
Mutation-Set Discovery for Cell-Fate Control: Nested Monte Carlo
Search on Boolean Network Ensembles

Xichen Zhang Löıc Paulevé Tristan Cazenave
LAMSADE,

Université Paris-Dauphine,
Université PSL,
Paris, France

LaBRI,
Université de Bordeaux,

Bordeaux, France

LAMSADE,
Université Paris-Dauphine,

Université PSL,
Paris, France

Abstract

We study the efficient discovery of mutation
sets in Boolean-network ensembles, where ro-
bust evaluation is costly, and steady-state
estimates are noisy with few trajectories. We
first derive a variance decomposition that
separates across-model diversity from within-
model simulation noise, yielding a simple
tolerance-to-budget rule for allocating M
(models) and n (trajectories). We then bench-
mark NMCS, Lazy NMCS, and NRPA, and
introduce Bi-Lazy NMCS: a two-level scheme
that prunes with a small, cheap ensemble and
confirms with a large, accurate one. On the
Cohen model, Bi-Lazy NMCS offers strong
anytime performance and better scalability
under fixed time budgets.

1 Introduction

Boolean networks (BNs) are classical models to capture
qualitative aspects of gene-regulatory dynamics (see
Figure 1) and cell-fate decisions such as apoptosis,
invasion, and metastasis (Cohen et al., 2015). A BN
is a dynamical model in which each gene (node) is a
binary variable indicating whether it is active (1) or
inactive (0), and each node has a logical rule specifying
its next state as a function of its regulators. Given
an initial configuration, one simulates the system by
applying these rules according to an update mode: in
the synchronous mode, all nodes update simultaneously;
in the asynchronous mode, a single node updates at a
time, chosen non-deterministically. Logical rules aim
to reflect biomolecular regulation, which, in practice,
is only partially known.(Chevalier et al., 2020; Naldi
et al., 2018; Stoll et al., 2012).

To consider this uncertainty, recent work advocates
ensembles of BNs that share the same topology but

differ in local update rules (Schwab et al., 2021; Cheva-
lier et al., 2020, 2025). Ensemble modeling improves
robustness by averaging predictions over BNs, but this
operation raises computational costs. Throughout, we
use asynchronous simulations to approximate BN’s
steady-state, controlled by two parameters: the num-
ber of trajectories per model ntraj and the ensemble
size M .

A central challenge is search: finding mutation sets
that drive the ensemble toward a target phenotype
is combinatorial. Exhaustive evaluation is infeasible
for two reasons: (i) large graphs explode the candi-
date space, and (ii) large ensembles make each eval-
uation costly. Monte-Carlo–based search may help:
Monte-Carlo Tree Search (MCTS) and UCT provide
the general framework (Coulom, 2007; Kocsis and
Szepesvári, 2006; Browne et al., 2012; Gelly and Silver,
2012); Nested Monte-Carlo Search (NMCS) specializes
in single-agent optimization by recursively searching
for the best-sequence (Cazenave, 2009); NRPA adds a
learned stochastic rollout policy adapted to the best
sequence (Rosin, 2011); and “lazy” pruning variants
reduce branching by cheaply screening moves before
deeper search (Roucairol and Cazenave, 2023; Roucairol
et al., 2024). We also integrate search with simple vari-
ance budgeting for noisy phenotype estimates based
on concentration bounds (Hoeffding, 1963; Audibert
et al., 2009).

In this ensemble setting, We ask:

Q1: What really influences the variability of
an ensemble of BNs?

Q2:How can we efficiently search mutation
sets in Boolean-network ensembles?

We bridge steady-state estimation and Monte Carlo
search, comparing NMCS, LNMCS, and NRPA while
proposing Bi-Lazy NMCS (BILNMCS), a two-level
scheme that uses a small, inexpensive ensemble for

Mutation-Set Discovery for Cell-Fate Control: Nested Monte Carlo Search on Boolean Network Ensembles

pruning and a large, accurate one for confirmation.

