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Abstract. Making inferences with a deep neural network on a batch of states

is much faster with a GPU than making inferences on one state after another.

We build on this property to propose Monte Carlo Tree Search algorithms using

batched inferences. Instead of using either a search tree or a transposition table

we propose to use both in the same algorithm. The transposition table contains

the results of the inferences while the search tree contains the statistics of Monte

Carlo Tree Search. We also propose to analyze multiple heuristics that improve

the search: the µ FPU, the Virtual Mean, the Last Iteration and the Second Move

heuristics. They are evaluated for the game of Go using a MobileNet neural net-

work.

1 Introduction

Monte Carlo Tree Search (MCTS) using a combined policy and value network is used

for complex two-player perfect information games such as the game of Go [18]. MCTS

is also used for many other games and problems [1]. We propose multiple optimizations

of MCTS in the context of its combination with deep neural networks. With current

hardware such as GPU or TPU it is much faster to batch the inferences of a deep neural

network rather than to perform them sequentially. We give in this paper MCTS algo-

rithms that make inferences in batches and some heuristics to improve them. The use of

a transposition table to store evaluations in combination with a tree, the Virtual Mean,

the Last Iteration and the Second Move heuristics are new. The search algorithms are

evaluated for the game of Go.

The second section deals with existing work on MCTS for games. The third section

presents our algorithms. The fourth section details experimental results.

2 Monte Carlo Tree Search

MCTS has its roots in computer Go [10]. A theoretically well founded algorithm is

Upper Confidence Bounds for Trees (UCT) [13]. Dealing with transpositions in UCT

was addressed with the UCD algorithm [16]. The authors tested various ways to deal

with transpositions and gave results for multiple games in the context of General Game

Playing (GGP).

The GRAVE algorithm [3] is successful in GGP. It uses a transposition table as the

core of the tree search algorithm. Entries of the transposition table contain various kind

of information such as the statistics on the moves as well as the generalized All Moves

As First (AMAF) statistics. It does not use the UCB bandit anymore but an improvement

of RAVE [12].
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PUCT combines MCTS with neural networks [17]. The neural networks are used

to evaluate states and to give probabilities to possible moves. PUCT is currently used

in games such as Go [19] and Shogi [18]. It was used in the AlphaGo program [17] as

well as in its descendants AlphaGo Zero [19] and Alpha Zero [18].

The PUCT bandit is:

V (s, a) = Q(s, a) + c× P (s, a)×

√

N(s)

1 +N(s, a)

Where P (s, a) is the probability of move a to be the best move in state s given by

the policy head of the neural network, N(s) is the total number of descents performed

in state s and N(s, a) is the number of descents for move a in state s.

Many researchers have replicated the Alpha Zero experiments and also use the

PUCT algorithm [21,15,11,23,6].

In this paper we improve the PUCT algorithm parallelizing the evaluation of a batch

of leaves. We also propose modification to the search algorithm that improve its results.

2.1 Parallelization of MCTS

As we propose to improve PUCT parallelizing the inferences at the leaves of the search

tree, we briefly recall previous works on the parallelization of MCTS.

Three different ways to parallelize MCTS were first proposed in 2007 [7]. They

were further renamed Root Parallelization, Leaf Parallelization and Tree Paralleliza-

tion [9,8]. Root Parallelization simply performs multiple independent tree searches in

parallel. Leaf Parallelization performs multiple playouts in parallel at each leaf. Tree

Parallelization makes multiple threads descend a shared tree in parallel.

In this paper we do not use multiple CPUs to perform playouts in parallel as in

previous work but we use tools such as the virtual loss that were designed for the paral-

lelization of MCTS on CPUs.

2.2 The Virtual Loss

As we propose in this paper the Virtual Mean heuristic we describe the related works

on the virtual loss heuristic as the Virtual Mean improves on the virtual loss.

The virtual loss enables to make multiple descents of the tree in parallel when the

results of the evaluations at the leaves are not yet known and the tree has not yet been

updated with these results. It is used in Tree Parallelization. The principle is very simple

since it consists in adding a predefined number of visits to the moves that are played

during the tree descent.

The virtual loss is used in most of the Go programs including AlphaGo [17] and

ELF [21].

