 < ε ≤ 1/2). As
the parameter k has size Θ(n) in all employed gap-reductions, we only
manage to exclude polynomial-time approximations for the minimization
versions. More precisely, both Min Anonym-E-Del and Min Anonym-
V-Del cannot be approximated in polynomial time within a factor of
n1−ε unless P = NP.

Complementing the NP-hardness of Anonym-V-Del with k = 2 on
trees [3], we show that Anonym-E-Del remains NP-hard on caterpillars
(a tree having a dominating path), even if k = 2. Extending the fixed-
parameter tractability of Anonym-V-Del w.r.t. the combined parameter
budget and maximum degree (s,∆), we classify Anonym (allowing edge
and vertex insertion as well as deletion) as fixed-parameter tractable w.r.t.
(s,∆).

Due to the space constraints, some proofs are deferred to a full version.

2 Preliminaries

Graph terminology. We use standard graph-theoretic notation. All graphs
studied in this paper are undirected and simple, that is, there are no self-
loops and no multi-edges. For a given graph G = (V,E) with vertex set V
and edge set E we set n := |V | and m := |E|. Furthermore, by degG(v) we
denote the degree of a vertex v ∈ V in G, and ∆G denotes the maximum
degree of any vertex of G. For 0 ≤ d ≤ ∆G, let DG(d) := {v ∈ V |
degG(v) = d} be the block of degree d, that is, the set of all vertices with
degree d in G. Thus, being k-anonymous is equivalent to each block being
of size either zero or at least k.

The subgraph of G induced by a vertex subset V ′ ⊆ V is denoted
by G[V ′]. For an edge subset E′ ⊆ E, V (E′) denotes the set of all end-
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points of edges in E′ and G[E′] := (V (E′), E′). Furthermore, for a vertex
subset V ′ ⊆ V we set G−V ′ := G[V \V ′] and for an edge set E′ ⊆

(
V
2

)
we

set G−E′ := (V,E \E′) and G+E′ = (V,E∪E′). A graph G is k-anony-
mous if for every vertex v ∈ V there are at least k− 1 other vertices in G
having the same degree.

A vertex subset V ′ ⊆ V (an edge subset E′ ⊆ E) is called k-deletion
set if G − V ′ (G − E′, respectively) is k-anonymous. Analogously, for
a set E′′ of edges with endpoints in a graph G such that V + E′′ is
k-anonymous, we call E′′ an k-insertion set for G. We omit subscripts if
the graph is clear from the context.

Approximation. Let Σ be a finite alphabet. Given an optimization prob-
lem Q ⊆ Σ∗ and an instance I of Q, we denote by |I| the size of I, by
opt(I) the optimum value of I and by val(I, S) the value of a feasible
solution S of I. The performance ratio of S (or approximation factor) is

r(I, S) = max
{

val(I,S)
opt(I) , opt(I)

val(I,S)

}

. For a function ρ, an algorithm is a ρ(n)-

approximation, if for every instance I of Q, it returns a solution S such
that r(I, S) ≤ ρ(|I|). An optimization problem is ρ(n)-approximable in
polynomial time if there exists a ρ(n)-approximation algorithm running
in time |I|O(1) for any instance I. A parameterized optimization prob-
lem Q ⊆ Σ∗ ×N is ρ(n)-approximable in fpt-time w.r.t. the parameter k
if there exists a ρ(n)-approximation algorithm running in time f(k)·|I|O(1)

for any instance (I, k) and f is a computable function [16]. It is worth
pointing that in this case, k is not related to the optimization value.

In this paper we use a gap-reduction between a decision problem and
a minimization or maximization problem. A decision problem A is called
gap-reducible to a maximization problem Q with gap ρ ≥ 1 if there exists
a polynomial-time computable function that maps any instance I of A
to an instance I ′ of Q, while satisfying the following properties: (i) if I
is a yes-instance, then opt(I ′) ≥ cρ, and (ii) if I is a no-instance, then
opt(I ′) < c, where c and ρ are functions of |I ′|. If A is NP-hard, then Q
is not ρ-approximable in polynomial time, unless P = NP. In this paper
we also use a variant of this notion, called fpt gap-reduction.

