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Abstract

Since the beginning of Al, mind games have been studied as relevant
application fields. Nowadays, some programs are better than human
playersin most classical games. Their results highlight the efficiency of
Al methods that are now quite standard. Such methods are very useful
to Go programs, but they do not enable a strong Go program to be built.
The problems related to Computer Go require new Al problem solving
methods. Given the great number of problems and the diversity of
possible solutions, Computer Go is an attractive research domain for
Al. Prospective methods of programming the game of Go will probably
be of interest in other domains as well. The goa of this paper is to
present Computer Go by showing the links between existing studies on
Computer Go and different Al related domains. evaluation function,
heuristic search, machine learning, automatic knowledge generation,
mathematical morphology and cognitive science. In addition, this paper
describes both the practical aspects of Go programming, such as
program optimization, and various theoretical aspects such as
combinatorial game theory, mathematical morphology, and Monte-
Carlo methods.



1. Introduction

Since the beginning of Al, mind games, such as Checkers [Samuel 59, 67] or Chess
[Shannon 50], have been studied as application fields for Al. Nowadays, some
programs are better than human players in most classical games: Deep Blue in Chess
[Anantharaman & al. 89], [Hsu & al. 90], Chinook in Checkers [Schaeffer & al. 92],
[Schaeffer 97], Logistello in Othello [Buro 94], Victoriain Go-moku [Allis & al. 95].
These results highlight the efficiency of Al methods that are now quite standard.

These methods are very useful to Go programs. However, by themselves, they do not
enable the Al community to build a strong Go program. The problems related to
Computer Go require new Al problem solving methods. Given the abundance of
problems, and the diversity of possible solutions, Computer Go is an attractive
research domain for Al. Prospective methods of programming the game of Go will
probably be of interest in other domains - for example tree search in classical games
is related to AND-OR tree solving, theorem proving, and constraint satisfaction. The
current cornerstone in game programming is the Alpha-Beta algorithm. It was
discovered in the early stages of Al research, and has been regularly improved ever
since. Computer Go programmers are till looking for their cornerstone, which will
certainly be more complex than for other games. The Computer Go community has
reached an agreement on some unavoidable low level modules such as tactical
modules, but specialists still disagree on some other important points. Future
programs will probably use the best of all the current possibilities, and link them
together in a harmonious way.

The goal of this paper is to present Computer Go by showing the links between
existing studies on Computer Go and different Al related domains. evaluation
function, heuristic search, machine learning, automatic knowledge generation,
mathematical morphology and cognitive science.

To show where the difficulty of Go programming lies, it is first necessary to compare
the game of Go to other classical games in a conventional way. In section 2, we show
that the combinatorial complexity is much higher in Go than in other two-player,
complete information, games. We also point out that the evaluation of a position can
be very complex. Therefore, unlike other games, Section 3 shows that Go programs
have poor rankings in the human ranking system and deals with the results obtained
when computers compete against human players and when computers play against
other computers.

As usua with computer games, we introduce the architecture of a Go program. We
examine: the evaluation function, in section 4; move generation, in section 5; and tree
search, in section 6. After expounding the key concepts of the evaluation function,
based on numerous concepts and viewpoints, we focus on the relationships between
tree search and the evaluation function. Tree search is used, both to find a good move
in using the evaluation function, and to perform tactical computations useful to
calculate the evaluation function.

However, the architecture of a Go program is not composed of these two parts alone.
The notion of abstraction plays an important role in Go, and Go programs exhibit
structure at different levels, the highest level being the strategic level, and the lowest
level being the tactical level. In order to be competitive, every level of a Go program
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has to be optimized. Therefore Go programmers spend much of their time on
optimizations. In section 7, we present some examples of possible optimizations at
different levels of abstraction.

In section 8, closely related with mathematics, we examine combinatorial game
theory [Conway 76], which deals with games as the sum of independent sub-games.
The game of Go is a global game that can be broken down into many local sub-
games. Although local sub-games are generally dependent, this theory offers an
appropriate model for the game of Go. More precisely, the strategic level of a
program may represent each tactical game by a combinatorial game. This theory is
better applied to the end of the game, when local sub-games become independent, and
it enables the calculation of the value of the very last moves of the endgame with
greater accuracy. In some positions devised to illustrate this theory, some programs
play better than the best professional players. The major current difficulty in applying
this theory to other sub-games of Go arises from the high dependence between local
sub-games.