(a) Dynamical model view:
discrete states evolve under
update rules and settle into
attractors (fixed points or
cycles).

(b) Cell-fate view: regula-
tory programs guide differ-
entiation, maturation, and
reprogramming decisions.

Figure 1: Boolean networks as a classic modeling
paradigm for regulatory systems.

2 Background and Problem Setup

2.1 Boolean Networks

Let n ∈ N, [n] = {1, . . . , n}, and B = {0, 1}. A Boolean
network (BN) is a function F : Bn → Bn,

F (x) :=
(
f1(x), . . . , fn(x)

)
(x ∈ Bn)

where fi : Bn → B is the local Boolean function of
component i ∈ [n], and any x ∈ Bn is a configuration
(see the toy example Figure 2). We write ∆(x, y) = {i ∈
[n], xi ̸= yi} the nodes that differ in two configurations.
Its influence graph G(F) is a signed digraph over its

nodes [n], with i
+−→ j (resp. i

−−→ j) whenever there
exists x, y ∈ Bn such that ∆(x, y) = {i}, xi = 0 and
fj(x) < fj(y) (resp. fj(x) > fj(y)). In this work, we
adopt asynchronous semantics to define the transition

relation
a1−→
F

between pairs of configurations x, y ∈ Bn:

x
a1−→
F

y ⇐⇒ ∃i ∈ [n] : ∆(x, y) = {i} and yi = fi(x),

with
a1
==⇒
F

its reflexive–transitive closure. The relation

a1−→
F

forms a digraph between configurations Bn. At-

tractors (including fixed points) summarize long-run
behavior under this update mode and correspond to
the inclusion-smallest sets of configurations closed by
a1
==⇒
F

. A phenotype is a Boolean condition ϕ over con-

figurations.

2.2 Mutated Boolean Networks

A mutation fixes a node i to v∈B: (i, v). For a setM
with at most one pair per node,

(F/M)i(x) =

{
v, (i, v) ∈M,

fi(x), otherwise.

Restricting to modifiable regulators I ⊆ [n] (g := |I|),
the k-mutant search space is

Sk = {M ⊆ I × B : |M| = k}, |Sk| =
(
g

k

)
2k.

This combinatorial growth motivates the search strate-
gies used later.

1 3

2

Figure 2: Influence
graph G(F) for the toy
BN. Green: activation;
red: inhibition.

Toy BN (n=3). f1(x) =
¬x2, f2(x) = ¬x1, f3(x) =
¬x1∧x2. Nodes 1 and 2 form a
mutual-inhibition toggle; node
2 activates 3 while node 1 in-
hibits 3. Under asynchronous
updates, this yields two fixed
points: (1, 0, 0) and (0, 1, 1).

In Figure 3, Asynchronous
single-step trajectories on a
toy Boolean network under sin-
gle gain-of-function mutations
M = {(i, 1)}. Each cube dis-
plays the configuration graph; thick arrows indicate
the enabled update from the annotated start state, and
boxed vertices represent fixed points. The three cases
illustrate how mutating one node can reprogram the
system by changing dynamics to different attractors:
fixing node 1 locks the network at 100, fixing node 2
drives 010→011, and fixing node 3 drives 001→101.

2.3 Problem Setup

In the following, we consider F = {F(m)}Mm=1 an en-
semble of M distinct BNs over the same fixed nodes
[n], and an initial configuration x0 ∈ Bn.

Given a mutation setM, for any m ∈ [M], X
(j)
m ∈ B is

true if the configuration resulting from the j-th uniform
random walk of length nsteps in the digraph generated

by
a1−−−−→

Fm/M
from x0 verifies the phenotype ϕ.

Evaluation objectives. For a mutation setM and
an ensemble {F (m)}Mm=1, we estimate the mean success
probability p̂ens as follows:

p̂m =
1

ntraj

ntraj∑
j=1

1[X(j)
m =1], p̂ens =

1

M

M∑
m=1

p̂m (1)

Intuitively, M averages over model diversity; ntraj re-
duces simulation noise per model. Both contribute to
costs.

