
Perfect Information Monte Carlo with Postponing Reasoning
Jérôme Arjonilla

Université Paris Dauphine - PSL

Paris, France

jerome.arjonilla@hotmail.fr

Abdallah Saffidine

University of New South Wales

Sydney, Australia

abdallah.saffidine@gmail.com

Tristan Cazenave

Université Paris Dauphine - PSL

Paris, France

tristan.cazenave@dauphine.psl.eu

ABSTRACT

Imperfect information games, such as Bridge and Skat, present chal-

lenges due to state-space explosion and hidden information, posing

formidable obstacles for search algorithms. Determinization-based

algorithms offer a resolution by sampling hidden information and

solving the game in a perfect information setting, facilitating rapid

and effective action estimation. However, transitioning to perfect

information introduces challenges, notably one called strategy fu-

sion. This research introduces ‘Extended Perfect InformationMonte

Carlo’ (EPIMC), an online algorithm inspired by the state-of-the-art

determinization-based approach Perfect Information Monte Carlo

(PIMC). EPIMC enhances the capabilities of PIMC by postponing the

perfect information resolution, reducing alleviating issues related

to strategy fusion. However, the decision to postpone the leaf evalu-

ator introduces novel considerations, such as the interplay between

prior levels of reasoning and the newly deferred resolution. In our

empirical analysis, we investigate the performance of EPIMC across

a range of games, with a particular focus on those characterized by

varying degrees of strategy fusion. Our results demonstrate notable

performance enhancements, particularly in games where strategy

fusion significantly impacts gameplay. Furthermore, our research

contributes to the theoretical foundation of determinization-based

algorithms addressing challenges associated with strategy fusion,

thereby enhancing our understanding of these algorithms within

the context of imperfect information game scenarios.

KEYWORDS

Search algorithm, Games, Imperfect Information, Heuristic Algo-

rithm, Determinization, Strategy Fusion

1 INTRODUCTION

Search algorithms in artificial intelligence have significantly evolved,

demonstrating superhuman performance in games such as Chess,

Go [25], Poker [4], Skat [10], and Contract Bridge[2]. Perfect infor-

mation games, like Chess and Go, where all information is avail-

able, have been extensively studied, allowing algorithms to surpass

human professionals [25–27]. In contrast, imperfect information

games, including Poker, Skat, and Bridge, where some informa-

tion is hidden, have been less studied, with only a few algorithms

capable of outperforming professional human players [4].

In imperfect information games, two commonly used search

methods are regret-based approaches, which excel in Poker and are

theoretically convergent but slower [15, 19, 28], and determinization-

based methods, considered state-of-the-art in various trick-taking

card games, offering scalability but lacking theoretical guaran-

tees [7, 8, 10, 17]. In recent years, both methods have incorporated

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Milec, Müller,
Wang, Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

neural networks to enhance performance and facilitate scalability

on large games [4, 11, 18, 23, 30].

Determinization-based algorithms operate by sampling hidden

information based on current knowledge and utilizing a perfect
information leaf evaluator to predict game outcomes under per-

fect information assumptions. These algorithms achieve state-of-

the-art performance, primarily due to their efficient utilization in

the perfect information perspective, which is inherently simpler

than solving the problem from an imperfect information stand-

point. Despite their state-of-the-art performance, determinization-

based algorithms face challenges, notably encountering ‘strategy

fusion’ [9, 17]. This challenge arises from the use of the perfect

information leaf evaluator, which independently solves each possi-

ble world without considering the uncertainties induced by games

with imperfect information.

Within determinization-based algorithms, Perfect Information

Monte Carlo (PIMC) [17] is particularly susceptible to strategy fu-

sion due to its early usage on the perfect information leaf evaluator

in decision-making. In our study, we address this challenge by post-

poning the leaf evaluator until a depth 𝑑 , alleviating the impact of

strategy fusion. The act of postponing the perfect information leaf

evaluator at a depth of 𝑑 introduces new considerations, specifi-

cally, it prompts the need for alternative strategies to reason from

step 1 to step 𝑑 . We enhance our research by formally defining

the problem of strategy fusion and showing that in the worst case,

increasing the depth 𝑑 does not increase the strategy fusion, and

in every case, there exists a depth 𝑑 such that the strategy fusion

is strictly reduced. More than that, for finite games, there exists

a depth 𝑑 such that reasoning up to it allows the removal of the

problem of strategy fusion.

Section 2 delves into notation and provides a detailed explana-

tion of determinization-based algorithms, specifically addressing

PIMC and the challenge of strategy fusion. Section 3 introduces

Extended PIMC, an algorithm that takes into account our idea of

postponing the leaf evaluator at depth 𝑑 . Our implementation oper-

ates online and without a significant initial cost, ensuring smooth

deployment across diverse games or within the broader scope of

General Game Playing [24]. It is noteworthy that, like other modern

determinization algorithms, there exists the potential to integrate

neural networks for enhanced performance. Section 4 presents

the theoretical results obtained when increasing the depth 𝑑 on

determinisation-based algorithms. Section 5 presents experimental

findings across various games, some with a minimal impact on

the strategy fusion problem and others with a more pronounced

effect. Our observations indicate that, particularly in cases with sig-

nificant strategy fusion, deeper reasoning enhances performance,

surpassing other state-of-the-art methods. Section 6 provides an

overview of related research and finaly, Section 7 summarizes our

contributions and outlines avenues for future research.

https://ala2024.github.io/


𝑤𝑎

𝑤𝑏 𝑤𝑐
𝑤𝑑−0.6

0

−1
1 1

0

−1 −1
1

0

R
P

S

L

R

P

S R

P

S R

P

S

Figure 1: Variant of ‘Rock-Paper-Scissors’. The red square is

the first player, the green diamond is the second player and

the dashed line represents worlds indistinguishable by the

second player.