A problem inherent in Computer Go is that the models with the best results use a lot
of knowledge. This need for knowledge makes machine learning, and automatic
generation of knowledge, attractive. The best method to obtain an average Go
program very rapidly is undoubtedly the temporal difference method. Some symbolic
approaches have also been tried, in an attempt automatically to generate tactical
knowledge. The two symbolic methods which yield good results are retrograde
analysis of small patterns, and logic metaprogramming. By using them, a large
number of tactical rules can be generated for the tactical levels of a Go program. We
present the different methods that automatically generate Go knowledge in section 9.

In section 10, we present a surprisingly effective technique that works quite well for
Go: Monte Carlo Go. This technique uses hardly any Go knowledge. However, a
very simple program, using this technique, beats classical, and much more complex,
programs on small boards (9x9).

The game of Go is avery visual game. Since the beginning of Computer Go, many
models of influence have been set up. We provide a formalization of these models
with some classical operators of mathematical morphology, in section 11.

Go is so complex that it can be used to perform interesting cognitive experiments,
within a formal setting imposed by the rules of the game. Section 12 centers on the
studies carried out on Go, using a cognitive approach.

The material used in this survey is based on existing computer go publications and on
the authors' own experience of writing Go programs. Unfortunately, programs whose
authors do not describe their algorithms and, furthermore, keep them secret, do not
explicitly appear in this survey. Nevertheless, for the strongest commercia programs
in this category, we tried to gather some personal communications that were sent to
the Computer Go mailing list. We could then mention these programs, and give short
descriptions of them. We aso base descriptions of the main components of this
survey on our own experience of writing Go programs:. Indigo [Bouzy 95a, 95c, 963,
97, 99], Gogol [Cazenave 96a, 96b, 96¢] and Golois [Cazenave 98, 99, 00]. We think
that Computer Go remains a new domain for computer science, and so far, no clear
theoretical model has emerged. The domain greatly benefits from studies based on
practical experiments. For instance, the Evaluation Function section mainly refers to
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the Indigo program, and the Automatic Knowledge Generation section to Golois.
Nevertheless, we do not limit our descriptions to these programs, and enlarge upon
them using the relevant computer go publications.

We choose not to include the rules of the game of Go in this paper. If the reader
wishes to know them, he can refer to http://www.usgo.org/resources/whatisgo.html

where he will find the definitions of “intersection”, “stone”, “string”, “liberty”, “atari”,

“ko”, “group”, “eye’, “tsumego”, “life’, “death”, “territory”, “influence’, “handicap”,
“kyu” and “dan” which are Go concepts used by our paper.

2. Other games

2.1. Introduction

This section centers on the current achievements in computer implementations of other
two-player, complete information, and zero-sum, games, which we also call “other
games’. Our aim is to show that the game of Go is more complex than these “other
games’. First, we focus on the detailed results for each game. Secondly, we review the
theoretical complexity of some of these games. Then we study the space states, and
game tree complexity [Allis 91] of these games, correlate these with the level reached
on the human scale. Lastly, we outline the complexity of Go.

2.2. Results achieved in other games

In this paragraph, we choose several games within the class of «other games». Go-
moku, Othello, Checkers, Draughts, Chess, and Shogi. Although it does not belong to
this class, we also add Backgammon to our study.

Go-moku

Go-moku is the game in which you must put five beads in arow - either horizontaly,
vertically, or diagonally. Several variants exist depending on the size of the board, and
the optional use of capture rules. The simplest variant (no capture) is worth considering
for implementation as a Computer Game because it is an example of a solved game,
since [Allis & a. 95] exhibited the winning strategy. Victoria is the best Go-moku
program.

Backgammon

Backgammon is not a complete information game (because the players throw two dice)
but the techniques used to program Backgammon are interesting, therefore we include
it in our set of other games. The best Backgammon program, TD-Gammon, is a Neura
Net program, which learned the game only by playing against itself. This program ison
a par with the best human players. It was developed at IBM by Tesauro [Tesauro &
Sejnowski 89], [Tesauro 92], [Tesauro 95]. It is clearly stronger than other
Backgammon programs and it uses the Temporal Difference algorithm [Sutton 88]. As
early as 1980, thanks to some lucky throws of dice, a program [Berliner 80] beat the
human world champion Luigi Villa
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Othello

Logistello [Buro 94] is by far the best Othello program. It is based on a well-tuned
evaluation function, which was built by using example-learning techniques, on an
opening book; and on a selective search. It won numerous computer tournaments. In
August 1997, it beat the world champion Mr. Murakami with a straight win 6-0. But in
January 1998, Michael Buro, its author, decided to work on different challenges.