Search problem. Given depth D (number of muta-
tions) and a time budget, our goal is to findM∈ SD
that maximizes p̂ens. Because |SD| =

(
g
D

)
2D grows

Xichen Zhang, Löıc Paulevé, Tristan Cazenave

000 100

010 110

001 101

011 111

100

(a) M = {(1, 1)}, start 100 (fixed).

000 100

010 110

001 101

011 111

(b) M = {(2, 1)}, 010→011 (fixed).

000 100

010 110

001 101

011 111

(c) M = {(3, 1)}, 001→101 (fixed).

Figure 3: Asynchronous single-step trajectories on the toy BN (Figure 2). Each panel shows the config-
uration cube under one gain-of-function mutationM = {(i, 1)} . Thick arrows mark the enabled asynchronous
move; boxed states are fixed points.

rapidly, we later employ Nested Monte Carlo search
with pruning and noise control, but here we formalize
the modeling ingredients used throughout.

Experiments on biological case study In this
work, we investigate the BN of Cohen et al. (2015)
modeling molecular mechanisms involved in tumor pro-
gression. This model has been used to study mutations
that impact metastasis development. The BN is com-
posed of 32 nodes with 159 direct edges. We generated
ensembles of Boolean networks using BoNesis (Cheva-
lier et al., 2024), an Answer-Set Programming–based
synthesis framework that samples diverse logical mod-
els sharing the same influence graph while satisfying
user-specified dynamical constraints, following the work
of Chevalier et al. (2020).

3 Variance Decomposition: Ensemble
Diversity Dominates

Given a fixed ensemble sizeM , how many trajectories n
per network are needed to estimate a target-phenotype
probability accurately? Larger M averages model di-
versity and typically reduces how large n must be (See
Figure 4).

3.1 Setup

Let F = {Fm}Mm=1 be an ensemble of Boolean networks
on nodes [n]. Fix a simulation protocol (initial state or
law, asynchronous updates, and a step cap nsteps). For
phenotype ϕ, each model Fm has a success probability
pm: under the fixed protocol, it is the probability that
a asynchronous update of the mutated model Fm/M
reaches ϕ before the step cap nsteps.

We estimate pm with ntraj independent simulations,
Per-model and ensemble estimators (p̂m, p̂ens) are ex-
actly those in Section 2.3, Equation (1).

Assumptions (i) Within each model, trajectories are
i.i.d. given pi; (ii) different models are independent
given (pi); (iii) models are sampled uniformly (with

replacement) from F .

3.2 Variance decomposition

Lemma 3.1. Under the above assumptions,

Var(p̂ens) =
σ2
p

M
+

η

Mn
, η := E[pi(1−pi)], σ2

p := Var(pi).

Proof sketch. Law of total variance with Var(p̂i | pi) =
pi(1− pi)/n and E[p̂i | pi] = pi.

Theorem 3.2 (minimal M). If Var(p̂ens) ≤ ε2, any
(M,n) with

M ≥
σ2
p + η/n

ε2

is sufficient. With only pi ∈ [0, 1] (hence σ2
p ≤ 1

4 ,

η ≤ 1
4),

M ≥
1
4 + 1

4n

ε2
.

Corollary 3.3 (Fixed total budget B = Mn). With
B fixed,

M ≥
σ2
p

ε2 − η/B
(requires ε2 > η/B).

Remark 3.4 (Simulation-noise–only bound). Since p(1−
p) ≤ 1

4 , enforcing η/(Mn) ≤ ε2sim gives

n ≥ 1

4Mε2sim
.

The 1/M term from model diversity (σ2
p/M) often dom-

inates once n is modest, so—under a fixed budget
B—allocating more to M usually yields larger variance
reductions than further increasing n.

4 Nested Monte Carlo Search on
Boolean-Network Ensembles

We present three nested search algorithms—NMCS,
NRPA, and BILNMCS—applied to ensembles of

Mutation-Set Discovery for Cell-Fate Control: Nested Monte Carlo Search on Boolean Network Ensembles

Figure 4: Convergence under ensemble simulations. Left: stability vs. trajectories per model n. Right: stability
vs. ensemble size M .

