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Abstract

Large Language Models (LLMs) have demonstrated impressive reasoning capabili-
ties, yet their direct application to NP-hard combinatorial problems (CPs) remains
underexplored. In this work, we systematically investigate the reasoning abilities
of LLMs on a variety of NP-hard combinatorial optimization tasks and introduce
ACCORD: Autoregressive Constraint-satisfying generation for COmbinatorial op-
timization with Routing and Dynamic attention. ACCORD features a novel dataset
representation and model architecture that leverage the autoregressive nature of
LLMs to dynamically enforce feasibility constraints, coupled with attention-based
routing to activate problem-specific LoRA modules. We also present the ACCORD-
90k supervised dataset, covering six NP-hard combinatorial problems: TSP, VRP,
Knapsack, FlowShop, JSSP, and BinPacking. Extensive experiments demonstrate
that our ACCORD model, built on an 8B-parameter Llama backbone, consistently
outperforms standard prompting and input-output methods, even when compared
to much larger LLMs, such as gpt-4. Ablation studies further show that our output
structure enhances solution feasibility. To the best of our knowledge, this is the
first large-scale, end-to-end framework for exploring the applications of LLMs to a
broad spectrum of combinatorial optimization problems. The codes are publicly
available at 1

1 Introduction

Large Language Models (LLMs) have rapidly established themselves as versatile engines for reason-
ing across a broad spectrum of tasks, encompassing arithmetic, commonsense logic , [27], [7], [6].
Among the prominent strategies enabling such capabilities is the Chain-of-Thought approach, which
allows these models to decompose complex problems into sequential, interpretable steps [31].

Recent efforts have sought to adapt these reasoning techniques to address more advanced optimization
tasks. Combinatorial optimization problems (CPs) are decision-making challenges where the goal is
to select an optimal arrangement or subset from a large, discrete set of possibilities. Classic examples
include the Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), and Job Shop

1https://github.com/starjob42/ACCORD
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Scheduling Problem (JSSP), which have widespread applications in logistics, manufacturing, and
artificial intelligence [18]. Due to their NP-hard nature, even moderately sized instances possess a
combinatorial explosion of potential solutions, rendering brute-force approaches infeasible. As a
result, practical methods typically rely on heuristics or approximation algorithms to provide near-
optimal solutions within reasonable time frames. As NP-hard problems, CPs present huge obstacles
in practical settings [24]. Presently, the predominant paradigm in industry relies on metaheuristic
algorithms—sophisticated combinations of simple, efficient heuristics—for solving CPs under various
constraints. However, the success of these heuristics is often highly sensitive to the specific structure
and requirements of each problem, necessitating tailored approaches for optimal results.
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Figure 1: Overview of the ACCORD inference pipeline. As an example, a knapsack problem
described in natural language is provided as input, then Attention based Dynamic router3 activates the
corresponding LoRA layer specialized for knapsack tasks. Multiple candidate solutions are generated
via sampling, each checked for feasibility. The best feasible solution is returned as the final output.
Note that the pipeline generalizes to other combinatorial problems in the same manner; knapsack is
shown here for illustration.

At the same time, investigations into leveraging LLMs for combinatorial problem solving have
revealed significant research gaps. While the latest breakthroughs highlight the promise of LLMs in
diverse reasoning scenarios [1], [14], [30], [34], their full potential in the context of combinatorial
optimization remains largely untapped. Applying LLMs directly to these problems presents unique
challenges: LLMs are trained primarily for natural language generation, not for enforcing strict
combinatorial constraints, leading to issues such as hallucinations (plausible but infeasible solutions)
[12], lack of optimality, and limited interpretability [28]. Furthermore, the absence of systematic
search or explicit constraint mechanisms means LLM outputs can violate feasibility or fail to improve
upon prior attempts. Recent advances have begun to explore the application of large language models
(LLMs) to combinatorial optimization (CO). Numerous prompting-based approaches have been tested
on CO tasks [32, 13, 22, 31, 35, 20, 14], demonstrating progress in solution quality and constraint
handling. However, to date, there has been no comprehensive study evaluating a unified fine-tuned
LLM-based framework for NP-hard CO problems across multiple domains.