Checkers

Computer Checkers met with very early success because. As early as 1959, Samuel
developed a Checkers program which won against a «strong» Checkers player [ Samuel
59]. This program was a learning program. However, it is hard to assess its result
because the strength of the «strong» player is debatable. This program is also described
in [Samuel 67].

Since 1988, Jonathan Schaeffer, and several researchers at the Alberta University, have
been developing the Chinook program [Schaeffer & a. 92]. This program is the
Computer Checkers World champion which played a match against the human World
champion, Marion Tindley, in 1992 (4 defeats, 2 wins and 33 draws). Marion Tinsley
had been the World champion since 1954 and was very fond of Checkers programs.
After 6 draws, the 1994 series was interrupted because Marion Tindey was very
serioudly ill. Then, Chinook competed against Don Lafferty in 1994 (1 victory, 1 defeat
and 18 draws), and in 1995 (1 victory and 31 draws). Ever since, Chinook has been
considered as the World champion, both in the human, and in the machine categories.
Chinook uses an endgame database, with all the positions containing fewer than 8
pieces. Chinook uses parallelism, an opening book, and an extended Checkers
knowledge base. A complete history of this development can be found in [Schaeffer

97].

Draughts

The best Draughts program is Dutch. Its name is Truus, and it can be rankeded at a
national level. New programs (Flits 95 and Dios 97) are now threatening Truus. Flits
95 won the latest two Dutch Computer Draughts championships, athough Truus did
not participate in the most recent tournament.

Chess

[Shannon 50] showed that computer Chess was a good problem for Al to solve because
of the cleverness of its rules and the simplicity of the winning goal. For Shannon, this
problem was neither too simple nor too difficult. Since then, intensive research has
been done, and the paradigm is clearly tree search, and Alpha-Beta [Anantharaman &
al. 89]. In 1988, Gary Kasparov, the world champion, claimed that a computer had no
chance of beating him before the year 2000. At that time, Deep Thought - IBM
hardware and software - had in fact only an internationa Gandmaster rating. Deep
Thought was using tree search with Alpha-Beta. It was exploring about 500,000
positions per second [Hsu & al. 90]. In May 1997, Deep Blue - the massively paralel
descendant of Deep Thought - beat Kasparov with a score of 3.5-2.5. It was also using
Alpha-Beta, but exploring around one billion positions per second. Given the
popularity of Chess, and the increasing use of computers in everyday life, this success
made a strong impression on everybody. Moreover, experiments in Chess have
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established a correlation between tree search depth, and the level of the resulting
program.

Shogi

After the success obtained in Chess, the game of Shogi, or Japanese Chess, was, and
till is, the next target for Computer Games [Matsubara 93]. Its complexity is greater
than the complexity of Chess because of the possible re-introduction, on the board, of
previously captured pieces. The branching factor is about 100 in Shogi, as against 35 in
Chess. The position is very difficult to evaluate. The best program [Y amashita 97] uses
a variant of iterative deepening tree search, and can be ranked at an average level on
the human scale.

2.3. Theoretical complexity

When discussing the complexity of games, it is necessary to mention published results
about the theoretical complexity of games. Checkers [Robson 82] and Go [Robson 83]
are exponential time complete, as a function of the size of the board. [Fraenkel &
Lichtenstein 81] have shown that playing a perfect strategy in n by n Chess requires
exponential time. [Lichtenstein & Sipser 80] have shown that Go is polynomial-space
hard. These theoretical results show that Go seems to be even more complex than
Checkers and Chess, because these two games have not been proved polynomial-space
hard.

2.4. Space states and game tree complexity of other games

By taking the complexity of games into account, a very good classification of two-
player, complete information, zero-sum, games has been established by [Herik & al 91,
Allis 94]. This section briefly sums up this classification. [Allis 94] defined the space
states complexity (E) as the number of positions you can reach from the starting
position, and the game tree complexity (A) as the number of nodes in the smallest tree
necessary to solve the game. For a given game, it is possible to compute these numbers
accurately but approximations may provide useful information. Allis gave rough
estimations of E and A for each game, as shown by table 1 below. In this table, ‘>’
(respectively ‘>=", and ‘<<’) means «is stronger than» (respectively «is stronger than
or equal to», and «is clearly weaker than»). ‘H’ represents the best human player.