A related algorithm is the Watch the Unobserved heuristic [14]. It counts the number

of playouts that have been initiated but not yet completed, named unobserved samples

and includes them in the bandit. It gives good results on Atari games. It is quite different

from our approach since it uses standard UCT when we use PUCT with neural networks
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and since the principle is to add unobserved samples to the number of simulations in

the UCT bandit not to modify the Q value.

The virtual loss is also used in TDS-UCT [24] together with a message passing

system that addresses load balancing. TDS-UCT was applied to molecular design with

success.

2.3 Batched Inferences

Using batch forwards of the neural network to evaluate leaves of the search tree and find

the associated priors given by the policy head is current practice in many game programs

[21,15,11,23,6]. Usually a set of leaves is generated using multiple tree descents. The

diversity of the leaves is obtained thanks to the virtual loss. The neural network is run on

a single batch of leaves and the results are incorporated into the search tree, backing up

the evaluations up to the root. This algorithm is much worse than sequential PUCT when

using the same number of evaluations. However as it makes much more evaluations than

sequential PUCT in the same time it recovers strength when given the same time.

We propose to improve on this algorithm simulating sequential PUCT with batched

inferences. The idea is to first evaluate a set of heuristically chosen leaves, to put the

evaluations in a transposition table, and then to use this transposition table in a sequen-

tial PUCT algorithm that uses a part of the leaves. It does not use for the sequential

PUCT as many leaves as the algorithms used by the previous programs but it is much

better because it simulates sequential PUCT and it is much faster than sequential PUCT.

2.4 First Play Urgency

In this paper we propose to evaluate different options for the First Play Urgency (FPU).

We recall the previous works on the FPU.

Vanilla UCT begins by exploring each arm once before using UCB. This behavior

was improved with the FPU [22]. A large FPU value ensures the exploration of each

move once before further exploitation of any previously visited move. A small FPU

ensures earlier exploitation if the first simulations lead to an urgency larger than the

FPU.

In more recent MCTS programs using playouts, FPU was replaced by RAVE [12]

which uses the AMAF heuristic so as to order moves before switching gradually to

UCT. RAVE was later improved with GRAVE which has good results in GGP [2,20].

In AlphaGo [17], the FPU was revived and is set to zero when the evaluations are

between -1 and 1. We name this kind of FPU the constant FPU. It has deficiencies.

When the FPU is too high, all possible moves are tried at a node before going further

below in the state space and this slows down the search and makes it shallow. When the

FPU is too low, the moves after the best move are only tried after many simulations and

the search does not explore enough. When the constant is in the middle of the range

of values as in AlphaGo, both deficiencies can occur, either when the average of the

evaluations is below the constant or is greater than the constant.

In other programs such as ELF [21] the FPU is set to the best mean of the already

explored moves. This is better than using a constant FPU since the best mean is related

to the mean of the other moves. It encourages exploration.
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We propose another FPU the µ FPU which uses instead the average of all explored

moves.

3 The Batch MCTS Algorithm

In this section we describe the Batch MCTS algorithm and its refinements. We first

explain how we deal with trees and transposition table. We also give the main algorithm

and the two ways to update statistics. We then detail the proposed heuristics: the µ FPU,

the Virtual Mean, the Last Iteration and the Second Move.

3.1 Trees and Transposition Table

The principle of Batch MCTS is to simulate a sequential MCTS using batched evalua-

tions. In order to do so it separates the states that have been evaluated from the search

tree. We name the usual transposition table used in current program as the usual trans-

position table and the transposition table used in Batch MCTS as the value transposition

table.

The value transposition table only contains the evaluations of the states. The search

tree is developed as in usual sequential MCTS. When the algorithm reaches a leaf it

looks up the state in the value transposition table. If it is present then it backpropagates

the corresponding evaluation. If it is not in the value transposition table it sends back

the Unknown value. The algorithm has two options: developing the tree or building the

batch. When it develops the tree it stops the search as soon as it reaches a leaf which is

not in the value transposition table and an Unknown value is returned. When it builds

the batch it continues searching when a leaf is not in the value transposition table and

an Unknown value is returned in order to fill the batch. In this case it adds the state

associated to the leaf to the next batch of states, and updates statistics in a different way

than when developing the tree (see section 3.3).