We introduce ACCORD (Autoregressive Constraint-satisfying generation for COmbinatorial opti-
mization with Routing and Dynamic attention), a framework for evaluating LLMs on combinatorial
optimization. Our contributions are: (i) the ACCORD-90k dataset for TSP, VRP, Knapsack, Flow-
Shop, JSSP, and BinPacking, using an autoregressive constraint-aware representation; (ii) a model
architecture with attention-based dynamic routing and task-specific LoRA modules; (iii) extensive
ablations showing lower optimality gaps and higher feasibility than list-of-lists and SOTA prompting
(e.g., GPT-4 with Code Interpreter). ACCORD yields feasibility gains of 24.86% (FlowShop), 10%
(TSP, VRP), 7% (JSSP), 4% (Knapsack), and 2% (BinPacking). This is the first large-scale, end-to-end
CO framework with LLMs, opening new directions in symbolic reasoning and optimization.
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Table 1: Optimality gap (%) of prompting methods (GPT-4 with code interpreter) vs. ACCORD
(Llama 8B). Lower is better. N/A: no feasible solution.

Size Method Knapsack BinPack TSP VRP JSSP

5

IO (GPT-4) 90.1 108.2 100.3 102.0 105.3
CoT (GPT-4) 66.9 78.2 81.2 78.2 79.4
SR (GPT-4) 62.0 77.4 71.6 72.5 71.7

LtM (GPT-4) 21.6 40.0 43.6 40.7 44.1
SGE (GPT-4) 8.1 9.1 8.3 11.9 9.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 3.9* 0.0* 0.6* 1.0* 0.0*

8

IO (GPT-4) 103.5 112.8 116.9 116.3 108.2
CoT (GPT-4) 73.8 85.1 89.0 89.5 85.2
SR (GPT-4) 72.6 86.3 85.6 83.3 78.4

LtM (GPT-4) 26.4 52.7 53.5 54.4 49.8
SGE (GPT-4) 14.9 21.0 15.2 19.7 21.3

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 7.4* 0.0* 1.8* 1.0* 5.0*

12

IO (GPT-4) 101.5 120.7 121.6 118.5 117.6
CoT (GPT-4) 79.3 93.8 86.8 90.1 89.3
SR (GPT-4) 77.1 82.2 88.6 88.4 87.0

LtM (GPT-4) 35.8 55.4 57.5 59.2 56.0
SGE (GPT-4) 16.8 22.4 16.1 24.0 22.9

IO (Llama 8B) N/A N/A N/A N/A N/A
ACCORD (Llama 8B) 5.1* 2.6* 2.9* 2.2* 12.4*

2 Main Method: ACCORD Representation for Feasibility-Aware Solution
Generation

A core challenge in applying Large Language Models (LLMs) to combinatorial optimization is
the effective encoding of feasibility constraints within the generated solutions. Conventional rep-
resentations, such as the “list of lists” format, provide direct encodings of solution sets, which are
familiar to LLMs due to their prevalence in general-purpose data and code corpora. However, these
representations are static—constraints are only checked after solution generation, offering limited
guidance for incremental feasibility during the autoregressive decoding process. To address this limi-
tation, we decided to utilize the auto-regressive nature of the LLMs and developed a representation,
which is specifically designed to leverage the autoregressive generation paradigm of LLMs. Unlike
the list-based format, our representation decomposes solutions into a sequence of state transitions,
with each step not only specifying the next element of the solution but also explicitly updating and
exposing the relevant feasibility metrics (e.g., cumulative weights, distances, machine usage, or
value). This design allows the model to compute and check constraints dynamically as each token
is generated, closely mimicking the typical reasoning and verification process of a human solver.
ACCORD representation embeds constraint satisfaction directly into the generation process. For
instance, in the Knapsack problem, each item addition is accompanied by an explicit update of the
running total value and weight, immediately verifying the capacity constraint at each step:

[[item_id, weight, value] -> value: prev_v + value = new_v,
weight: prev_w + weight = new_w <= capacity], ...