Game logio(E)| logio(A) Computer-Human
results
Checkers 17 32 Chinook > H
Othello 30 58 Logistello>H
Chess 50 123 Deep Blue>=H
Go 160 400 Handtalk << H
Tablel

At first glance, table 1 shows a correlation between game complexity, and the results
obtained by computers on the human scale. Chinook and Logistello are clearly better
than the best human player, in Checkers and Othello respectively. Deep Blue has a
rank similar to the best Chess player, and Handtalk is clearly weaker than the best
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human Go players. All these games have increasing complexity. The classical model
may be said to consist of the set: evaluation function, move generation, and tree search.
This has been used successfully in Chess, Othello and Checkers. Its relative success
depends on the complexity of the game to which it is applied. One can observe a
correlation between a game’'s complexity, and a program’s results on the human scale.
This correlation can be explained by the fact that the same model is being applied to
similar games with different complexities.

2.5. Complexity of Go

It is important that the previous correlation be re-evaluated with respect to Go. First,
the classical model cannot work in Go without major adaptations. Moreover, we now
add two other games - 9x9 Go and 15x15 Go-moku - to elaborate table 2:

Game logio(E)| l0gio(A) Computer-Human
results
Checkers 17 32 Chinook > H
Othello 30 58 Logistello>H
9x9 Go 40 85 Strongest Go program << H
Chess 50 123 Deep Blue>=H
15x15 Go-moku 100 80 The gameis solved
19x19 Go 160 400 Strongest Go program << H
Table2

We can see that, on the one hand, 15x15 Go-moku is complex by Allis’ standards, and
yet Allis’ program succeeded in solving this game. On the other hand, 9x9 Go is less
complex than Chess by Allis standards, but the 9x9 programs are still weak when
compared with human playerst. The complexity-result correlation has vanished, and
this is difficult to explain. Of course, one might argue that Computer 9x9 Go has not
been studied enough because of the limited interest that 9x9 Go enjoys compared to
Chess. We do not share this viewpoint - 9x9 Go is an obstacle for the computer
because there is complexity inherent in the Evaluation Function.

For other games, like Othello, Checkers and Chess, good solutions have already been
found, using the classical model. To program these games, there is no reason to change
the model, which consists in an effective tree search, using a ssmple move generation
heuristic, and a ssimple evaluation function. With Go, however, researchers have to
look for a new model that enables programs to overcome the complexity of the game.
They must reverse the model, focus on the complexity of the evaluation function, and
on move generation, and only use tree search for verification.

3. Results

This section contains the results achieved by Computer Go since 1960. It first traces
the history of Computer Go, and then deals with the current competitions between
programs. In a third part, confrontations between man and machine are examined, and

11t is difficult to determine which program is the best on 9x9 boards, because of the lack of 9x9 competitions;
Nevertheless, Go4++ is at the top of the 9x9 computer go ladder on the Internet.
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lastly we focus on the results obtained with sub-problems of the game of Go such as
Tsume-Go and late endgames.

3.1. History of Computer Go

It seems that the first Go program was written by D. Lefkovitz [Lefkovitz 60]. The first
scientific paper about Computer Go was published in 1963 [Remus 63], and it
considered the possibility of applying machine learning to the game of Go. The first Go
program to beat a human player (an absolute beginner at that time) was the program
created by Zobrist [Zobrist 69,70b] . It was mainly based on the computation of a
potential function that approximated the influence of stones. Zobrist made another
major contribution to computer games by devising a general, and efficient, method for
hashing a position. It consists of associating a random hash code with each possible
move in a game, the hash of a position being the XOR of all the moves made to reach
the position [Zobrist 70a]. The second thesis on Computer Go is Ryder’s [Ryder 71].
The first Go programs were exclusively based on an influence function: a stone
radiates influence on the surrounding intersections (the black stones radiate by using
the opposite values of the white stones), and the radiation decreases with the distance.
These functions are still used in most Go programs. For example, in Go Intellect [Chen
89, 90, 92], the influence is proportional to 1/29S%* \whereas it is proportiona to
1/distance, in Many Faces of Go [Fotland 86, 93].