Definition 1 (fpt gap-reduction). A parameterized (decision) prob-
lem A is called fpt gap-reducible to a parameterized maximization prob-
lem Q with gap ρ ≥ 1 if any instance (I, k) of A can be mapped to an
instance (I ′, k′) of Q in f(k) · |I|O(1) time while satisfying the following
properties: (i) k′ ≤ g(k) for some function g, (ii) if I is a yes-instance,
then opt(I ′) ≥ cρ, and (iii) if I is a no-instance, then opt(I ′) < c, where
c and ρ are functions of |I ′| and k.
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The interest of the fpt gap-reduction is the following result that im-
mediately follows from the previous definition:

Lemma 1. If a parameterized problem A is C-hard and fpt gap-reducible
to a parameterized optimization problem Q with gap ρ, then Q is not ρ-
approximable in fpt-time, unless FPT = C, where C is any class of the
parameterized complexity hierarchy.

3 Inapproximability of vertex deletion versions

In this section we consider the optimization problems associated toAnonym-
V-Del, that is Min Anonym-V-Del and Max Anonym-V-Del. We
prove that Min Anonym-V-Del is not n1−ε-approximable in polynomial
time, while Max Anonym-V-Del is not n1/2−ε-approximable in fpt-time
w.r.t. parameter s, even on trees.

Theorem 1. Min Anonym-V-Del is not n1−ε-approximable for any 0 <
ε ≤ 1, unless P = NP.

Theorem 2. For every 0 < ε ≤ 1/2, Max Anonym-V-Del is not n1/2−ε-
approximable in fpt-time w.r.t. parameter s, even on trees, unless FPT =
W[2].

Proof. Let 0 < ε ≤ 1/2 be a constant. We provide an fpt gap-reduction
from the W[2]-hard Set Cover problem [9] parameterized by the so-
lution size h. Set Cover is defined as follows: given a universe U =
{e1, . . . , em}, a collection C = {S1, . . . , Sn} of sets over U , and h ∈ N
the task is to decide whether there is a set cover C′ ⊆ C of size |C′| ≤ h,
that is

⋃

S∈C′ S = U . Let I = (U, C, h) be an instance of Set Cover.
We assume without loss of generality that for each element ei ∈ U there
exists a set Sj ∈ C with ei ∈ Sj. To reduce the amount of indices in the
construction given below we introduce the function f : U → N that maps
an element ei ∈ U to f(ei) = (h+4)i. Let t be an integer greater than or
equal to (mn)(1−2ε)/(2ε). (We will aim for making the constructed graph
t-anonymous.)

The instance I ′ of Max Anonym-V-Del is defined by s = h and on
a graph G = (V,E) constructed as follows: For each element ei ∈ U add
a star K1,f(ei) with the center vertex vei . Denote with VU = {ve1, . . . , v

e
m}

the set of all these center vertices. Furthermore, for each element ei ∈ U
add t stars K1,f(ei)+1.

For each set Sj ∈ C add a tree rooted in a vertex vSj . The root has |Sj |t
child vertices where each element ei ∈ Sj corresponds to exactly t of these
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children, denoted by v
ei,Sj

1 , . . . , v
ei,Sj

t . Additionally, for each ℓ ∈ {1, . . . , t}

we add to v
ei,Sj

ℓ exactly f(ei) degree-one neighbors. Hence, the set gadget
is a tree of depth two rooted in vSj . To ensure that the root vSj does not
violate the t-anonymous property we add t stars K1,deg(vSj )

. We denote

with VC = {vS1 , . . . , v
S
n} the set of all root vertices. Finally, to end up with

one tree instead of a forest, repeatedly add edges between any degree-one-
vertices of different connected components.

We now show that if I is a yes-instance then opt(I ′) ≥ t and if I is a
no-instance then opt(I ′) = 1.

Suppose that I has a set cover of size h. Observe that for each ele-
ment ei ∈ U the only vertex of degree f(ei) is v

e
i , and there are no other

vertices violating the t-anonymous property. The key point in the con-
struction is that, in order to get a t-anonymous graph, one has to delete
vertices of VC . Indeed, let ei ∈ U be an element and vSj a root vertex such

that ei ∈ Sj. By construction the child vertices v
ei,Sj

ℓ of vSj correspond

to ei and therefore have f(ei) child vertices. Thus, deleting vSj lowers the

degree of all v
ei,Sj

ℓ to f(ei) and, hence, v
e
i no longer violates the t-anony-

mous property. Hence, given a set cover of size h one can construct a
corresponding t-deletion set for G.