Please refer to page 1 in Appendix A for a concrete example. Similarly, for Bin Packing, the
incremental assignment of items to bins is annotated with cumulative weights, ensuring that no
bin exceeds its capacity as the sequence unfolds. Routing problems (VRP, TSP) and scheduling
problems (JSSP) are analogously handled by tracking cumulative distances or machine times within
the autoregressive output stream. Example of each of these generates is avaialable in the Appendix A.
This approach transforms the constraint satisfaction problem into a stepwise process, where feasibility
checks are interleaved with generation. As a result, the LLM is naturally guided away from infeasible
sequences, as each decision is immediately contextualized by the current state of the solution.

2.1 Dataset Generation

We generated synthetic datasets for several CO problems using Google OR-Tools [10], produc-
ing about 15,000 instances per task in both list-of-lists and ACCORD formats. TSP & VRP:
Instances varied by location count (N ∈ {5, . . . , 100}) and vehicles (V ∈ {1, . . . , 10}), solved via
‘PATH_CHEAPEST_ARC‘. Knapsack: Varied item counts and constraints; instances with OR-Tools
timeouts were discarded. Bin Packing: Item counts, weights, and bin limits were randomized;
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solutions minimized bin usage. JSSP: Instances ranged from 10× 10 to 100× 20 with random job
sequences, solved via CP-SAT. FSSP: Flowshop instances up to 50× 2 used the NEH heuristic [23].
See Appendix D for details.
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(a) Flow Shop
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(b) JSSP
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(c) BinPack
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(d) Knapsack
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(f) VRP

Figure 2: This figure illustrates the performance of the LLama 3.1 (8B) and LLama 3.2 (1B) models in
terms of the average gap percentage compared to the OR-Tools solution, where a lower gap indicates
better performance. The left y-axis represents the average gap percentage, while the right y-axis
corresponds to the running time in seconds. Bar plots indicate the average gap. The line plots depict
the average running time per instance size, with the x-axis showing the problem size in terms of the
number of nodes in the graph representation. Instances labeled as "No Data" indicate that, within a
sampling budget of 60, the model failed to generate any feasible solution.

3 Model Architecture

To dynamically activate the correct LoRA layers for each combinatorial optimization problem, we
use an attention-based Dynamic Router TextClassifier that selects the appropriate LoRA weights
based on the instruction text (see Figure 1). Our model builds on a transformer architecture, enhanced
to capture problem-specific features. Each input token xi is embedded with positional information
and normalized:

E′ = Dropout(LayerNorm(Etoken(x) +Epos(p))) (1)

The embeddings are projected to the hidden dimension and passed through several transformer
layers with alternating multi-head attention and feed-forward sublayers, each followed by layer
normalization. Token representations from the final transformer layer are pooled using attention-
based pooling:
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r =

n∑
i=1

aihi y = W2 · LayerNorm(GELU(W1r+ b1)) + b2 (2)

Finally, the pooled vector r is passed through a classification head to produce logits y for each
problem class. This architecture enables dynamic, instruction-based activation of problem-specific
LoRA adapters.
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Figure 3: Average feasibility comparison with OR-Tools solution across different problem instance
sizes; the higher the feasibility percentage, the better.