Since the early studies in this field, people have worked on sub-problems of the game
of Go - either small boards [ Thorpe and Walden 64,72], or localized problems like the
life and death of groups [Benson 76].

The first Go program to play better than an absolute beginner was a program designed
by Bruce Wilcox. It illustrates the subsequent generation of Go programs that used
abstract representations of the board, and reasoned about groups. He developed the
theory of sector lines, dividing the board into zones, so as to reason about these zones
[Wilcox 78,79,84, Reitman and Wilcox 79]. The use of abstractions was also studied
by Friedenbach [Friedenbach 80].

The next breakthrough was the intensive use of patterns to recognize typical situations
and to suggest moves. Goliath exemplifies this approach [Boon 90].

State-of-the-art programs use al these techniques, and rely on many rapid tactical
searches, as well as on slower searches on groups, and eventually on global searches.
They use both patterns and abstract data structures.

Current studies focus on combinatorial game theory [Mueller 95], [Kao 97], learning
[Cazenave 96¢], [Enzenberger 96], abstraction, and planification [Hu 95], [Ricaud 95,
97], and cognitive modeling [Bouzy 954].

The eighties, saw Computer Go become a field of research, with international
competitions between programs. They also saw the first issue of a journal devoted to
Computer Go, as well as the release of the first versions of commercia programs. In
the nineties, many programs were developed, and competitions between programs
flourished, being regularly attended by up to 40 participants of all nationalities [Fotland
and Y oshikawa 97]. An analysis of the current state of the Computer Go community
has been published by Martin Mueller [Mueller 98].
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3.2. Computer Go Competitions

The oldest international Computer Go competition is the Ing cup. It has been organized
every year from 1987 until 2000. The winner of the Ing cup plays against young
talented Go players (see subsection 3.3 below). Year 2000 was, unfortunately, the last
year for the Ing competition. A lot of programs were attracted to a recent competition,
the FOST cup, which takes place every year in Tokyo (except for 1997, when it wasin
Nagoya). Other competitions, like the Mind Sport Olympiad, the European, and the
American, championships, are organized on aregular basis.

The winners of the different Ing cups were:

1987 1988 1989 1990 1991
Friday Codan Goliath Gaoliath Goliath
1992 1993 1994 1995 1996
Go Intellect Handtalk Go Intellect Handtalk Handtalk
1997 1998 1999 2000
Handtalk Many Facesof Go | Go4++ Wulu

Table 3

The results of the FOST cups are:

1995 1996 1997 1998 1999
Handtalk | Handtalk Handtalk Handtalk KCC lgo

Table4

As well as the competitions, there is a permanent Internet Computer Go tournament -
the Computer Go ladder (http://www.cgl.ucsf.edu/go/ladder.html). It is a «handicap»
ladder; where the number of handicap stones that each participant can give to the
immediate lower program is explicitly tracked. Whenever the author of a program feels
that his program has been improved, he can issue a challenge, either to the program
below (to increase the number of handicap stones), or to the program above (to
decrease the number of handicap stones). New programs can join the ladder by
challenging the program on the «bottom rung» (no handicap). If the new program wins
the challenge, it can successively challenge higher programs until it loses. It can then
start playing handicap challenges to determine its exact ranking. Challenges are
normally played on the IGS (Internet Go Server, http://igs.joyjoy.net/) or NNGS (No
Name Go Server, http://nngs.cosmic.org/). IGS and NNGS provide any Go player in
the world with an opponent to play games with, as well as the opportunity to watch
games, or comment on them, at any time. They are similar to world wide Go clubs. Of
course, Go programs may get an account. Many Faces of Go, and GhuGo, are very
often connected to these servers.

3.3. Programs versus human players

In addition to the confrontations that are organized every year, after the Ing cup, other
confrontations are organized, in an attempt to understand better the strengths and
weaknesses of the programs. For example, after each FOST cup, the three best
programs play against human players. Handtalk received a Japanese 3" Kyu diploma
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for winning its games. However, an opponent who knows the weaknesses of a program
can use this knowledge to win easily. For example, during AAAI98, Janice Kim beat
Handtalk, despite an enormous handicap of more than twenty stones. Recently, Martin
Mueller beat Many Faces of Go, despite a huge handicap of twenty-nine stones.
Although Go programs have been improved over the last few years, they are still much
weaker than human players.