2 NOTATION AND BACKGROUND

2.1 Notation

We provide an overview of foundational concepts rooted in the

formalism of Factored-Observation Stochastic Games (FOSG)[13].

Throughout the paper, we utilize Figure1, a variant of ‘Rock-Paper-

Scissors’, to enhance comprehension and present notations. Our

notation employs subscripts to denote players.

A game, denoted as𝐺 , involvesN players, initiating at𝑤𝑖𝑛𝑖𝑡
and

progressing through successor world states represented by𝑤 ∈ W.

Players make joint actions, denoted as 𝑎 = (𝑎
1
, . . . , 𝑎N) ∈ A(𝑤 ),

in each world state𝑤 , and the game continues until a terminal state

is reached. Upon choosing a joint action 𝑎 , players observe rewards,

and the next world state𝑤 ′ is determined probabilistically. During

this transition from𝑤 to𝑤 ′, each player receives an observation

denoted as 𝑜
𝑖
∈ O𝑖 (𝑤, 𝑎,𝑤 ′), where O𝑖 (𝑤, 𝑎,𝑤 ′) represents the set

of possible observations for player 𝑖 .

In Figure 1, the first player faces the choice between ‘Leave’ with

a reward of −0.6 or engaging in the game. If it opts to play, the

standard rules apply: Rock beats Scissors, Scissors beats Paper, and

Paper beats Rock, with wins yielding 1, losses resulting in −1, and
ties providing 0. The game encompasses four possible world states

denoted asW = 𝑤𝑎,𝑤𝑏 ,𝑤𝑐 ,𝑤𝑑
, where𝑤𝑎

is the initial state and

𝑤𝑏
,𝑤𝑐

, and𝑤𝑑
follow the first action.

The first player has four possible actions in 𝑤𝑎
and a null ac-

tion in other states—specifically, A1 (𝑤𝑎) ={Leave, Rock, Paper,
Scissors} and A1 (𝑤𝑏 ) = A1 (𝑤𝑐 ) = A1 (𝑤𝑑 ) = noop. The sec-

ond player has a null action in 𝑤𝑎
and three actions in other

states—namely, A2 (𝑤𝑎) = ∅ and A2 (𝑤𝑏 ) = A2 (𝑤𝑐 ) = A2 (𝑤𝑑 ) =
Rock, Paper, Scissors. In this game, the second player receives the

observation Play if the first player plays Paper, Scissors, or Rock.

Rewards for both players are obtained at the game’s conclusion.

A history is a finite sequence of world states and legal actions

denoted as ℎ𝑡 = (𝑤0, 𝑎0,𝑤1, 𝑎1, . . . ,𝑤𝑡 ). An infostate 𝑠
𝑖
is a se-

quence of an agent’s observations and actions, denoted as 𝑠𝑡
𝑖
=

(𝑎0
𝑖
, 𝑜1

𝑖
, 𝑎1

𝑖
, . . . , 𝑜𝑡−1

𝑖
). For each history, there exists a unique infos-

tate noted as 𝑠
𝑖
(ℎ), and for each infostate, there is a set of histories

that match the sequence denoted asH (𝑠 ). I(𝐺) represents the set
of possible infostates in the game𝐺 , and Π (𝐺) is the set of possible
policies in the game 𝐺 , where a policy 𝜋 is a function mapping

every history ℎ to a probability distribution over actions.

In Figure 1, if we examine the history ℎ1 = (𝑤𝑎, Rock,𝑤𝑏 ), con-
sidering it from the second player’s perspective, the infostate be-

comes 𝑠1
2
= (noop, Play) since no action was taken by the sec-

ond player, and the observation Play was noted. The set of histo-

ries that correspond to 𝑠1
2
includes {(𝑤𝑎, Rock,𝑤𝑏 ); (𝑤𝑎, Paper,𝑤𝑐 );

(𝑤𝑎, Scissors,𝑤𝑑 )}.

2.2 Determinization-based algorithm

Each determinization-based algorithm has its own characteris-

tics, nevertheless, they share some common features such as (i)

samples a history ℎ according to a probability distribution over the

current infostate 𝑠 ; (ii) uses a perfect information leaf evaluator for
estimating the value of the sampled world state. In the description

of the Algorithm 1 and 2 (i) is noted Sampling(𝑠 ) and (ii) is noted

𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡𝐴𝑙𝑔𝑜 (ℎ).
A perfect information leaf evaluator is an algorithm used in

games with perfect information to estimate the value of a history

ℎ . It predicts the outcome of a game from a specific position. This

evaluator can be exhaustive methods like Minimax with Alpha-Beta

pruning [12], heuristics methods like Random Rollout (also called

playouts [5]) or neural network [25–27].

Determinization-based algorithms are simple and, in practice,

achieve great results. Yet, certain problems are encountered such

as (i) non-locality and strategy-fusion [9, 17]; (ii) revealing private

hidden information [1, 9]; (iii) no theoretical guarantees.

In Figure 1, when conducting sampling from the infostate 𝑠1
2
, the

available options include sampling𝑤𝑏
,𝑤𝑐

, or𝑤𝑑
. Utilizing a per-

fect information leaf evaluator, such as Minimax, on the world state

𝑤𝑏
would yield a value of −1, as the second player optimally plays

Paper to maximize their score i.e., minimises the value of the first

player.

2.3 Strategy fusion

In imperfect information games, histories stemming from the

same infostate must be approached with the same strategy, as play-

ers cannot distinguish between them. Formally, ∀𝑠 ∈ I(𝐺),∀ℎ,ℎ′ ∈
H (𝑠 ), 𝜋 (·|ℎ) = 𝜋 (·|ℎ′ ). However, determinization-based algorithms

deviate from this principle. They employ a perfect information leaf

evaluator algorithm to estimate the value at each sampled history.