3.1 Empirical Comparison with List-of-List Representation

We assess representation impact by fine-tuning LLaMA 3.1 8B on both list-of-lists and ACCORD
formats using identical hyperparameters and inputs (Section 2.1). Validation uses 100 out-of-
distribution instances for each n ∈ {5, 8, 10, 12, 15, 20, 25, 30, 50}. During inference (Fig. 1), an
Attention-Based Dynamic Router (Section 3) selects the LoRA branch, generating 60 candidate
solutions per instance. The best feasible solution (lowest gap) is selected, where the optimality gap is
defined as Gap = Model Value−OR-Tools Value

OR-Tools Value .

where a lower gap indicates a better solution. Feasibility is measured as the percentage of generated
solutions that satisfy all constraints. Our results (Fig. 3) show that, although list-of-list representation
is familier to LLMs, models trained with this format tend to ignore feasibility constraints, resulting in
lower feasibility rates and higher optimality gaps. In contrast, the ACCORD representation explicitly
encodes feasibility into the output, enabling the LLM to produce a larger proportion of valid and
near-optimal solutions, particularly as the problem size increases. Table 1 further compares our
method against various prompting strategies (see Section B for baselines) on both LLama 8B and
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GPT-4 with code interpreter enabled. Notably, while GPT-4 can potentially generate and execute
solver code, our ACCORD-based method enables the LLM to generate solutions end-to-end without
code execution. For both our approach and all prompting baselines, 60 samples per instance are
generated, and the best result is selected. ACCORD consistently outperforms prompting strategies
across all 6 combinatorial optimization tasks, and achieves optimal solutions on smaller instances.
We also assess the impact of model size on average gap, feasibility, and inference time (Fig. 2). The
8B model mostly outperforms the 1B model in feasibility and optimality gap, with only a moderate
increase in inference time. For harder instances, such as JSSP, the 1B model fails to find feasible
solutions within the sampling limit. Our results demonstrate that scaling from 1B to 8B parameters
yields a significant 31.5% relative improvement in solution quality, reducing the average gap from
6.54% to 4.48% (Table 2). The most substantial improvements were observed in routing problems,
with TSP and VRP showing 65% and 54% relative gap reductions, respectively. Bin packing problems
showed minimal sensitivity to model scale, with only a 1% improvement. In addition to our synthetic
OR-Tools instances, we also evaluated ACCORD-8B on Taillard permutation flow-shop benchmarks
(50 jobs × 10 machines and 50 jobs × 20 machines; avg. gap ≈ 13.7%) and on job-shop benchmarks
TAI[26] (15 × 15 to 50 × 20; avg. gap ≈ 21.7%) and DMU[8] (20 × 15 to 50 × 15; avg. gap ≈ 22.1%)
against standard heuristics (MWR/MOR/SPT) and the L2D neural scheduler (see Supplementary
Material for full results and runtimes).

3.2 Relationship Between Latent Space Proximity and Solution Feasibility

We analyzed 500 TSP instances using ACCORD and list-of-lists formats to study how latent represen-
tations relate to solution feasibility. Hidden states from LLaMA 3.1 8B were reduced via PCA, and
Euclidean distances between paired representations were computed. We found a significant negative
correlation between latent distance and feasibility (r = −0.1082, p = 0.0155), with feasibility
decreasing as distance from the ACCORD manifold increased. Despite a large performance gap
(71.4% feasible for ACCORD vs. 1.6% for list-of-lists), this trend suggests LLMs encode constraint
satisfaction geometrically, with latent proximity predicting solution quality.
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Figure 4: Latent representation distance versus solution feasibility on TSP problems, demonstrating
negative correlation between distance and constraint satisfaction.

4 Conclusion, Limitations and Future Work

We introduced ACCORD, a framework that encodes combinatorial constraints into an autoregressive
text format and uses dynamic LoRA routing to probe an LLM’s end-to-end ability on NP-hard tasks.
On six standard benchmarks (TSP, VRP, FlowShop, JSSP, Knapsack, BinPacking), an 8 B-parameter
model trained with ACCORD achieves strong feasibility rates and competitive optimality gaps
compared to prompting and a naïve list-of-lists format. Our goal is not to supplant specialized solvers
but to map out how far small LLMs can go as self-contained combinatorial reasoners. By releasing
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ACCORD and its 90K dataset, we offer a reproducible codebase for future work at the intersection
of optimization and generative modeling. Despite its strong performance, ACCORD is bounded
by the LLM’s context window (limiting very large instances) and relies on LoRA adapters on an
8B-parameter model. In future work, we will investigate larger backbones (with full fine-tuning),
expand the effective context via external memory or hierarchical encoding, and apply ACCORD to
real-world, large-scale optimization scenarios.
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A Technical Appendices and Supplementary Material