Boolean networks with a fixed ensemble size M (M =
1000). All explore large mutation spaces via nested
calls but differ in how they select and refine rollouts
(playouts). Compared to the original versions, we add
(1) Per-level caches (Cℓ): at level L, save mutation sets
with order-free keys to avoid re-evaluation. (2) Rollout
Cache (ec results): store complete playout evaluations
to skip identical simulations.

4.1 Nested Monte Carlo Search (NMCS)

Nested Monte Carlo Search(Cazenave, 2009) is a recur-
sive algorithm originally used for single-player games
and is here adapted to search over mutation sets in
ensemble Boolean networks. At level 0, it runs a ran-
dom rollout by picking mutations uniformly until the
depth limit, returning the resulting score and mutation
set. At higher levels, it tries each legal move from
the current state, calls NMCS at one level lower, and
keeps track of the best sequence found; after checking
all moves, it advances along this best sequence and
repeats the process. The key parameter is the nesting
level, which balances search quality and computation.
In our application, the state is the set of mutations
applied so far, and NMCS scores each possible next
mutation by recursive simulation to the target depth,
reusing the best set found at each step to guide the
search while still keeping some randomness for explo-
ration.

In Algorithm 1, lines 1--5 form a wrapper that sets
the deadline T if a timeout is given, initializes the global
best result best = (score : −∞, set : ∅), and prepares an
empty cache C for evaluated states. Line 6 calls the re-
cursive Core function. Inside Core, line 7 checks the
deadline for anytime termination, and line 8 converts
S to a frozenset key, so caching is order-invariant.
The base case in lines 9--16 triggers when L = 0
or S is terminal: results are either retrieved from C
or computed by a random playout, then cached and
used to update best if improved. The recursive case

(lines 17--26) starts by setting a local best, iterates
over legal moves, rechecks T , generates S1, and either
uses the cache or calls Core at depth L−1; both lo-
cal and global bests are updated if better scores are
found. Finally, lines 27--29 backtrack by extending
S with the next move from bestSet, ensuring the search
continues along the most promising path.

Algorithm 1: NMCS for BN
1 Function NMCS(S,L,D, bestMoves, ec, timeout):
2 T ← (now + timeout) or ∅
3 best← {score : −∞, set : ∅}
4 C ←

[
empty map

]L
ℓ=0

5 return Core(S,L,D, bestMoves, ec, C, T, best)

6 Function Core(S,L,D,M, ec, C, T, best):
7 if T ≠ ∅ and now > T then return (best.score, best.set)
8 k ← frozenset(S) ▷ canonical key
9 if k ∈ C[L] then return C[L][k]

10 if L = 0 then
11 if k ∈ C[0] then
12 (sc,mutSet)← C[0][k]
13 else
14 (sc,mutSet)← RandomPlayout(S,M,D, ec)
15 C[0][k]← (sc,mutSet)

16 return (sc,mutSet)

17 bestSc← −∞; bestSet← ∅ ▷ local best
18 while ¬ isTerminal(S) do
19 for m ∈ legalMoves(S,M) do
20 if T ̸= ∅ and now > T then return

(best.score, best.set)
21 S1 ← S ∪ {m}; k1 ← frozenset(S1)
22 if k1 ∈ C[L−1] then
23 (sc,mutSet)← C[L−1][k1]
24 else
25 (sc,mutSet)←

Core(S1, L−1, D,M, ec, C, T, best)
▷ recursive call

26 C[L−1][k1]← (sc,mutSet)

27 if sc > bestSc then bestSc← sc;
bestSet← mutSet

28 if sc > best.score then best← (sc,mutSet)
▷ global best

29 S ← S ∪ {next(bestSet \ S)}
30 return (bestSc, S)

Xichen Zhang, Löıc Paulevé, Tristan Cazenave

4.2 Nested Rollout Policy Adaptation
(NRPA)

Nested Rollout Policy Adaptation (Rosin, 2011)
changes NMCS by replacing uniform rollouts with a
learned stochastic policy

π : S ×A → R, (s, a) 7→ π(s, a),

where π(s, a) is a log-weight assigned to action a ∈ A(s)
in state s.