3.4. Tsume-Go

Most Go programs have Tsume-Go problem solvers. Some other programs are entirely
dedicated to Tsume-Go. The best Tsume-Go problem solver is Thomas Wolf’s Gotools
[Wolf 94, 00]. Gotools is a very strong Tsume-Go problem solver. It can solve 5-dan
problems (an amateur 5-dan is roughly equivalent to a professional 1-dan Go player). It
has even spotted an error in a dictionary of Tsume-go problems. It can anayze
complex situations completely, and find unique winning moves that Go players find
with great difficulty. The problem solver has been used to generate thousands of
Tsume-Go problems.

Gotools relies on Alpha-Beta searching, search heuristics, and numerous hand-coded,
and tuned, patterns for directing search, and for evaluating positions. Many heuristics
used in Gotools, including forward pruning, are well described in [Wolf 00]. However,
Gotools is restricted to completely enclosed problems that contain thirteen or fewer
empty intersections [Wolf 96]. This restriction makes Gotools of little use for programs
that play the entire game, and for Tsume-Go problems that are to be solved in real
games.

3.5. Combinatorial Game Theory

In some late endgame positions of the game of Go, where combinatorial game theory
applies, D. Wolfe's program finds a sequence one point better than the sequence found
by professional players [Berlekamp 91], [Berlekamp & Wolfe 94]. [Mueller 994 is
another demonstration of the power of combinatorial game theory applied to Go
endgames. It shows how Decomposition-Search, a tree search algorithm based on
combinatorial game theory, gives clearly better results than Alpha-Beta, when applied
to specific endgame positions. Combinatorial game theory has also been used by
Howard Landman to find the number of eyes of a group [Landman 96], thus enabling
aprogram to break down alife and death problem into a sum of games, so asto reduce
its complexity. Furthermore [Mueller 99b] described a method for modeling «fights»
in Go, and computing their game values.

4. Evaluation

4.1. Introduction

This section deals with the major difficulty of Computer Go - building the Evaluation
Function (EF). The evaluation of a position is necessary for a program that wants to
associate a score with a game. Finding a «good» EF is very hard, and is undoubtedly
the biggest obstacle in Computer Go. Whenever Chess programmers - very confident
in the power and generality of tree search methods, and willing to try their chance in
another game - ask Go programmers, very innocently, to give them the EF of Go, they
are very surprised to see that Go programmers cannot provide them with a simple,
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clear, and efficient EF, as is the case in Chess. Instead of tree search optimizations, it
isthe discovery of the EF for the game of Go that is the main task of Go programmers.
Of course, each Go programmer has their own EF. Every EF results from intensive
modeling, programming, and testing activities. Consequently, each EF is different
from every other one, and no agreed model has clearly emerged in the community.
Therefore the task of presenting a Go EF isfar from being easy.

To be as clear as possible, we choose to proceed in two steps. First, we focus on the
idea that comes naturally to the new Go programmer’s mind - the concrete EF. It is
simple, and quick, but very inefficient when integrated into tree search algorithms.
Then, we show the conceptual EF of a Go program. More precisely, we choose to
present the conceptual EF of the program Indigo [Bouzy 95a, 95c]. This has two
advantages. First, it is clear - because we are the programmers of this EF. Secondly, it
works - since it is actually integrated into a playing program that regularly attends the
current Computer Go tournaments. To simplify the reader’ s task, we focus only on the
main features of this EF. We have intentionally hidden those parts which are needed to
make the EF work in practice, but which are not required for an overall understanding.
We mention other formal descriptions, such as the best programs ones [Chen 89],
[Boon 91], and [Chen & Chen 99], when they have been published. Given that most
programmers wish to keep their algorithms secret, descriptions of the best commercial
programs are scarce. They are often personal communications [Chen 97a], [Fotland
96], [Reiss 95], [Woitke 96a], and [Woitke 96D].

4.2. Concrete Evaluation

The first idea consists of defining a concrete EF by giving one value to each
intersection of the board: +1 for black intersections, and for empty intersections with
black neighboring intersections only; -1 for white intersections, and for empty
intersections with white neighboring intersections only; 0 elsewhere. Obvioudly, this
EF cannot be simpler.