B Related Work

B.1 Heuristic and Machine Learning Approaches on CO problems

Combinatorial optimization has been tackled with both heuristic and exact methods. Simple priority
dispatching rules (PDRs), such as shortest processing time or earliest due date, are computationally
efficient but often yield suboptimal solutions due to their greedy nature [18]. Metaheuristics (e.g.,
simulated annealing, tabu search, genetic algorithms) offer improved solution quality, and exact
approaches like the shifting bottleneck procedure [2], mixed-integer programming, and constraint
programming can find optimal solutions for small instances, though at high computational cost [25, 9].
Recently, machine learning, particularly deep reinforcement learning (RL) and graph neural networks
(GNNs) have advanced combinatorial optimization [33, 16, 17]. RL methods treat scheduling as
sequential decision making, learning dispatching policies via environment interaction [33]. GNNs en-
code jobs and machines as nodes, enabling permutation-invariant representations and, when combined
with RL, can model complex dependencies [16]. Attention-based and sequence-to-sequence models
further enhance performance on tasks like TSP and VRP, often utilizing iterative refinement [17].

B.2 Large Language Models in Combinatorial Optimization

The advent of LLMs has introduced new paradigms for CO. Early work explored whether LLMs
could generate solutions through prompting [32], [13], [22], [31] [35], [20], [14]. Prompting-based
strategies, such as OPRO, involve iterative refinement based on feedback, while methods for VRP
employ self-debugging and verification to enhance feasibility [13]. However, scalability remains
a challenge, as even strong prompting techniques struggle on larger or more complex instances
[22]. Recent research has explored a variety of prompting strategies to leverage LLMs for solving
combinatorial optimization (CO) problems. The Input-Output (IO) method presents the LLM with
multiple examples of input and corresponding output solution pairs. The LLM is then prompted to
generate an output solution in the same format as the provided examples. This approach relies on the
LLM’s ability to generalize the mapping from input to output based on observed patterns. In Chain-
of-Thought (CoT) prompting, the LLM is guided to produce a sequence of intermediate reasoning
steps, or "thoughts," before arriving at the final answer [31]. This technique encourages the model to
break down complex CO tasks into structured, stepwise reasoning, improving both transparency and
solution quality. Least-to-Most (LtM) prompting strategy aims to decompose a complex problem
into a sequence of simpler subproblems, solving them incrementally [35]. Each subproblem builds
upon the solutions of previous ones, enabling the LLM to tackle challenging CO tasks through a
series of manageable steps. Self-Refinement (SR) is an iterative prompting technique wherein the
LLM first generates an initial solution, then provides feedback on its own output, and finally refines
the solution based on this feedback [20]. The process repeats until a satisfactory solution is reached.
Self-Guiding Exploration for Combinatorial Problems (SGE) autonomously generates multiple
thought trajectories for a given CO task [14]. Each trajectory represents a distinct heuristic approach,
inspired by metaheuristics. SGE decomposes these trajectories into actionable subtasks, executes
them sequentially, and refines the results to ensure optimal solutions. Fine-tuning LLMs for CO tasks
is another active area [1],[21] . [1] showed that fine-tuned LLM on job-shop scheduling, demonstrates
significant improvements in solution quality. Similarly, [21] applied fine-tuning to TSP instances
with promising but size-limited results. Hybrid methods integrate LLMs into evolutionary or search
frameworks, where the LLM guides genetic operations or receives feedback from constraint solvers
to iteratively improve solutions [19, 29, 5]. While promising, these approaches often entail significant
computational overhead and still face scaling hurdles.