In other words, each history originating from the same infostate is

solved using a strategy tailored to that specific history. Formally,

∀𝑠 ∈ I(𝐺),∀ℎ,ℎ′ ∈ H (𝑠 ), 𝜋 (·|ℎ) ≠ 𝜋 (·|ℎ′ ).



In Figure 1, the strategies in𝑤𝑏
,𝑤𝑐

, and𝑤𝑑
must be identical since

they originate from the same infostate 𝑠1
2
. For the second player,

the optimal strategy results in an average score of 0 (playing with

the same probability for all three actions). By back-propagating, the

first player opts for Play, leading to an average score of 0, instead

of choosing Leave, which results in −0.6.
From the perspective of a determinization-based algorithm, a

policy is tailored for the sampled history. The best policy for the

second player is Paper in𝑤𝑏
, Scissors in𝑤𝑐

, and Rock in𝑤𝑑
. In𝑤𝑏

,

𝑤𝑐
, and𝑤𝑑

, playing the best policy yields −1. By back-propagating,
the first player concludes that opting for Leave to obtain −0.6 is
preferable compared to playing and receiving −1.

2.4 Perfect Information Monte Carlo

Perfect Information Monte Carlo (PIMC) is a determinization-based

algorithm that is the state-of-the-art of many imperfect information

games.

Algorithm 1: PIMC

Function PIMC(𝑠):
for 𝑎 ∈ A (𝑠 ) do

𝑠𝑐𝑜𝑟𝑒[𝑎]← 0;

end

while 𝑏𝑢𝑑𝑔𝑒𝑡 do

𝑤 ← Sampling(𝑠 );
for 𝑎 ∈ A (𝑤 ) do

𝑤 ′ ←𝑤 .𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (𝑎);
𝑠𝑐𝑜𝑟𝑒 [𝑎]← 𝑠𝑐𝑜𝑟𝑒[𝑎] + 𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡𝐴𝑙𝑔𝑜 (𝑤 ′);

end

end

return Returns the best action on average;

PIMC is defined in Algorithm 1 and works as follows (i) samples

a world state𝑤 according to the probability distribution over the

current infostate 𝑠 ; (ii) plays an action 𝑎 on the world state𝑤 , and

observes the next world state𝑤 ′; (iii) estimates the world state𝑤 ′

by using the perfect information leaf evaluator; (iv) repeats until the

𝑏𝑢𝑑𝑔𝑒𝑡 is over; (v) selects the action that produces the best results

in average.

3 EXTENDED PIMC

As presented, employing the perfect information leaf evaluator

results in strategy fusion. In the case of PIMC, this evaluator is

utilized after the first action is played. However, there are no in-

herent constraints preventing the resolution after the first action,

and it is not difficult to believe that postponing the use of the per-

fect information leaf evaluator could mitigate the issue of strategy

fusion.

In the following, we introduce a novel algorithm that embraces

this straightforward concept of postponing the leaf evaluator’s

utilization. The algorithm, termed ‘EPIMC’ (Extended Perfect Infor-

mation Monte Carlo), extends the PIMC paradigm by incorporating

Extended reasoning at a depth of 𝑑 , where the instance of 𝑑 = 1

corresponds to PIMC.

Algorithm 2: Extended PIMC

Function ExtendedPIMC(𝑑 , 𝑠):
Create the game𝑈 and 𝑢, the initial world state;

while 𝑏𝑢𝑑𝑔𝑒𝑡 do

𝑤 ← Sampling(𝑠 );
Query(𝑈 ,𝑢,𝑤 , 𝑑);

end

return ImperfectAlgo(𝑈 );

FunctionQuery(𝑈 , 𝑢,𝑤 , 𝑑):
if 𝑑 == 0 or𝑤 .IsTerminal() then

𝑢.value← 𝑢.value + PerfectAlgo(𝑤 );

return;

end

𝑤 ′ ←𝑤 .𝐴𝑝𝑝𝑙𝑦𝑀𝑜𝑣𝑒 (RandomAction(𝑤 ));
Get 𝑢′ associated with𝑤 ′;
Update dynamics in𝑈 according to 𝑢′ and 𝑢;
Query(𝑈 , 𝑢′,𝑤 ′, 𝑑 − 1);

The pseudo-code is available in Algorithm 2 andworks as follows

(i) creates a subgame game𝑈 ; (ii) samples a world state𝑤 according

to the probability distribution over the current infostate 𝑠 ; (iii) plays

an action 𝑎 on𝑤 , observes the next world state𝑤 ′ continue until
𝑤 ′ is a terminal node or the depth 𝑑 is obtained, and updates the

dynamic in subgame𝑈 ; (iv) estimates the world state𝑤 ′ by using

the perfect information leaf evaluator; (v) repeats phases 2 to 4

until the 𝑏𝑢𝑑𝑔𝑒𝑡 is over; (vi) solves the subgame𝑈 which have been

created during phase 2 to 5 by using an algorithm that does not

create strategy fusion (i.e. an algorithm that do not use a perfect

leaf evaluator to resolve the subgame 𝑈 ). In the following, a few

points are clarified.

Exploration Strategy

In the original PIMC, world state evaluations occur a maximum

of |𝐴| times during each sampling phase, with |𝐴| denoting the

highest feasible action count. However, applying the same approach

at depth 𝑑 could potentially lead to evaluating |𝐴|𝑑 world states.

Therefore, careful consideration of the number of actions per step

becomes imperative. In EPIMC, our chosen strategy is to explore

one action per sampling iteration, resulting in a singular world

state evaluation per sampling instance, however, other choices

could have been envisaged.