Batch MCTS increases the number of tree descents for a given budget of inferences

compared to usual MCTS with a usual transposition table in place of a tree. An entry in

the value transposition table of Batch MCTS can serve as a leaf multiple times. Batch

MCTS will redevelop a subtree multiple times with only a small increase in search time

since the costly part of the algorithm is the evaluation of the states and since previous

states evaluations are cached in the transposition table. Redeveloping shared subtrees

makes the statistics of the moves not biased by reaching some already developed states

from a different path. In this case usual MCTS with a usual transposition table will go

directly to a leaf of the subtree instead of redeveloping it since the subtree is in the usual

transposition table.

Batch MCTS uses one value transposition table and two trees. The value transposi-

tion table records for each state that has been given as input to the neural network the

evaluation of the state and the priors for the moves of the state. The first tree records

the statistics required to calculate the bandit and the children that have already been

explored. The second tree is a copy of the first tree used to build the next batch of states

that will be then given to the neural network.
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3.2 The Main Algorithm

Algorithm 1 The GetMove algorithm

1: Function GetMove (s,B)

2: for i← 1 to B do

3: GetBatch(s)

4: out← Forward (batch)

5: PutBatch (s, out)
6: end for

7: t← tree.node(s)
8: return argmaxm(t.p(s,m))

The main algorithm is the GetMove algorithm (algorithm 1). It calls the GetBatch

algorithm at line 3 (see algorithm 2) that descends the second tree many times in order

to fill the batch. In the GetBatch algorithm the BatchPUCT algorithm is called with the

True value (line 5 of GetBatch) since the goal is to build the batch. The next instruction

in the GetMove algorithm is to run a forward pass of the neural network on the batch

of states (line 4 of GetMove). The next algorithm called by the GetMove algorithm is

the PutBatch algorithm (see algorithm 3) that puts the results of the inferences in the

transposition table and then updates the main tree. The BatchPUCT algorithm is called

with the False value in the PutBatch algorithm (lines 5 and 7) since the goal is to

simulate sequential PUCT. GetBatch, forward and PutBatch are called B times. In the

end the GetMove algorithm returns the most simulated move of the main tree.

Algorithm 2 The GetBatch algorithm

1: Function GetBatch (s)

2: treeBatch← tree
3: i← 0
4: while batch is not filled and i < N do

5: BatchPUCT (s, True)

6: i← i+ 1
7: end while

Algorithm 2 gives the main algorithm to build the batch. In order to present the

algorithm simply we assume a copy of the main tree to treeBatch which is then used

and modified in order to build the batch. A more elaborate implementation is to separate

inside a node the statistics of the main tree and the statistics made during the building

of the batch. A global stamp can be used to perform a lazy reinitialization of the batch

statistics at each new batch build.

Algorithm 4 gives the main PUCT search algorithm using a transposition table of

evaluated states and the two trees. The GetBatch boolean is used to make the distinction

between the first option to develop the tree and the second option to build the batch. The

first tree is the main search tree while the second tree is only used to build the batch.
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Algorithm 3 The PutBatch algorithm

1: Function PutBatch (s, out)
2: for o ∈ out do

3: add o to the Transposition Table

4: end for

5: res← BatchPUCT (s, False)

6: while res 6= Unknown do

7: res← BatchPUCT (s, False)

8: end while

3.3 Updating the Statistics

Algorithm 5 gives the usual way of updating the statistics used for the main tree. Al-

gorithm 6 gives the update of the statistics for the second tree. It updates the statistics

as usual when an evaluation is backpropagated, but it updates the statistics differently

when an Unknown value is backpropagated. In this case it can either use the usual

virtual loss or the Virtual Mean that will be described later.

3.4 The µ FPU

The way we deal with the FPU is to set it to the average mean of the node (using the

statistics of all the explored moves). We name this kind of FPU the µ FPU.

3.5 The Virtual Mean

Tree parallel MCTS uses a virtual loss to avoid exploring again and again the same

moves when no new evaluation is available. We propose the Virtual Mean as an alter-

native to the virtual loss. The Virtual Mean increases the number of simulations of the

move as in the virtual loss but it also adds the mean of the move times the virtual loss

to the sum of the evaluations of the move in order to have more realistic statistics for

the next descent.

Algorithm 6 gives the different ways of updating the statistics of a node. The vl

variable is the number of virtual losses that are added to a move when it leads to an

unknown leaf. A value greater than one will encourage more exploration and will avoid

resampling again and again the same unknown leaf. The value is related to the maxi-

mum number of samples allowed in the GetBatch algorithm (the variable N in algo-

rithm 2). A low value of N will miss evaluations and will not completely fill the batch.