At the search level L = 0, actions are sampled according
to the Gibbs distribution

Pπ(a | s) =
exp

(
π(s, a)

)∑
a′∈A(s)

exp
(
π(s, a′)

) , (2)

which biases selection toward higher-weight actions
while retaining stochastic exploration.

After each level-L search, the policy is adapted toward
the best sequence B = (a1, . . . , aD) found so far. Let
st be the state before executing at. The update rule is

π ← π + α

D∑
t=1

[
ecode(st,at)

−
∑

a∈A(st)

Pπ(a | st) ecode(st,a)]
(3)

where ei is the i-th standard basis vector and α > 0 is
the learning rate. Equation (3) is a stochastic gradient-
ascent step on logPπ(B) under (2), integrating NMCS’s
recursive best-sequence propagation with online policy
learning.

4.3 Pruning the candidates: Bi-level
lazy-NMCS

In the section Section 2.2, the challenging part is that
the |Sk| will explode, which makes the branch factor
of a search very large.

Therefore, we propose an extension of Lazy Nested
Monte Carlo Search that introduces a bi-level evalua-
tion strategy to accelerate the search while maintaining
high-quality solutions. This strategy builds on recent
advances in Lazy NMCS (Roucairol and Cazenave,
2023; Roucairol et al., 2024), extending it with a decou-
pled evaluation that we refer to as Bi-Lazy NMCS.

The key idea is to decouple the pruning phase and
the evaluation phase of the search by introducing two
evaluators: (1)A cheap evaluator (ec fast, e.g., an
ensemble of size 50) used exclusively for the b random
playouts in the pruning step (i) at each node. (2) A

high-fidelity evaluator (ec main, e.g., an ensemble of
size 1000) responsible for scoring the final full mutation
sets and updating the global. There are two Per-level
caches equipped for those evaluator(potentially intro-
duce memory issues).

In standard LNMCS, evaluating b rollouts per candi-
date move becomes costly when using large ensembles.
Bi-Lazy NMCS addresses this by performing these in-
expensive evaluations using a small ensemble, thus
accelerating the screening phase.(see Algorithm 2) The
pruning threshold θd at each depth d is then computed
from these fast estimates, enabling the early elimina-
tion of weak branches. Final evaluations and best-set
selection, however, are still performed using a large,
accurate ensemble to preserve solution fidelity. This de-
coupled structure allows pruning decisions to be guided
by small ensembles while retaining the quality benefits
of larger ones—achieving a better time-quality tradeoff,
particularly under tight computational budgets.

Algorithm 2: Bi-Lazy NMCS for BN
1 Function CachePlayout(C, ℓ, S, ec):
2 k ← Key(S)
3 if k ∈ C[ℓ] then
4 return C[ℓ][k]
5 (sc, S⋆)← RandomPlayout(S,M,D, ec); C[ℓ][k]← (sc, S⋆);

return (sc, S⋆)
6 Function FastStats(S):
7 d← |S|; tot← 0
8 for i← 1 to b do

9 (sc,)← CachePlayout(Cfast, 0, S, ecfast); tot← tot + sc
10 mean← tot/b; tr[d].count← tr[d].count + 1

11 tr[d].mean←
tr[d].mean · (tr[d].count− 1) + mean

tr[d].count
;

12 trmax[d]← max(trmax[d],mean);
13 return mean

14 Function
BiLazyNMCS(S, L, D, M, ecmain, ecfast, e, b, r, tr, trmax, timeout):

15 T ← (now + timeout) or ∅;
16 best← (score = −∞, set = ∅)
17 Cmain ←

[
Map()

]L
ℓ=0

;

18 Cfast ←
[
Map()

]L
ℓ=0

;