Depth

While theoretically, any depth 𝑑 could be employed, practical con-

siderations necessitate a prudent choice of 𝑑 . Selecting a depth 𝑑

that is too small can exacerbate strategy fusion issues, as observed

in approaches like PIMC. On the other hand, opting for a depth 𝑑

that is too large demands significant sampling efforts to accurately

estimate the subgame𝑈 . Moreover, depending on the algorithm em-

ployed to solve the subgame𝑈 , a larger depth can lead to increased

computational costs.



Subgame Resolution

By postponing the application of the perfect information leaf eval-

uator until a depth of 𝑑 , alternative reasoning methods must be

employed for steps 1 through 𝑑 . In EPIMC, the subgame 𝑈 of size

𝑑 is built to approximate the real game by encapsulating various

elements, including infostates, world states, post-action dynamics,

and more. In particular, the leaves of the subgame 𝑈 are average

scores obtained from the leaf evaluator.

After the budget is finished, the subgame 𝑈 is solved using an

algorithm that does not create strategy fusion. In other words,

one needs an algorithm that works on infostates instead of world

states. This choice of algorithm, although potentially resource-

intensive, carries a reduced computational burden when applied

to a subgame 𝑈 of size 𝑑 . One can think of using information set

search [20, 21] which operates on infostates according to a minimax

rule or CFR/CFR+ [19, 28] that have theoretical guarantees for two

players.

4 THEORETICAL FOUNDATION

In the following, we present the theoretical foundation for deter-

minization based algorithms that suffer from strategy fusion. We

formally (i) define the condition to create strategy fusion; (ii) define

the quantity of strategy fusion; (iii) prove that, in the worst case,

increasing the depth does not increase the strategy fusion, and in

every case, there exists a depth 𝑑 such that the strategy fusion is

strictly reduced and in a finite game, there exists a depth 𝑑 such as

the that the strategy fusion is removed.

Definition 1. For any game𝐺 , a policy 𝜋 ∈ Π (𝐺) and an infostate
𝑠 ∈ I(𝐺) creates strategy fusion if there are ℎ,ℎ′ ∈ H (𝑠 ) such that
𝜋 (ℎ) ≠ 𝜋 (ℎ′). For any game 𝐺 , a policy 𝜋 ∈ Π (𝐺) creates strategy
fusion if there is an infostate 𝑠 ∈ I(𝐺) such that 𝜋 creates strategy
fusion in 𝑠 .

To evaluate the quantity of strategy fusion in 𝜋 ∈ Π (𝐺), we
propose the following measure 𝑆𝐹 (𝜋 ) = |{𝑠 such that ∀𝑠 ∈ 𝑆 (𝐺),
𝜋 creates strategy fusion in 𝑠 }|. In other, we count the number of

infostate that create strategy fusion. 𝑆𝐹 (𝜋 ) = 0 implies that there

is no strategy fusion.

In the subsequent discussions, for the sake of simplicity, we

presume adherence to the policy provided by EPIMC, denoted as

Π𝐸𝑑 (𝐺) when executing EPIMC at a depth of 𝑑 . Although alter-

native choices, could have been considered, opting for the EPIMC

policy is more straightforward, as influenced by the uniform growth

of the EPIMC policy across the entire depth 𝑑 space.

Proposition 1. ∀𝐺,∀𝑑 ∈ [0,𝑇 − 1] where 𝑇 = {𝑇 if 𝐺 has
a finite horizon 𝑇 ; else ∞},∀𝜋 ∈ Π𝐸𝑑 (𝐺), then ∀𝜋 ′ ∈ Π𝐸𝑑+1 (𝐺),
𝑆𝐹 (𝜋 ,𝐺) ≥ 𝑆𝐹 (𝜋 ′,𝐺)

Proof. For any 𝑠 ∈ I(𝐺), 𝑠 does not create strategy fusion in

𝜋1:𝑑 . Increasing the depth by 1, extends the non-inducing region.

Two possibilities arise: (i) if at least one 𝑠 at 𝑑 + 1 create strategy
fusion, it can no longer do so, i.e., 𝑆𝐹 (𝜋 ,𝐺) > 𝑆𝐹 (𝜋 ′,𝐺); (ii) if all
𝑠 at 𝑑 + 1 do not create strategy fusion, increasing the depth does

not reduce SF, i.e., 𝑆𝐹 (𝜋 ,𝐺) ≥ 𝑆𝐹 (𝜋 ′,𝐺). We conclude 𝑆𝐹 (𝜋 ,𝐺) ≥
𝑆𝐹 (𝜋 ′,𝐺). □

Proposition 2. ∀𝐺,∀𝑑 ∈ [0,𝑇 ] where 𝑇 = {𝑇 if 𝐺 has a
finite horizon 𝑇 ; else∞},∀𝜋 ∈ Π𝐸𝑑 (𝐺), if 𝑆𝐹 (𝜋 ,𝐺) > 0, then ∃𝑑′ ∈
[1,𝑇 − 𝑑],∀𝜋 ′ ∈ Π𝐸𝑑+𝑑

′
(𝐺) such that 𝑆𝐹 (𝜋 ,𝐺) > 𝑆𝐹 (𝜋 ′,𝐺).

Proof. Leveraging the rationale from Proposition 1, increasing

the depth by𝑑′ extends the non-inducing region. Given the presence
of strategy fusion (𝑆𝐹 (𝜋 ,𝐺) > 0), at least one infostate creates

strategy fusion. Extending the reasoning up to this infostate, located

𝑑′ away from the original depth 𝑑 , effectively diminishes strategy

fusion. Hence, we establish 𝑆𝐹 (𝜋 ,𝐺) > 𝑆𝐹 (𝜋 ′,𝐺). □

We extend Proposition 2 by showing that, in a finite game, there

is a depth at which there is no longer strategy fusion.