Conversely, we show that if there exists a 2-deletion set of size at
most h in G, then (U, C, h) is a yes-instance of Set Cover. Let S ⊆ V
be a 2-deletion set of size at most h. First, we show how to construct
a 2-deletion set S′ ⊆ VC such that |S′| ≤ |S|. To this end, initialize S′

as S′ = S ∩ VC . If S
′ is a 2-deletion set, then the construction of S′ is

finished. Otherwise, there is a vertex v in G−S′ such that there is no other
vertex with the same degree as v. Observe that since S′ ⊆ VC , it follows
that v ∈ VU , that is v = vei for some 1 ≤ i ≤ m. Furthermore, observe that
is exactly one vertex in G having a degree d between f(ei)−h ≤ d ≤ f(ei),
namely vei . As S is a 2-deletion set, it follows that S either contains vei or a
vertex u that is adjacent to a vertex w with degG(w) > deg(vei ). In either
case, we add to S′ a vertex vSj ∈ VC such that ei ∈ Sj. By exhaustively
applying this procedure, we end up with S′ being a 2-deletion set. Since
the vertices in VC are the only ones in G that are adjacent to more than
one vertex of degree at least three and all vertices in VU have degree more
than three, it follows that |S′| ≤ |S|.

It remains to show that the set C′ of sets corresponding to the vertices
in S′ forms a set cover. To this end, assume by contradiction that C′ is
not a set cover, that is, there is an element ei /∈

⋃

Sj∈C
′ Sj. However, this

implies that in G−S′ there is exactly one vertex of degree f(ei), namely ei,
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implying that S′ is not a 2-deletion set, a contradiction. As |C′| = |S′| ≤ it is not vei ?it is not vei ?
|S| ≤ h, it follows that if G contains a 2-deletion set of size h, then (U, C, h)
is a yes-instance. Hence, if (U, C, h) is a no-instance, then there exist no
2-deletion set of size at most h.

Thus, we obtain a fpt gap-reduction with the gap t = (mn)
1−2ε
2ε =

(t2m2n2)1/2−ε ≥ |V |1/2−ε since |V | < t2m2n2. From Lemma 1 and since
Set Cover is W[2]-hard [9], we have that Max Anonym-V-Del is not
n1/2−ε-approximable in fpt-time w.r.t. parameter s, even on trees, unless
FPT = W[2]. ⊓⊔

4 Inapproximability of edge deletion versions

In this section, we first show that Anonym-E-Del is NP-hard on cater-
pillars; the corresponding proof is an adaption of the reduction provided
in the proof of Theorem 2. A caterpillar is a tree that has a dominating
path [2], that is, a caterpillar is a tree such that deleting all leaves results
in a path. Then we provide polynomial-time inapproximability results for
Min Anonym-E-Del and Max Anonym-E-Del for bounded-degree
graphs and parameterized inapproximability results for Max Anonym-
E-Del on general graphs.

Theorem 3. Anonym-E-Del is NP-hard on caterpillars, even if k = 2.

Theorem 4. For every 0 < ε ≤ 1, Max Anonym-E-Del is not n1−ε-
approximable even on bounded-degree graphs, unless P = NP.

Theorem 5. For every 0 < ε ≤ 1, Min Anonym-E-Del is not n1−ε-
approximable even on bounded-degree graphs, unless P = NP.

Theorem 6. For every 0 < ε ≤ 1, Max Anonym-E-Del is not n1−ε-
approximable in fpt-time w.r.t. parameter s, unless FPT = W[1].

Proof. We provide an fpt gap-reduction from the W[1]-hard Clique prob-
lem [9] parameterized by the solution size h. Clique is defined as fol-
lows: given a graph G = (V,E) and an integer h ∈ N, the task is to
decide whether there is a subset V ′ ⊆ V of at least h pairwise adja-
cent vertices. Let I = (G,h) be an instance of Clique. Assume w.l.o.g.
that ∆G + 2h + 1 ≤ n, where n = |V |. If this is not the case, then one
can add isolated vertices to G until the bound holds.