C Preliminaries: Overview of Classic Combinatorial Optimization Problems

In this section, we introduce several foundational combinatorial optimization problems, explaining
their goals and constraints in accessible terms while also providing their standard mathematical
formulations. General Combinatorial Optimization Problem Combinatorial optimization involves
searching for the best solution from a finite set of possibilities. Formally, given a set of feasible
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solutions S and an objective function f : S → R, the goal is to find

s∗ = argmin
s∈S

f(s)

or, in some cases, to maximize f(s) depending on the problem.

Traveling Salesman Problem (TSP) Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city exactly once and returns to the starting
point. Mathematically, for n cities V = {1, 2, . . . , n} and a distance matrix D ∈ Rn×n, we seek a
tour (a permutation π of all cities) that minimizes the total travel distance, where π(n+ 1) = π(1) to
ensure the tour closes:

min
π∈Pn

n∑
i=1

Dπ(i),π(i+1)

Vehicle Routing Problem (VRP) The VRP extends the TSP to multiple vehicles. Given a depot,
n customers (with demands qi), and a fleet of vehicles each with capacity Q, the goal is to design
routes—each starting and ending at the depot—so that every customer is visited exactly once, no
vehicle exceeds its capacity, and the total travel distance is minimized:

min
m∑

k=1

ℓk∑
j=0

Dvk
j ,v

k
j+1

subject to
m⋃

k=1

{vk1 , . . . , vkℓk} = V (All customers served)

ℓk∑
j=1

qvk
j
≤ Q ∀k (Capacity constraint)

Job Shop Scheduling Problem (JSSP) JSSP schedules n jobs, each as a sequence of operations
on specific machines. Each operation Oj,k requires machine Mj,k for pj,k time units, following job
order. Let Sj,k and Cj,k be the start and completion times. The objective is to minimize makespan:

minCmax = max
j

Cj,ℓj

subject to:

(Precedence) Sj,k+1 ≥ Cj,k

(No machine conflicts) Sj,k ≥ Cj′,k′ or Sj′,k′ ≥ Cj,k,

∀(j, k) ̸= (j′, k′) with Mj,k = Mj′,k′

Knapsack Problem (KP) Given a set of items, each with a value and weight, what is the most
valuable combination of items you can carry without exceeding the weight limit of your knapsack.
With n items (weights wi, values vi) and capacity W , choose xi ∈ {0, 1} (item picked or not) to
solve:

max

n∑
i=1

vixi s.t.
n∑

i=1

wixi ≤ W

Bin Packing Problem (BPP) Given a set of items of varying sizes, how can you pack them into the
fewest number of fixed-size bins. For n items of sizes si ∈ (0, 1], assign them to bins of capacity 1
so as to minimize the total number of bins K:

minK

subject to:

∑
i∈Bk

si ≤ 1 ∀k,
K⋃

k=1

Bk = {1, . . . , n}, Bk ∩Bk′ = ∅ ∀k ̸= k′
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where Bk is the set of items in bin k.

Flow Shop Scheduling Problem (FSSP)

We consider the permutation flow shop scheduling problem (FSSP), where all jobs are processed in
the same order on each of m machines. Given n jobs J = {1, 2, . . . , n} and processing times pj,k
for job j on machine k, the goal is to find a job sequence π that minimizes the makespan.

Let Cj,k denote the completion time of job j on machine k. The constraints are:

(Machine order) Cπ(i),k ≥ Cπ(i),k−1 + pπ(i),k ∀i = 1, . . . , n, k = 2, . . . ,m

(Job sequence) Cπ(i),k ≥ Cπ(i−1),k + pπ(i),k ∀i = 2, . . . , n, k = 1, . . . ,m

The objective is to find the permutation π∗ that minimizes the makespan:

min
π∈Pn

Cmax = min
π∈Pn

max
i

Cπ(i),m

where Cπ(i),m is the completion time of job π(i) on the last machine.

Below, we provide representative examples from each of the major combinatorial optimization
problems in our dataset. Each example is shown in both the standard “list of list” representation and
the “Accord” (arrow-based) representation.