A large value of N will better fill the batch but will take more time to do it. Increasing

vl enables to fill the batch with more states for the same value of N . However a too

large value of vl can overlook some states and decrease the number of visited nodes in

the main search tree. The res value is the evaluation returned by the tree descent, m is

the move that has been tried in the descent, s is the state and t is the second tree.

When the Virtual Mean option is used, the sum of the evaluations of the move and

the sum of the evaluations of the node are both increased by vl × µ where µ is the

average evaluation of the move. It will give a better insight of the real average of the

move after the backpropagation than using the virtual loss alone.
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Algorithm 4 The BatchPUCT algorithm

1: Function BatchPUCT (s,GetBatch)

2: if isTerminal (s) then

3: return Evaluation (s)

4: end if

5: if GetBatch then

6: t← treeBatch
7: else

8: t← tree
9: end if

10: if s /∈ t then

11: if s /∈ transposition table then

12: if GetBatch then

13: add s to the batch

14: end if

15: return Unknown

16: else

17: add s to t
18: return value (s)

19: end if

20: end if

21: bestScore← −∞
22: for m ∈ legal moves of s do

23: µ← FPU
24: if t.p(s,m) > 0 then

25: µ← t.sum(s,m)
t.p(s,m)

26: end if

27: bandit← µ+ c× t.prior(s,m)×
√

t.p(s)

1+t.p(s,m)

28: if bandit > bestScore then

29: bestScore← bandit
30: bestMove← m
31: end if

32: end for

33: s1 ← play (s, bestMove)

34: res← BatchPUCT (s1, GetBatch)

35: if GetBatch then

36: UpdateStatisticsGet (res, bestMove, s, t)
37: else

38: UpdateStatistics (res, bestMove, s, t)
39: end if

40: return res
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Algorithm 5 The UpdateStatistics algorithm for the main tree

1: Function UpdateStatistics (res,m, s, t)
2: if res 6= Unknown then

3: t.p(s,m)← t.p(s,m) + 1
4: t.sum(s,m)← t.sum(s,m) + res
5: t.p(s)← t.p(s) + 1
6: t.sum(s)← t.sum(s) + res
7: end if

Algorithm 6 The UpdateStatisticsGet algorithm

1: Function UpdateStatisticsGet (res,m, s, t)
2: if res = Unknown then

3: µ← t.sum(s,m)
t.p(s,m)

4: if V irtualLoss = True then

5: t.p(s,m)← t.p(s,m) + vl
6: t.p(s)← t.p(s) + vl
7: else if V irtualMean = True then

8: t.p(s,m)← t.p(s,m) + vl
9: t.sum(s,m)← t.sum(s,m) + vl × µ

10: t.p(s)← t.p(s) + vl
11: t.sum(s)← t.sum(s) + vl × µ
12: end if

13: else

14: t.p(s,m)← t.p(s,m) + 1
15: t.sum(s,m)← t.sum(s,m) + res
16: t.p(s)← t.p(s) + 1
17: t.sum(s)← t.sum(s) + res
18: end if



Batch Monte Carlo Tree Search 9

Using the Virtual Mean is the equivalent for PUCT of Watch the Unobserved for

the UCT tree policy [14].

3.6 The Last Iteration

At the end of the GetMove algorithm, many states are evaluated in the transposition

table but have not been used in the tree. In order to gain more information it is possible

to continue searching for unused state evaluations at the price of small inacurracies.

The principle is to call the BatchPUCT algorithm with GetBatch as True as long as

the number of Unknown values sent back does not reach a threshold.

The descents that end with a state which is not in the transposition table do not

change the statistics of the moves since they add the mean of the move using the Virtual

Mean. The descents that end with an unused state of the transposition table modify the

statistics of the moves and improve them as they include statistics on more states.

The Last Iteration algorithm is given in algorithm 7. The U variable is the number

of visited unknown states before the algorithm stops.