We construct an instance I ′ = (G′ = (V ′, E′), s) of Max Anonym-E-
Del as follows: First, copy G into G′. Then, add a vertex u and connect
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it to the n vertices in G′. Next, for each vertex v ∈ V add to G′ degree-
one vertices that are adjacent only to v such that degG′(v) = n − h.
This is always possible, since we assumed ∆G + 2h + 1 ≤ n. Observe
that in this way at most n(n − h) degree-one vertices are added. Now,
set x := ⌈(4n)3/ε⌉ and add cliques with two, n−2h+1, and n−h+1 vertices
such that after adding these cliques the number of degree-d vertices in G′,
for each d ∈ {1, n − 2h, n − h}, is between x + h and x + h + n, that is,
x + h ≤ |DG′(d)| ≤ x + h + n. After inserting these cliques, the graph
consists of four blocks: of degree one, n−h, n−2h, and n, where the first
three blocks are roughly of the same size (between x + h and x + h + n
vertices) and the last block of degree n contains exactly one vertex. To
finish the construction, set s :=

(h
2

)
+ h.

Now we show that if I is a yes-instance, then opt(I ′) ≥ x and if I is a
no-instance, then opt(I ′) < 2s.

Suppose that I contains a clique C ⊆ V of size h. Then, deleting
the

(h
2

)
edges within C and the h edges between the vertices in C and u

does not exceed the budget s and results in an x-anonymous graph G′′.
Since h edges incident to u are deleted, it follows that degG′′(u) = n− h.
Furthermore, for each clique-vertex v ∈ C also h incident edges are deleted
(h − 1 edges to other clique-vertices and the edge to u), thus it follows
that degG′′(v) = n−2h. Since the degree of the remaining vertices remain
unchanged, and |DG′(n − h)| ≥ x + h, it follows that each of the three
blocks in G′′ has size at least x. Hence, G′′ is x-anonymous.

For the reverse direction, suppose that there is a 2s-deletion set S
of size at most s in G′. Since u is the only vertex in G′ with degree n,
and all other vertices in G′ have degree at most n − h, it follows that S
contains at least h edges that are incident to u. Since NG′(u) = V , it
follows that the degree of at least h vertices of the block DG′(n − h) is
decreased by one. Denote these vertices by C. Since |S| ≤ s and h edges
incident to u are contained in S, it follows that at most 2s−h+1 vertices
are incident to an edge in S. Furthermore, since S is a 2s-deletion set, it
follows that the vertices in C are in G′ − S either contained in the block
of degree one or in the block of degree n − 2h. Thus, by deleting the at
most

(h
2

)
remaining edges in S, the degree of each of the h vertices in C is

decreased by at least h− 1. Hence, these
(h
2

)
edges in S form a clique on

the vertices in C and thus I is a yes-instance. Therefore, it follows that
if I is a no-instance, then there is no 2s-deletion set of size s in G′ and
hence opt(I ′) < 2s.

Thus we obtain a gap-reduction with the gap at least x
2s . Set n

′ := |V ′|.
By construction we have 3x ≤ n′ ≤ n2 + 3x+ 3h+ 3n+ 1. By the choice
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of x it follows that x > n′/4, since

n′

4
≤

1

4
(n2 + 3x+ 3h+ 3n+ 1) = x+

1

4
(n2 + 3h+ 3n+ 1− x)

︸ ︷︷ ︸

<0

< x.

Hence the gap is

x

2s
>

n′1−ε+ε

4(h2 + h)
≥ n′1−ε n

′ε

8h2
> n′1−ε xε

8n2
= n′1−ε (4n)

3ε/ε

8n2
> n′1−ε.

⊓⊔

5 Fixed-Parameter Tractability

In previous work, it was shown that Anonym-E-Ins and Anonym-V-
Del are both fixed-parameter tractable with respect to the combined
parameter budget s and maximum degree ∆ [3, 13]. Here we generalize
the ideas behind these results and show fixed-parameter tractability for
the general problem variant where one might insert and delete specified
numbers of vertices and edges.

k-Degree Anonymity Editing (Anonym-Edt)
Input: An undirected graph G = (V,E) and five positive inte-

gers s1, s2, s3, s4 and k.
Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using

at most s1 vertex deletions, s2 vertex insertions, s3 edge
deletions, and s4 edge insertions, such that G′ is k-anony-
mous?