Knapsack Problem

Instruction: You are given a paired representation (value, weight): Find a set of items to pack into a
container with a maximum weight capacity = 20 that maximizes total value of packed items.

• Input: 
6 5
10 8
7 4
6 2
1 1


• Output (List of List):

Solution: [(6, 5), (10, 8), (7, 4), (6, 2), (1, 1)]
Value: 6+10+7+6+1=30
Weight: 5+8+4+2+1=20<=20

• Output (Accord):

Solution:
[[6, 5] -> value:0+6=6, weight:0+5=5<=20],
[[10, 8] -> value:6+10=16, weight:5+8=13<=20],
[[7, 4] -> value:16+7=23, weight:13+4=17<=20],
[[6, 2] -> value:23+6=29, weight:17+2=19<=20],
[[1, 1] -> value:29+1=30, weight:19+1=20<=20]

Total Value: 30
Total Weight: 20<=20

Bin Packing Problem

Instruction: Given a list of items (id, weight), determine the minimum number of bins (capacity=77)
needed to pack all items without exceeding the capacity.

• Input:
[(0, 17), (1, 24), (2, 19), (3, 11), (4, 27)]

• Output (List of List):
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The minimum number of bins required is 2. The bin assignments are: [[0, 1, 2, 3], [4]].

• Output (Accord):
Bin 1:
(0, 17)->17 (1, 24)->41 (2, 19)->60 (3, 11)->71<=77
Bin 2:
(4, 27)->27<=77
Total bins required: 2

Vehicle Routing Problem (VRP)

Instruction: Given customers with coordinates and a depot, and multiple vehicles of capacity 85,
find the minimum-length routes serving all customers.

• Coords: 0:(34, 42), 1:(39, 58), 2:(46, 48), 3:(57, 49), 4:(45, 16)
• Output (List of List):
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (0): (34, 42)]
[(0): (34, 42), (1): (39, 58), (2): (46, 48),
(3): (57, 49), (4): (45, 16), (0): (34, 42)]
Overall Total Distance: 102

• Output (Accord):
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (0): (34, 42) + 0
Vehicle Route: (0): (34, 42) -> (1): (39, 58) + 16 -> (2): (46, 48) + 12 ->
(3): (57, 49) + 11 -> (4): (45, 16) + 35 -> (0): (34, 42) + 28
Overall Total Distance: 102

Traveling Salesman Problem (TSP)

Instruction: Given customers with coordinates and a depot, and 1 vehicle, find the minimum-length
route serving all customers.

• Coords: 0:(17, 22), 1:(63, 8), 2:(22, 60), 3:(3, 29), 4:(7, 12)
• Output (List of List):
[(0): (17, 22), (4): (7, 12), (3): (3, 29), (2): (22, 60), (1): (63, 8), (0): (17, 22)]
Overall Total Distance: 181

• Output (Accord):
Vehicle Route: (0): (17, 22) -> (4): (7, 12) + 14 -> (3): (3, 29) + 17 ->
(2): (22, 60) + 36 -> (1): (63, 8) + 66 -> (0): (17, 22) + 48
Overall Total Distance: 181

Job Shop Scheduling Problem (JSSP)

Instruction: Optimize schedule for 2 Jobs (J) across 6 Machines (M) to minimize makespan. Each
M can process only one J at a time, and once started, J cannot be interrupted.
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• Input:

J0:
M2:205 M1:157 M0:198 M5:79 M3:110 M4:32
J1:
M3:179 M4:108 M2:82 M5:112 M1:136 M0:27

• Output (List of List):

[[0, 2, 0, 205], [1, 3, 0, 179], [1, 4, 179, 108], [0, 1, 205, 157], [1, 2, 287, 82],
[0, 0, 362, 198], [1, 5, 369, 112], [1, 1, 481, 136], [0, 5, 560, 79], [1, 0, 617, 27],
[0, 3, 639, 110], [0, 4, 749, 32]]
Maximum end completion time or Makespan: 781