Algorithm 7 The GetMoveLastIteration algorithm

1: Function GetMoveLastIteration (s,B)

2: for i← 1 to B do

3: GetBatch(s)

4: out← Forward (batch)

5: PutBatch (s, out)
6: end for

7: nbUnknown← 0
8: treeBatch← tree
9: while nbUnknown < U do

10: res← BatchPUCT (s, True)

11: if res = Unknown then

12: nbUnknown← nbUnknown+ 1
13: end if

14: end while

15: t← treeBatch.node(s)
16: return argmaxm(t.p(s,m))

3.7 The Second Move Heuristic

Let n1 be the number of playouts of the most simulated move at the root, n2 the number

of playouts of the second most simulated move, b the total budget and rb the remaining

budget. If n1 > n2 + rb, it is useless to perform more playouts beginning with the

most simulated move since the most simulated move cannot change with the remaining

budget. When the most simulated move reaches this threshold it is more useful to com-

pletely allocate rb to the second most simulated move and to take as the best move the

move with the best mean when all simulations are finished.
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The modifications of the search algorithm that implement the Second Move heuris-

tic are given in algorithm 9. Lines 33-39 modify the best move to try at the root when

the most simulated move is unreachable. In this case the second most simulated move

is preferred.

Algorithm 8 gives the modifications of the GetMove algorithm for using the Second

Move heuristic. Lines 8-17 choose between the most simulated move and the second

most simulated move according to their means.

Algorithm 8 The GetMoveSecondHeuristic algorithm

1: Function GetMoveSecondHeuristic (s,B)

2: b← size(batch)
3: for i← 0 to B do

4: GetBatchSecond (s,B × b, i× b)

5: out← Forward (batch)

6: PutBatchSecond (out,B × b, i× b)

7: end for

8: t← tree
9: best← bestMovem(t.p(s,m))

10: µ← t.sum(s,best)
t.p(s,best)

11: secondBest← secondBestMovem(t.p(s,m))

12: µ1 ← t.sum(s,secondBest)
t.p(s,secondBest)

13: if µ1 > µ then

14: return secondBest
15: else

16: return best
17: end if

4 Experimental Results

Experiments were performed using a MobileNet neural network which is an architec-

ture well fitted for the game of Go [5,4]. The network has 16 blocks, a trunk of 64 and

384 planes in the inverted residual. It has been trained on the Katago dataset containing

games played at a superhuman level.

4.1 The µ FPU

We test the constant FPU and the best mean FPU against the µ FPU. Table 1 gives the

average winrate over 400 games of the different FPU for different numbers of playouts.

For example, the first cell means that the constant FPU wins 13.00% of its games against

the µ FPU when the search algorithms both use 32 playouts per move.

It is clear that the µ FPU is the best option. In the remainder of the experiments we

use the µ FPU.
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Algorithm 9 The BatchSecond algorithm

1: Function BatchSecond (s,GetBatch, budget, i, root)
2: if isTerminal (s) then

3: return Evaluation (s)

4: end if

5: if GetBatch then

6: t← treeBatch
7: else

8: t← tree
9: end if

10: if s /∈ t then

11: if s /∈ transposition table then

12: if GetBatch then

13: add s to the batch

14: end if

15: return Unknown

16: else

17: add s to t
18: return value (s)

19: end if

20: end if

21: bestScore← −∞
22: for m ∈ legal moves of s do

23: µ← FPU
24: if t.p(s,m) > 0 then

25: µ← t.sum(s,m)
t.p(s,m)

26: end if

27: bandit← µ+ c× t.prior(s,m)×
√

1+t.p(s)

1+t.p(s,m)

28: if bandit > bestScore then

29: bestScore← bandit
30: bestMove← m
31: end if

32: end for

33: if root then

34: b← highestV aluem(t.p(s,m))
35: b1 ← secondHighestV aluem(t.p(s,m))
36: if b ≥ b1 + budget− i then

37: bestMove← secondBestMovem(t.p(s,m))
38: end if

39: end if

40: s1 ← play (s, bestMove)

41: res← BatchSecond (s1, GetBatch, budget, i, False)

42: if GetBatch then

43: UpdateStatisticsGet (res, bestMove, s, t)
44: else

45: UpdateStatistics (res, bestMove, s, t)
46: end if

47: return res
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Table 1: Playing 400 games with the constant and the best mean FPUs and different

numbers of evaluations against the µ FPU, σ
√

n
< 0.0250.