19 return

Core(S, L,D,M, ecmain, ecfast, e, b, r, tr, trmax,Cmain, Cfast, T)

20 Function Core(S, L, D, M, ecmain, ecfast, ...):
21 if T ̸= ∅ and now> T then return (best.score, best.set)
22 if L = 0 then

23 return CachePlayout (Cmain,0,S,ecmain)
24 k0 ← Key(S); bestSc← −∞; bestSet← []
25 while ¬ isTerminal(S,D) do
26 if T ̸= ∅ and now> T then return (bestSc, S)
27 M← LegalMoves(S,M); if |M| > e then
28 M← uniform sample of e fromM
29 C ← []; d← |S|
30 for m ∈ M do
31 S′ ← S ∪ {m}; mean← FastStats(S′);

C ← C ∪ {(mean,m)}
32 θd ← tr[d].mean + r · (trmax[d]− tr[d].mean)
33 for (mean,m) ∈ C do
34 S′ ← S ∪ {m}; k′ ← Key(S′)
35 nextL← (0 if mean < θd else L−1)
36 if nextL = 0 then

37 CachePlayout (Cmain,0,S′,ecmain)
38 else
39 (sc, s′)← Core(S′, L−1, ...)

40 Cmain[L−1][k′]← (sc, s′)
41 if sc > bestSc then bestSc← sc; bestSet← mutSet
42 if sc > best.score then best← (sc,mutSet)

43 S ← S ∪ {next(bestSet \ S)}
44 return (bestSc, S)

Mutation-Set Discovery for Cell-Fate Control: Nested Monte Carlo Search on Boolean Network Ensembles

Figure 5: Scalability with ensemble size under a fixed
90 s timeout and depth D=10. Points show the mean
score over 20 trials for each M ∈ {200, 500, 700, 1000}.

5 Experimental Evaluation: Scalability
and Anytime Performance

We evaluate NMCS, LNMCS, NRPA, and our BIL-
NMCS along two dimensions: (1) scalability and (2)
anytime performance.

Experimental setup. Unless stated otherwise, all
methods run at level 2. LNMCS/BILNMCS use b=3
playouts with pruning r=0.4, e = 10; BILNMCS de-
couples evaluation via a small-ensemble filter (M=50,
ec fast) and a full-ensemble scorer (M , ec main).
NRPA uses an untuned policy (implicit τ=1, N=100).
Using Remark 3.4, the simulation budget scales per
model as ⌈2500/M⌉, keeping εsim = 0.01.

5.1 Scalability with Ensemble Size

We fix the timeout to 90 s and the search depth
to D=10, and vary the ensemble size M ∈
{200, 500, 700, 1000}. Figure 5 summarizes the mean
score over 20 trials.

BILNMCS is the most stable as M increases: it holds
near 0.77 for M=200–700, dips slightly at M=1000.
NRPA achieves the highest scores at small/medium
M (peaking around 0.811 at M=200) but degrades
to ≈ 0.69 at M=1000. LNMCS/NMCS is fairly flat
(∼ 0.65–0.7) across M .NMCS is the lowest at M=1000
reflecting the increase in evaluation costs when no
pruning is used.

Under a fixed budget, growing M reduces the number
of rollouts that an algorithm can afford. By decoupling
fast screening of small ensemble (ec fast) from high-
fidelity confirmation on the full ensemble (ec main),
BILNMCS preserves stable and strong performance at
large-M .

5.2 Anytime Performance

In Table 1, across depths d ∈ {4, 5, 6} at fixed M=1000.
For d = 4, BILNMCS is strongest at 10s, while NRPA
leads at 30–60,s. For d = 5, BILNMCS wins at 30s,
but NRPAis slightly ahead at 10s and 60s. For d =
6, BILNMCS attains the best mean across all shown
budgets (10–60s). NMCS and LNMCS are generally
behind these two. There is meaningful room to improve
late-budget performance by organizing caches more
carefully.