Proposition 3. ∀𝐺 such that 𝐺 has a finite horizon 𝑇 , ∀𝑑 ∈
[1,𝑇 − 1],∀𝜋 ∈ Π𝐸𝑑𝐺 if 𝑆𝐹 (𝜋 ,𝐺) > 0 then ∃𝑑′ ∈ [1,𝑇 − 𝑑],∀𝜋 ′ ∈
Π𝐸𝑑+𝑑

′
𝐺 such that 𝑆𝐹 (𝜋 ′,𝐺) = 0.

Proof. Setting 𝑑′ = 𝑇 −𝑑 , i.e., until the end of the game, ensures

that no further infostate can induce strategy fusion, as there are no

infostates remaining. □

5 RESULTS

5.1 Games

Our experiment set involved testing five games: Card Game, Battle-

ship, Dark Chess, PhantomTic-Tac-Toe, andDarkHex. Each of them

is considered a large game, is described below and is implemented

in OpenSpiel [14], a collection of environments and algorithms for

research in general reinforcement learning and search/planning

in games. The benchmarks were chosen to show the strengths

and weaknesses of the algorithm, especially, by choosing games

with public observations (Card game, Battleship) or with private

observations (Phantom Tic-Tac-Toe, Dark Chess, and Dark Hex).

Public observations refer to information that is visible to all

players, while private observations are exclusive to a player. This

distinction significantly influences the dynamics of strategy fusion.

Private observations amplify the number of potential world states

within a single infostate, thereby increasing the likelihood of strat-

egy fusion. As our method reduce strategy fusion, we expect EPIMC

to be more effective in games where observations are private.

Card game. The game is played with two players, 22 cards are

taken from a pack of 52, and known by all, 6 are hidden and 8 is

given to each player. The playing phase is decomposed into tricks,

the player starting the trick is the one who won the previous trick.

The starting player of a trick can play any card in his hand, but the

other player must follow the suit of the first player. If he can not,

he can play any card he wants without possibly winning the trick.

The winner of the trick is the one with the highest-ranking card.

At the end of the game, a player wins if he has at least half of the

number of tricks won.

Battleship. Battleship is a two-player strategy-type guessing game.

Each player possesses a grid. In the beginning, each player secretly

places a set of ships S on their grid. After placement, turn after

turn, each player tries to fire at other players’ ships. The game ends

when all the ships of a player have been destroyed. The payoff of



each player is computed as the sum of the opponent’s ships that

were destroyed, minus the sum of ships that the player lost. The

grid is fixed to 3 × 3, with 2 ships, one of size 1 × 1, and the second

of size 2 × 1.

Dark Chess. Dark chess is a chess variant with incomplete

information. In chess, there are two players, white and black, each

controlling a set of chess pieces of their respective colors. The goal

of the game is to checkmate the opponent’s king. In Dark chess,

the incomplete information comes from the fact that each player

sees his own pieces, but only sees his opponent’s pieces if they

are reachable by one of his pieces. Furthermore, in his variant, the

purpose is to capture the king (not to checkmate it), however, a

player must be wary as he is not told if their king is in check. The

size of the board is fixed to 4 × 4.

Phantom Tic-Tac-Toe. Phantom Tic-Tac-Toe is a variant of the

game of Tic-Tac-Toe with imperfect information. In Tic-Tac-Toe,

the goal is to claim three cells along the same row, column, or

diagonal. With imperfect information, the players do not observe

the other player’s pieces, only a referee knows the world state of

the board. When it is a player’s turn, the player selects a move and

indicates it to the referee. The referee informs the player’s whether

the action is ‘legal’ or ‘illegal’. If the move is ‘illegal’, the player

must choose a new move until they find a legal one.

Dark Hex. Dark Hex is an imperfect information version of

the classic game of Hex. The objective of the game is to create

a connection between opposite sides of a rhombus-shaped board.

In Dark Hex, players are not exposed to opposite sides pieces of

information. Only a referee has the full information of the board

and when a move fails due to collision/rejection the player gets

some information of the cell and is allowed to make another move

until success. The size of the board is fixed to 4 × 4.

5.2 Experimental Information

For all the experiments, the budget ranged from 0.1 seconds to 100

seconds for Card Game, Battleship and Phantom Tic-Tac-Toe, and

from 0.1 seconds to 1000 seconds for Dark Hex and Dark Chess.

Each experiment was conducted over 500 games, in which the

games were evenly split between playing in the first and second

positions. The opponent is PIMC with a fixed one-second budget.

All experiments were executed on a single CPU Intel(R) Xeon(R)

Gold 5218. EPIMC and PIMC uses random rollout as the perfect

information leaf evaluator, depth at 3 and Information Set Search

for the subgame resolution. In practice, PIMC is often tested with

minimax as the perfect information leaf evaluator, yet using it

may be slow in large benchmarks or require using a handmade

heuristic. As a reminder, EPIMC at depth 1 is PIMC. To reduce

EPIMC/PIMC costs, multiple CPUs could be utilized, but for fairness

across algorithms, this approach was not employed.

Other online algorithms. The others algorithms compared are

Information Set MCTS (IS-MCTS) [8], Online Outcome Sampling

(OOS) [16], Recursive PIMC (IIMC) [10], and a random agent (Ran-

dom). IS-MCTS is a determinization-based algorithm that employs

Monte Carlo Tree Search on infostates. OOS is a regret-based al-

gorithm that converges to the Nash equilibrium with increasing

search time. IIMC is a determinization-based algorithm rooted in

PIMC, estimating action values by recursively calling PIMC until

game completion.