FPU 32 64 128 256 512

constant 0.1300 0.1300 0.0475 0.0175

best 0.3775 0.3450 0.3275 0.3150 0.2725

4.2 Trees and Transposition Table

We now experiment with using a single tree associated to a transposition table. An

entry in the transposition table only contains the evaluation and the prior. A node in

the tree contains the children and the statistics of the state. We compare it to the PUCT

algorithm with a transposition table that stores both the statistics, the evaluation and

the priors. PUCT with a transposition table searches with a Directed Acyclic Graph

while its opponent develops a single tree with transpositions only used to remember the

evaluation of the states.

Table 2 gives the budget used by each algorithm (the number of forward of the

neural network), the number of descents of the single tree algorithm using this budget

and the ratio of the number of descents divided by the number of forwards and the win

rate of the single tree algorithm. Both PUCT with a transposition table and the single

tree algorithm are called with a batch of size one. The PUCT with a transposition table

algorithm makes exactly as many descents as forwards when the single tree algorithm

makes more descents than forwards. The ratio of the number of descents divided by

the number of forwards increases with the budget. We can see that both algorithms

have close performances with the single tree algorithm getting slightly better with an

increased budget.

Table 2: Playing 400 games with a tree, a transposition table and a batch of size 1 against

PUCT with a transposition table with a batch of size 1, σ
√

n
< 0.0250

Budget Descents Ratio Winrate

256 273.08 1.067 0.4800

1024 1 172.21 1.145 0.4875

4096 5 234.01 1.278 0.5275

4.3 The Virtual Mean

In order to compare the virtual loss and the Virtual Mean we make them play against

the sequential algorithm. They both use batch MCTS. The results are given in Table 3.

The first column is the penalty used, the second column is the value of vl the number

of visits to add for the penalty used. The third column is the number of batches and the

fourth column the size of the batches. The fifth column is the average number of nodes

of the tree. The sixth column is the average of the number of useful inferences made per
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batch. The number of inferences made can be smaller than the batch size since the batch

is not always fully filled at each call of the GetBatch algorithm. The last column is the

win rate against the sequential algorithm using 64 batches of size 1. All experiments are

made with the maximum number of descents N = 500. It is normal that the number of

inferences per batch is smaller than the batch size since for example the first batch only

contains one state because the priors of the root are not yet known.

The best result for the Virtual Loss is with vl = 3 when using 8 batches. It scores

20.75% against sequential PUCT with 64 state evaluations. The Virtual Mean with 8

batches has better results as it scores 31.00% with vl = 3 against the same opponent.

We also tested the virtual loss and the Virtual Mean for a greater number of batches.

For 32 batches of size 32 (i.e. inferences on a little less than 1024 states) the best result

for the virtual loss is with vl = 2 with an average of 157.69 nodes in the tree and a

percentage of 79.00% of wins against sequential PUCT with 64 state evaluations. The

Virtual Mean with vl = 1 and the same number of batches is much better: it has on

average 612.02 nodes in the tree and a percentage of wins of 97.00% of its games.

In the remaining experiments we use the Virtual Mean.

Table 3: Playing 400 games with the different penalties (VL = Virtual Loss, VM =

Virtual Mean) against sequential PUCT with 64 state evaluations. σ
√

n
< 0.0250

P vl B Batch Nodes Inference Winrate

VL 1 8 32 24.47 23.17 0.1300

VL 2 8 32 24.37 24.46 0.1525

VL 3 8 32 24.11 25.16 0.2075

VL 4 8 32 23.87 25.53 0.2025

VL 5 8 32 23.91 25.72 0.1600

VL 1 32 32 166.09 28.08 0.7725

VL 2 32 32 157.69 28.25 0.7900

VL 3 32 32 151.02 28.30 0.7800

VL 4 32 32 144.45 28.19 0.7550

VM 1 8 32 46.45 20.22 0.2625

VM 2 8 32 43.75 21.64 0.3025

VM 3 8 32 41.63 22.10 0.3100

VM 4 8 32 40.41 22.53 0.2400

VM 1 32 32 612.02 26.63 0.9700

VM 2 32 32 619.07 27.83 0.9675

VM 3 32 32 593.91 28.20 0.9500

4.4 The Last Iteration

Table 4 gives the result of using the Last Iteration heuristic with different values for U.

The column vll contains the value of vl used for the Last Iteration. We can see that the

win rates are much better when using 8 batches than for Table 3 even for a small U. A
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large virtual loss (vll) of 3 makes more descents but it is less accurate. Using a virtual

loss of 1 is safer and gives similar results.