6 Conclusion

We studied how to search for mutation sets in Boolean-
network (BN) ensembles when evaluations are expen-
sive and noisy.

Limitations. There is a budget–accuracy trade-off.
Small M ×n is fast but noisy; large M ×n is accu-
rate but costly. Our current control uses a uniform
worst-case bound for the simulation variance, which is
conservative. Tighter, data-dependent estimates would
better indicate when an estimate is “good enough,”
enabling smarter allocation between ec fast and
ec main. Policy-adapted methods (NRPA/GNRPA)
also have room for improvement (temperature sched-
ules, bias design, and caching).

Future work. (i) Variance-aware allocation: use
adaptive stopping with online variance estimates (with
finite-population corrections) to adjust ntraj and M
during the run and decide when to switch from ec fast

to ec main. (ii) Learning priors from the influence
graph: train a simple GCN to score nodes/moves and
use it as bias β in GNRPA; then transfer the learned
policy from small to large ensembles. (iii) Broader case
studies: test on more BN ensembles to check scalability
across variance regimes. (iv) Benchmarking: build an
open benchmark (datasets, protocol, variance reporting,
reproducible scripts) for fair comparisons and faster
progress.

References

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári.
Exploration–exploitation tradeoff using variance esti-
mates in multi-armed bandits. Theoretical Computer
Science, 410(19):1876–1902, 2009.

Cameron B. Browne, Edward Powley, Daniel Whitehouse,
Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(1):1–43, 2012.

Xichen Zhang, Löıc Paulevé, Tristan Cazenave

Table 1: Anytime performance across depths d ∈ {4, 5, 6} at M=1000 (trials = 10). Best per timeout in bold.

Depth timeout (s) NMCS LNMCS BILNMCS NRPA

4
10 0.465 ± 0.079 0.505 ± 0.105 0.576 ± 0.108 0.566 ± 0.088
30 0.615 ± 0.049 0.603 ± 0.062 0.600 ± 0.053 0.634 ± 0.088
60 0.702 ± 0.065 0.698 ± 0.033 0.747 ± 0.046 0.755 ± 0.050

5
10 0.549 ± 0.079 0.549 ± 0.113 0.627 ± 0.141 0.629 ± 0.040
30 0.627 ± 0.074 0.623 ± 0.118 0.684 ± 0.129 0.666 ± 0.091
60 0.709 ± 0.052 0.701 ± 0.052 0.718 ± 0.069 0.724 ± 0.045

6
10 0.558 ± 0.072 0.613 ± 0.060 0.619 ± 0.086 0.577 ± 0.092
30 0.664 ± 0.085 0.649 ± 0.049 0.707 ± 0.102 0.703 ± 0.066
60 0.679 ± 0.082 0.716 ± 0.076 0.729 ± 0.081 0.725 ± 0.057

Tristan Cazenave. Nested monte-carlo search. In Pro-
ceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI), pages 456–461, 2009.

Stéphanie Chevalier, Vincent Noël, Laurence Calzone, An-
drei Zinovyev, and Löıc Paulevé. Synthesis and Sim-
ulation of Ensembles of Boolean Networks for Cell
Fate Decision. In CMSB 2020 - 18th International
Conference on Computational Methods in Systems Bi-
ology, volume 12314 of Lecture Notes in Computer
Science, pages 193–209, Cham, 2020. Springer. doi:
10.1007/978-3-030-60327-4\ 11.

Stéphanie Chevalier, Déborah Boyenval, Gustavo Maga
textasciitilde na López, Théo Roncalli, Athénäıs Vaginay,
and Löıc Paulevé. BoNesis: a Python-based declarative
environment for the verification, reprogramming, and
synthesis of Most Permissive Boolean networks. In 22th
International Conference on Computational Methods in
Systems Biology (CMSB 2024), LNCS, Pisa, Italy, 2024.
Springer. doi: 10.1007/978-3-031-71671-3\ 6.