Observe that here we require that the inserted vertices have degree zero
and we have to “pay” for making the inserted vertices adjacent to the
existing ones. In particular, if s4 = 0, then all inserted vertices are isolated
in the target graph. Note that there are other models where the added
vertices can be made adjacent to an arbitrary number of vertices [4, 7].
Our ideas, however, do not directly transfer to this variant.

For convenience, we set s := s1 + s2 + s3 + s4 to be the number of
allowed graph modifications.

Theorem 7. Anonym-Edt is fixed-parameter tractable w.r.t. (s,∆).
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Proof (sketch). Let I = (G = (V,E), k, s1, s2, s3, s4) be an instance of
Anonym-Edt. In the following we give an algorithm finding a solution if
existing. Intuitively, the algorithm first guesses a “solution structure” and
then checks whether the graph modifications associated to this solution
structure can be performed in G. A solution structure is a graph S with
at most s(∆+ 1) vertices where

1. each vertex is colored with a color from {0, . . . ,∆} indicating the
degree of the vertex in G and

2. each edge and each vertex is marked either as “to be deleted”, “to be
inserted”, or “not to be changed” such that:

(a) all edges incident to a vertex marked as “to be inserted” are also
marked as “to be inserted”,

(b) at most s1 vertices and at most s3 edges are marked as “to be
deleted”, and

(c) at most s2 vertices and at most s4 edges are marked as “to be
inserted”.

The intuition about this definition is that a solution structure S contains
all graph modifications in a solution and the vertices that are affected
by the modifications, that is, the vertices whose degree is changed when
performing these modifications. Observe that any solution for I defines
such a solution structure with at most s(∆ + 1) vertices as each graph
modification affects at most ∆ + 1 vertices. This bound is tight in the
sense that deleting a vertex v affects v and his up to ∆ neighbors. Fur-
thermore, observe that once given such a solution structure, we can check
in polynomial time whether performing the marked edge/vertex inser-
tions/deletions results in a k-anonymous graph G′, since the coloring of
the vertex indicates the degrees of the vertices that are affected by the
graph modifications.

Our algorithm works as follows: First it branches into all possibilities
for the solution structure S. In each branch it checks whether performing
the graph modifications indicated by the marks in S indeed result in a
k-anonymous graph. If yes, then the algorithm checks whether the graph
modifications associated to S can be performed in G: To this end, all
edges and vertices marked as “to be inserted” are removed from S and
the marks at the remaining vertices and edges are also removed and the
resulting “cleaned” graph is called S′. Finally the algorithm tries to find S′

as an induced subgraph of G such that the vertex degrees coincide with
the vertex-coloring in S′. This is done by a meta-theorem for bounded
local tree-width graphs [10]. If the algorithm succeeds and finds S′ as
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an induced subgraph, then the graph modifications encoded in S can be
performed which proves that I is a yes-instance. If the algorithm fails
in every branch, then, due to the exhaustive search over all possibilities
for S, it follows that I is a no-instance. Thus, the algorithm is indeed
correct.

6 Conclusion

We have shown strong inapproximability results for the optimization vari-
ants of Anonym-E-Del and Anonym-V-Del. We leave two major open
questions concerning polynomial-time approximability and parameterized
approximability: In all our gap reductions the value of k is in the order
of n. This leads to the question whether with constant k Min Anonym-E-
Del or Min Anonym-V-Del are constant-factor approximable in poly-
nomial time? Second, we failed to transfer the inapproximability results
to Anonym-E-Edt where we require that the number of edge insertions
plus deletions is at most s. Here, handling the possibility to revert al-
ready changed degrees seems to be crucial in order to obtain any ap-
proximation result (positive or negative) for the optimization variants
of Anonym-E-Edt. This leads to the question whether there are “rea-
sonable” (parameterized) approximation algorithms for the optimization
variants of Anonym-E-Edt?
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