When using 32 batches against 512 states evaluations the win rate increases from

62.75% for U = 0 to 68.00% for U = 40.

Table 4: Playing 400 games with the Last Iteration algorithm against sequential PUCT

with P state evaluations. σ
√

n
< 0.0250.

U vl vll B Batch P Nodes Winrate

10 3 3 8 32 64 109.02 0.4975

10 3 1 8 32 64 75.09 0.4450

40 3 3 8 32 64 232.09 0.5100

40 3 1 8 32 64 129.90 0.5275

0 1 1 32 32 512 729.41 0.6275

40 1 3 32 32 512 962.84 0.6650

40 1 1 32 32 512 835.07 0.6800

4.5 The Second Move Heuristic

Table 5 gives the winrate for different budgets when playing PUCT with the second

move heuristic against vanilla PUCT. We can see that the Second Move heuristic con-

sistently improves sequential PUCT.

Table 5: Playing 400 games with the second move heuristic used at the root of sequential

PUCT against sequential PUCT. σ
√

n
< 0.0250.

Budget Winrate

32 0.5925

64 0.6350

128 0.6425

256 0.5925

512 0.6250

1024 0.5600

4.6 Ablation Study

The PUCT constant c = 0.2 that we used in the previous experiments was fit to the

sequential PUCT on a DAG with 512 inferences. In order to test the various improve-

ments we propose to fit again the c constant with all improvements set on. The results of

games against sequential PUCT for different constants is given in Table 6. The c = 0.5
constant seems best and will be used in the ablation study.

Table 7 is an ablation study. It gives the scores against sequential PUCT with 512

evaluations of the different algorithms using 32 batches with some heuristics removed.
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Table 6: Result of different constants for 32 batches of size 32 against sequential PUCT

with 256 state evaluations and a constant of 0.2. σ
√

n
< 0.0250.

c Winrate

0.2 0.7575

0.3 0.7925

0.4 0.8100

0.5 0.8275

0.6 0.7975

0.7 0.7700

0.8 0.7550

1.6 0.5900

Removing the Virtual Mean heuristic is done by replacing it with the virtual loss

heuristic. However the virtual loss combined with the Last Iteration is catastrophic. So

we also removed both the Virtual Mean and the Last Iteration heuristics in order to

evaluate removing the Virtual Mean.

Removing the µ FPU was done replacing it by the best mean FPU. The Last Iteration

uses vll = 1 and U = 40.

We can observe in Table 7 that all the heuristics contribute significantly to the

strength of the algorithm. The Virtual Mean (VM) has the best increase in win rate,

going from 29.50% for the virtual loss to 68.00% when replacing the virtual loss by

the Virtual Mean. The Second Move heuristic (SM) also contributes to the strength of

Batch MCTS. LI stands for the Last Iteration.

Table 7: Playing 400 games with the different heuristics using 32 batches of size 32

against sequential PUCT with 512 state evaluations. σ
√

n
< 0.0250.

µ FPU VM LI SM Winrate

y y y y 0.6800

n y y y 0.4775

y n y y 0.0475

y n n y 0.2950

y y n y 0.6275

y y y n 0.5750

4.7 Inference Speed

Table 8 gives the number of batches per second and the number of inferences per sec-

ond for each batch size. Choosing batches of size 32 enables to make 26 times more

inferences than batches of size 1 while keeping the number of useful inferences per

batch high enough.
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Table 8: Number of batches per second according to the size of the batch with Tensor-

flow and a RTX 2080 Ti.

Size Batches per second Inferences per second

1 38.20 38

2 36.60 73

4 36.44 146

8 33.31 267

16 32.92 527

32 31.10 995

64 26.00 1 664

128 18.32 2 345

5 Conclusion

We have proposed to use a tree for the statistics and a transposition table for the results

of the inferences in the context of batched inferences for Monte Carlo Tree Search. We

found that using the µ FPU is what works best in our framework. We also proposed

the Virtual Mean instead of the Virtual Loss and found that it improves much Batch

MCTS. The Last Iteration heuristic also improves the level of play when combined

with the Virtual Mean. Finally the Second Move heuristic makes a good use of the

remaining budget of inferences when the most simulated move cannot be replaced by

other moves.
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