Stéphanie Chevalier, Julia Becker, Yujuan Gui, Vincent
Noël, Cui Su, Sascha Jung, Laurence Calzone, Andrei
Zinovyev, Antonio del Sol, Jun Pang, Lasse Sinkko-
nen, Thomas Sauter, and Löıc Paulevé. Data-driven
inference of Boolean networks from transcriptomes to
predict cellular differentiation and reprogramming. npj
Systems Biology and Applications, 11:105, 2025. doi:
10.1038/s41540-025-00569-z.

Daniel Paul Cohen, Giorgos Kourou, Ioana-Maria Ioana,
Hidde de Jong, Evangelia S. T., et al. Mathematical
modelling of molecular pathways enabling tumour cell
invasion and migration. PLoS Computational Biology, 11
(11):e1004571, 2015. Metastasis/invasion Boolean model
used in many BN papers.

Rémi Coulom. Efficient selectivity and backup operators
in monte-carlo tree search. In Computers and Games
(CG 2006), volume 4630 of LNCS, pages 72–83. Springer,
2007.

Sylvain Gelly and David Silver. The grand challenge of
computer go: Monte carlo tree search and extensions.
Communications of the ACM, 55(3):106–113, 2012.

Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-
carlo planning. In European Conference on Machine
Learning (ECML 2006), volume 4212 of LNCS, pages
282–293. Springer, 2006.

Aurélien Naldi, Céline Hernandez, Nicolas Levy, Gautier
Stoll, Pedro T. Monteiro, Claudine Chaouiya, Tomáš

Helikar, Andrei Zinovyev, Laurence Calzone, Sarah
Cohen-Boulakia, Denis Thieffry, and Löıc Paulevé. The
CoLoMoTo Interactive Notebook: Accessible and Repro-
ducible Computational Analyses for Qualitative Biologi-
cal Networks. Frontiers in Physiology, 9:680, 2018. doi:
10.3389/fphys.2018.00680.

Christoph D. Rosin. Nested rollout policy adaptation. In
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI), 2011.

Milo Roucairol and Tristan Cazenave. Solving the
hydrophobic-polar model with nested monte carlo search.
In Advances in Computational Collective Intelligence -
15th International Conference, ICCCI 2023, Budapest,
Hungary, September 27-29, 2023, Proceedings, volume
1864 of Communications in Computer and Information
Science, pages 619–631. Springer, 2023.

Milo Roucairol, Jérôme Arjonilla, Abdallah Saffidine, and
Tristan Cazenave. Lazy nested monte carlo search for
coalition structure generation. In Proceedings of the 16th
International Conference on Agents and Artificial Intelli-
gence, ICAART 2024, Volume 2, Rome, Italy, February
24-26, 2024, pages 58–67. SCITEPRESS, 2024.

Julian D. Schwab, Nensi Ikonomi, Silke D. Werle, Felix M.
Weidner, Hartmut Geiger, and Hans A. Kestler. Re-
constructing boolean network ensembles from single-cell
data for unraveling dynamics in the aging of human
hematopoietic stem cells. Computational and Structural
Biotechnology Journal, 19:5321–5332, 2021. ISSN 2001-
0370. doi: https://doi.org/10.1016/j.csbj.2021.09.012.

Gautier Stoll, Eric Viara, Emmanuel Barillot, and Laurence
Calzone. Continuous time boolean modeling for biolog-
ical signaling: application of gillespie algorithm. BMC
Systems Biology, 6(1):116, 2012. ISSN 1752-0509. doi:
10.1186/1752-0509-6-116.

	Introduction
	Background and Problem Setup
	Boolean Networks
	Mutated Boolean Networks
	Problem Setup

	Variance Decomposition: Ensemble Diversity Dominates
	Setup
	Variance decomposition

	Nested Monte Carlo Search on Boolean-Network Ensembles
	Nested Monte Carlo Search (NMCS)
	Nested Rollout Policy Adaptation (NRPA)
	Pruning the candidates: Bi-level lazy-NMCS

	Experimental Evaluation: Scalability and Anytime Performance
	Scalability with Ensemble Size
	Anytime Performance

	Conclusion