For IS-MCTS, the exploration constantwas chosen from 0.6, 1, 1.5, 2

and set at 1. In OOS, the target was selected between Information

Set and Public Subgame Targeting, and it was set at Information

Set. Regarding IIMC, the number of samplings at level 2 was chosen

from 2, 5, 10 and set at 5.

5.3 Experimental Results

In our experiments, we aimed (i) to analyze the hyperparameters

of EPIMC (depth, subgame resolution, perfect leaf evaluator) and

(ii) to compare its performance against other online algorithms.

Postponing leaf evaluator. In Figure 2, we examine the perfor-

mance of EPIMC according to various depths variyng from 1 to 3.

As expected, for Card Game and Battleship, increasing the depth

does not lead to any improvement as both games have a majority of

their observation public. Conversely, for games where the observa-

tions are private, we observe an important increase in performance

At 100 seconds for Dark Chess, we achieve 80%/65%/45% winning

rates at depths 3/2/1. More than that, at 1000 seconds, EPIMC at

depth 3 wins close to 100% for both Dark Hex and Dark Chess.

Interestingly, in Dark Hex, at 1000 seconds, similar performance

are observed at depth 2 and 1. Indeed reducing the strategy fusion

does not necessarily mean that the strategy produced at the end

will be changed.

Extended resolution. In Figure 3, we compare CFR+ agasint

Information Set Search (ISS) in the Extended game resolution. CFR+

is used with 1000 iterations. Using CFR+ in Dark Hex 4 × 4 was
too costly in computational time, and use it on Dark Hex 3 × 3. As
can be observed, neither method is superior to the other, worse

performances are obtained with CFR+ in Dark Chess and Phantom

Tic-Tac-Toe but better performance is achieved in Dark Hex.

Perfect information leaf evaluator. In Figure 4, we compare

Minimax with alpha-beta pruning against random rollout for the

perfect information leaf evaluator. Due to the important cost of

using Minimax, the test was not conducted in Dark Chess, and as

before, the size Dark Hex was reduced to 3 × 3. As before, neither
method is superior to the other, as worse performance is obtained

with Minimax in Phantom Tic-Tac-Toe but stronger performance

is achieved in Dark Hex. However, the differences between the two

methods are important in Dark Hex, where Minimax obtains per-

formance close to 70% while Random Rollout obtains performance

close to 50%.

Against other online algorithms. In Figure 5, a comparative

analysis between EPIMC and various online algorithms against

opponents is presented. It is evident from the results that EPIMC

and IS-MCTS exhibit superior performance compared to other algo-

rithms. Notably, EPIMC achieved remarkable success, particularly

at depth 3, outperforming IS-MCTS across all benchmarks con-

sidered. Furthermore, it is noteworthy that even at a depth of 2,

EPIMC demonstrated comparable or even superior performance to

IS-MCTS in games like Dark Chess and Phantom Tic-Tac-Toe.



10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Budget

W
i
n
n
i
n
g
r
a
t
e

EPIMC_D1

EPIMC_D2

EPIMC_D3

(a) Card Game

10
−1

10
0

10
1

10
2

Budget

(b) Battleship

10
−1

10
0

10
1

10
2

10
3

Budget

W
i
n
n
i
n
g
r
a
t
e

(c) Dark Chess

10
−1

10
0

10
1

10
2

Budget

(d) Phantom Tic-Tac-Toe

10
−1

10
0

10
1

10
2

10
3

Budget

(e) Dark Hex

Figure 2: Winning rate of EPIMC when the depth range between one to three. The opponent is PIMC with one second of budget.

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Budget

W
i
n
n
i
n
g
R
a
t
e

(a) Card Game

10
−1

10
0

10
1

10
2

Budget

(b) Battleship

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Budget

W
i
n
n
i
n
g
R
a
t
e

(c) Dark Chess

10
−1

10
0

10
1

10
2

Budget

(d) Phantom Tic-Tac-Toe

10
−1

10
0

10
1

10
2

Budget

EPIMC_CFR

EPIMC_ISS

(e) Dark Hex

Figure 3: Winning rate of EPIMC when the subgame is CFR+ or ISS. The opponent is PIMC with one second of budget.



10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Budget

W
i
n
n
i
n
g
R
a
t
e

(a) Card Game

10
−1

10
0

10
1

10
2

Budget

(b) Battleship

10
−1

10
0

10
1

10
2

Budget

(c) Phantom Tic-Tac-Toe

10
−1

10
0

10
1

10
2

Budget

EPIMC_Minimax

EPIMC_Random

(d) Dark Hex

Figure 4: Winning rate of EPIMC when the leaf evaluator is Minimax or Random Rollout. The opponent is PIMC with one

second of budget.

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Budget

W
i
n
n
i
n
g
R
a
t
e

(a) Card Game

10
−1

10
0

10
1

10
2

Budget

(b) Battleship

10
−1

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Budget

W
i
n
n
i
n
g
r
a
t
e

(c) Dark Chess

10
−1

10
0

10
1

10
2

Budget

(d) Phantom Tic-Tac-Toe

10
−1

10
0

10
1

10
2

10
3

Budget

PIMC

EPIMC_D2

EPIMC_D3

OOS

IIMC

IS MCTS

Random

(e) Dark Hex

Figure 5: Winning rate of multiple online algorithms. The opponent is PIMC with one second of budget.

5.4 Discussion

As we have seen and as was expected, increasing the depth has

a significant impact on games with a private observation (Dark

Hex / Dark Chess / Phantom Tic-Tac-Toe) and much less impact on

games without much private information (Card Game / Battleship).