• Output (Accord):

Solution:
J0-M2: 0+205 -> 205,
J1-M3: 0+179 -> 179,
J1-M4: 179+108 -> 287,
J0-M1: 205+157 -> 362,
J1-M2: 287+82 -> 369,
J0-M0: 362+198 -> 560,
J1-M5: 369+112 -> 481,
J1-M1: 481+136 -> 617,
J0-M5: 560+79 -> 639,
J1-M0: 617+27 -> 644,
J0-M3: 639+110 -> 749,
J0-M4: 749+32 -> 781,
Maximum end completion time or Makespan: 781

Flow Shop Scheduling Problem (FSSP)

Input:

J1:
M1:12 M2:7
J2:
M1:8 M2:4
J3:
M1:4 M2:15
J4:
M1:5 M2:9

Output (List of List):

[[3, 1, 0, 4], [3, 2, 4, 15], [2, 1, 4, 8], [4, 1, 12, 5],
[1, 1, 17, 12], [2, 2, 19, 4], [4, 2, 23, 9], [1, 2, 32, 7]]
Maximum end completion time or Makespan: 39

Output (Accord):

J3: M1(0+4=4) -> M2(4+15=19)
J2: M1(4+8=12) -> M2(19+4=23)
J4: M1(12+5=17) -> M2(23+9=32)
J1: M1(17+12=29) -> M2(32+7=39)

Maximum end completion time or Makespan: 39
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D Training Details

We conducted supervised fine-tuning using input-output pairs for two models from Meta: Llama 3.1
8B and Llama 3.2 1B. To minimize memory usage during training, we employed 4-bit quantized
versions of these models and trained each for 2 epochs. For a fair comparison, we fine-tuned
each model with the same hyperparameters, varying only the output representation: once using
the list-of-lists format and once using the ACCORD format, while keeping the input and all other
hyperparameters identical. We used Rank-Stabilized Low-Rank Adaptation (RSLoRA) [15] with a
rank of r = 64 and α = 64. The two epochs, training required roughly 40 hours and about 30GB
of GPU memory on Nvdidia RTX A6000 GPU. We limited the context length of the model to 40k
instead of the original 128k, to reduce memory consumption and increase the speed of fine-tuning.
“Context length” refers to the maximum number of tokens (words or subwords) the model can process
at once as input. More training details and curves are available in D.

Training details

The model being fine-tuned is LLaMA 3.1, an 8 billion parameter model from Meta[3], using a 4-bit
quantized version to reduce memory usage. Finetning was conducted using Stabilized Low-Rank
Adaptation (RsLoRA) [15] with rank r = 64 to introduce learnable parameters specifically in targeted
layers. [15] Compared to Lora[11] RsLoRa improves the stability of training by modifying the rank
during adaptation[15]. The target modules include:

target_modules = {q_proj, k_proj, v_proj, o_proj,
gate_proj, up_proj, down_proj} (3)

The LoRA-specific parameters are configured as follows:

• Rank (r): 64
• LoRA Alpha (α): 64
• LoRA Dropout: 0
• Bias: none

This resulted in number of trainable parameters = 167, 772, 160 or 0.02 % of the entire Llama 8B
model’s parameters.

Quantization and Memory Efficiency

The model is loaded in 4-bit precision to reduce memory consumption. Gradient checkpointing is
enabled using the unsloth [4] method, to fit longer sequences by saving memory. This reduces the
VRAM usage by approximately 30%, enabling larger batch sizes.

Table 2: The effect of the model size on Average Gap (%): Comparison Across CO Problems
Problem 1B Model 8B Model
BINPACK 1.01% 1.00%
FSSP 7.92% 7.17%
JSSP N/A 6.08%
KNAPSAK 5.90% 5.33%
TSP 8.11% 2.84%
VRP 9.74% 4.50%
AVERAGE 6.54% 4.48%
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