On the domains tested and given a sufficient budget, augmenting

the depth consistently outperforms the basic version. In addition, a

depth of 2 is sufficient, in most cases, to beat the state-of-the-art

online algorithms. With regard to the other hyperparameters, we

recommend using Information Set Search and Random Rollout as

they require less computing time and therefore can be computed

on larger games. However, customization could be beneficial in

order to increase performance or the need to maintain theoretical

properties in the subgame. Especially, using algorithms such as

CFR+ allows to obtain the properties of CFR+ (in the subgame) such

as the convergence towards the Nash equilibrium in two players.



6 RELATEDWORK

In determinization-based algorithms, both IIMC [10] and IS-

MCTS [8] have adopted a similar approach of extending reasoning

beyond a depth of one. In IS-MCTS, the depth increases with the

budget, and in IIMC, they recursively call PIMC until the end of

the game. In both cases, as the depth exceeds PIMC, it is expected

that strategy fusion will be reduced. However, there is no guar-

antee that it can be entirely eliminated, and it is challenging to

quantify the extent of its reduction. This is because the two meth-

ods do not uniformly explore the state space, and worse, they use

exploration/exploitation mechanisms based on estimates that are

distorted by the presence of strategy fusion.

At a high-level, PIMC and our work have similarities to Un-

safe/Safe Subgame Solving [6]. However, there are a number of dif-

ferences, the most important of which is the fact that our algorithm

does not require an expensive preparation of a value function in

advance of playing a game. In fact, to function most of Unsafe/Safe

algorithms need to, first hand, solve an abstraction of the game

that contains the subgame constructed with the leaf estimation,

and during the play, the algorithm resolves the portion of the game

reached to a greater degree of accuracy than in the initial computa-

tion. What is more, in their method, there is rarely any description

of how the subgame is constructed during the game (for example

in Rebel [3], a function is called ‘ConstructSubgame’ without ex-

plaining how this function work), contrary to the determinization

method that build the subgame by using sampling and fast leaf

evaluator.

In a study by Zhang and Sandholm [29], a similar approach to

ours was taken, utilizing a perfect leaf evaluator at an extended

depth compared to PIMC. However, their research focused primar-

ily on the concept of ’common knowledge’, utilizing this version

were mainly to reduce costs without the need for abstraction. Con-

sequently, they did not delve into the intricacies of determination

algorithms, nor did they explore various aspects central to our

investigation, such as sub-game creation, budget considerations,

influence of depth on strategy fusion, influence of private/public

observations. Additionally, they employed move ordering, prioritiz-

ing the exploration of promising nodes over uniform exploration of

the state space, which akin to algorithms like IS-MCTS, may lead to

issues related to strategy fusion and suboptimal decision-making,

which are critical aspects discuted in our study.

7 CONCLUSION AND FUTUREWORKS

In this paper, we introduce a novel online algorithm ‘Extended

PIMC’ for games with imperfect information. Building upon the

foundation of PIMC, our approach postpone the perfect leaft eval-

uator to a deeper depth. Thanks to that, we have been able to

successfully reduce past problems of PIMC and beat other online

algorithms on multiple benchmarks. Especially, when benchmarks

have hidden observation, significant performance improvements

are observed. Furthermore, we conducted an in-depth analysis of

various hyperparameters to provide a comprehensive understand-

ing of their impact.

We enhance our research by presenting theoretical foundations

for determinization-based algorithms that suffer from strategy fu-

sion. We demonstrate that, in the worst case, increasing the depth

does not increase the strategy fusion and in every case, there exists

a depth 𝑑 such that the strategy fusion is strictly reduced.

As our algorithm is online, it has the advantage of being tested

in a short period of time, especially in comparison to recent algo-

rithms which need a domain-specific abstraction or a very high

initialization cost due to neural networks. Even though, improving

our algorithm by using deep learning could have led to superior

performance. In particular, this could provide a better and faster

approximation to the leaf or being able to remove the problem of

non-locality by adding an inference system [22].

In future research, it would be intriguing to assess our algorithm

in conjunction with other determination algorithms. Particularly,

exploring a trade-off between our approach, which ensures non-

strategy fusion at a certain depth thanks to uniform sampling, and

other algorithms that may explore the state space more efficiently

but currently encounter issues with strategy fusion during explo-

ration, could be beneficial. Such an investigation could shed light on

the strengths and limitations of different approaches and potentially

lead to the development of more robust and efficient algorithms for

imperfect information games.

REFERENCES

[1] Jérôme Arjonilla, Abdallah Saffidine, and Tristan Cazenave. 2023. Mixture of

Public and Private Distributions in Imperfect Information Games. In 2023 IEEE
Conference on Games (CoG). IEEE, 1–8.

[2] Bruno Bouzy, Alexis Rimbaud, and Véronique Ventos. 2020. Recursive Monte

Carlo Search for Bridge Card Play. 2020 IEEE Conference on Games (CoG) (2020),
229–236.

[3] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. 2020. Combining

Deep Reinforcement Learning and Search for Imperfect-Information Games. In

Proceedings of the 34th International Conference on Neural Information Processing
Systems (NIPS’20). Curran Associates Inc., Red Hook, NY, USA. event-place:

Vancouver, BC, Canada.

[4] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for multiplayer

poker. Science 365 (2019), 885 – 890.

[5] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,

Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree

Search Methods. IEEE Transactions on Computational Intelligence and AI in Games
4 (2012), 1–43.

[6] Neil Burch, Michael Bradley Johanson, and Michael Bowling. 2014. Solving

Imperfect Information Games Using Decomposition. In AAAI.
[7] Tristan Cazenave and Véronique Ventos. 2021. The 𝛼𝜇 Search Algorithm for the

Game of Bridge. In Monte Carlo Search at IJCAI (Communications in Computer
and Information Science).

[8] Peter I. Cowling, Edward Jack Powley, and Daniel Whitehouse. 2012. Information

Set Monte Carlo Tree Search. IEEE Transactions on Computational Intelligence
and AI in Games 4 (2012), 120–143.

[9] Ian Frank andDavidA. Basin. 1998. Search inGameswith Incomplete Information:

A Case Study Using Bridge Card Play. Artif. Intell. 100 (1998), 87–123.
[10] Timothy Furtak and Michael Buro. 2013. Recursive Monte Carlo search for

imperfect information games. 2013 IEEE Conference on Computational Inteligence
in Games (CIG) (2013), 1–8.

[11] Qiqi Jiang, Kuangzheng Li, Boyao Du, Hao Chen, and Hai Fang. 2019. DeltaDou:

Expert-level Doudizhu AI through Self-play. In IJCAI.
[12] Donald E. Knuth and Ronald W. Moore. 1975. An analysis of alpha-beta pruning.

Artificial Intelligence 6, 4 (1975), 293–326. https://doi.org/10.1016/0004-3702(75)

90019-3

[13] Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael H. Bowling, and V. Lisý.

2022. Rethinking Formal Models of Partially Observable Multiagent Decision

Making. Artif. Intell. 303 (2022), 103645.
[14] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinícius Flores Zambaldi,

Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls,

Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds,

Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James Bradbury,

https://doi.org/10.1016/0004-3702(75)90019-3
https://doi.org/10.1016/0004-3702(75)90019-3


David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas W.

Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. 2019. OpenSpiel:

A Framework for Reinforcement Learning in Games. ArXiv abs/1908.09453 (2019).
[15] Marc Lanctot, K. Waugh, Martin A. Zinkevich, and Michael Bowling. 2009. Monte

Carlo Sampling for Regret Minimization in Extensive Games. In NIPS.
[16] V. Lisý, Marc Lanctot, and Michael Bowling. 2015. Online Monte Carlo Coun-

terfactual Regret Minimization for Search in Imperfect Information Games. In

AAMAS.
[17] Jeffrey Richard Long, Nathan R. Sturtevant, Michael Buro, and Timothy Furtak.

2010. Understanding the Success of Perfect Information Monte Carlo Sampling

in Game Tree Search. In AAAI.
[18] Matej Moravcík, Martin Schmid, Neil Burch, V. Lisý, Dustin Morrill, Nolan Bard,

Trevor Davis, K. Waugh, Michael Bradley Johanson, and Michael H. Bowling.

2017. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker.

Science 356 (2017), 508 – 513.

[19] Todd W Neller and Marc Lanctot. 2013. An introduction to counterfactual regret

minimization. In Proceedings of model AI assignments, the fourth symposium on
educational advances in artificial intelligence (EAAI-2013), Vol. 11.

[20] Austin Parker, Dana Nau, and VS Subrahmanian. 2006. Overconfidence or para-

noia? search in imperfect-information games. In PROCEEDINGS OF THE NA-
TIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, Vol. 21. Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, 1045.

[21] Austin Parker, Dana Nau, and VS Subrahmanian. 2006. Paranoia versus overcon-

fidence in imperfect information games. In AAAI Proceedings of the 21st National
Conference on Artificial intelligence, Vol. 2.

[22] Douglas Rebstock, Christopher Solinas, Michael Buro, and Nathan R. Sturtevant.

2019. Policy Based Inference in Trick-Taking Card Games. 2019 IEEE Conference
on Games (CoG) (2019), 1–8.

[23] Martin Schmid, Matej Moravcík, Neil Burch, Rudolf Kadlec, Joshua Davidson,

K. Waugh, Nolan Bard, Finbarr Timbers, Marc Lanctot, Zach Holland, Elnaz

Davoodi, Alden Christianson, and Michael H. Bowling. 2021. Player of Games.

ArXiv abs/2112.03178 (2021).

[24] M. J. Schofield and Michael Thielscher. 2019. General Game Playing with Imper-

fect Information. J. Artif. Intell. Res. 66 (2019), 901–935.
[25] D. Silver, Aja Huang, Chris J. Maddison, A. Guez, L. Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam,

Marc Lanctot, S. Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and Demis Hassabis.

2016. Mastering the game of Go with deep neural networks and tree search.

Nature 529 (2016), 484–489.
[26] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,

and Go through self-play. Science 362, 6419 (2018), 1140–1144.
[27] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, L. Sifre, Dharshan Kumaran, Thore Graepel,

Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis. 2017. Mastering

Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.

ArXiv abs/1712.01815 (2017).

[28] Oskari Tammelin, Neil Burch, Michael Bradley Johanson, and Michael Bowling.

2015. Solving Heads-Up Limit Texas Hold’em. In IJCAI.
[29] Brian Zhang and Tuomas Sandholm. 2021. Subgame solving without common

knowledge. Advances in Neural Information Processing Systems 34 (2021), 23993–
24004.

[30] Yunsheng Zhang, Dong Yan, Bei Shi, Haobo Fu, Qiang Fu, Hang Su, Jun Zhu, and

Ning Chen. 2021. Combining Tree Search and Action Prediction for State-of-the-

Art Performance in DouDiZhu. In IJCAI.


	Abstract
	1 Introduction
	2 Notation and Background
	2.1 Notation
	2.2 Determinization-based algorithm
	2.3 Strategy fusion
	2.4 Perfect Information Monte Carlo

	3 Extended PIMC
	4 Theoretical foundation
	5 Results
	5.1 Games
	5.2 Experimental Information
	5.3 Experimental Results
	5.4 Discussion

	6 Related Work
	7 Conclusion and future works
	References