Explicit-control and implicit-control endgame positions

Figure 1 Figure 2

In Figure 1 the intersections are explicitly controlled: an intersection controlled by one
color has the property of either having one stone of this color on it, or the impossibility
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of putting another color stone on it. Such a position is reached after a large number of
moves, and the two players may have agreed on the control of the whole board a long
time before. Figure 2 shows a board where the game stops earlier. In this position, the
control isimplicit. Human players stop playing in this kind of implicit-control position.
When considering the positions that belong to the set of explicit-control endgame
positions, the concrete EF gives correct results, and is quickly computed.
Unfortunately, this EF is relevant to positions of this set only.

When considering implicit-control endgame positions, this concrete EF gives
erroneous results because human players use alarge amount of knowledge to recognize
them as controlled. The knowledge contained in the concrete evaluation is not
sufficient to recognize them as terminal positions. For example, the empty intersections
in the bottom right of Figure 2, and the «isolated» white stone in the same figure are
considered as belonging to Black by almost all Go players. Clearly, the concrete EF
gives a false evaluation for them, and the knowledge necessary to explain why these
intersections belong to Black would take too long to explain.

But, one should see whether this concrete EF could be used, within a tree search
algorithm, so that the EF is invoked in explicit-control endgame positions only. Let us
define the depth of a position as the distance between the root node of the game tree
and the node of the position. Because human players stop their games on reaching
agreement. On implicit control, the length of games between human players gives a
rough estimate of the depth of implicit-control endgame positions on different board
sizes. In addition, a program using the concrete EF, and playing against itself, enables
us to estimate the depth of explicit-control endgame positions. Computer experiments
show that the average depth of explicit-control endgame positions is twice the board
size. These estimates are summarized in table 5.

Board Size
9x9 | 13x13| 19x19
Implicit-control endgame depth 60 120 250
Explicit-control endgamedepth | 160| 340 720

Table5

Although the concrete EF can be computed very quickly, modern computers cannot
compl ete searches down to this depth with the branching factor of Go. Aswe are again
confronted with the combinatorial obstacle, we must give up this approach.

Then, the next step is to try tree search with a conceptual EF. This EF will enable the
program to evaluate some positions at every stage of the game (in particular the set of
implicit-control endgame positions). Of course, because of the numerous possibilities,
the next obstacle is the definition of this EF. Anyway, this approach is used by the best
current Go programs.

4.3. Conceptual Evaluation

A worthwhile approach to finding a conceptual EF, is to observe human players, to
capture the useful concepts, and to transform them into computational ones. Some
important human concepts may be equated with their expressions inside game
commentaries or Go books. The main Go terms are «group», «inside», «outside»,
«territory», «interaction», «life» and «death». Other important concepts, such as
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“inversion” and aggregation” correspond to computational tasks, and we also present
them. To illustrate our description , we use Figure 3:

Figure 3

We present the useful concepts in a bottom-up fashion. We start with small shapes
which enable the program to build abstract groups, and we end up with the whole EF.
First, we show topological concepts such as «connected group», then we show
morphological concepts such as «territory», «influence», «morphological group»,
«inside» and «outside». Finally, we show the concepts of «interaction», «life» and
«death», together with «inversion» and «aggregation». These concepts will allow us to
finish the presentation with the full conceptual EF. Figure 3 is used as a reference
point to show examples of the different concepts presented in this section.

“Connected group”

In this paragraph, the goal is to define «connected group». The rules of the game
define strings of stones as same-colored 4-connex sets (one intersection has up to 4
neighbors), but, in fact, «connected groups» are what players reason about.

Let us consider two neighboring strings of the same color. Two tree searches may be
performed (one search with Black playing first, and another search with White playing
first - see «Tree Search» or «Combinatorial Game Theory» sections of this paper) to
determine whether these strings are virtually connected or not. When two strings are
virtually connected, they belong to the same «connected group».

2 @

Figure 4 Figure 5

In Figure 4, the two black strings are virtually connected. Even if White plays first,
Black will be able to connect (see Figure 5). If Black plays first, the two strings will
obviously be connected. Figure 4 is called a* connector”. Its notation will be ‘>, so as

B. Bouzy T. Cazenave page 13 08/06/01



to indicate that the outcome of this elementary game is an effective connection
whoever plays first. More generally, two strings sharing two liberties are also part of
the same connected group [Chen 89, 92] because if one player plays on one of them,
the other player plays on the other one.

4
> O®

Figure 6 Figure 7

The two black strings in Figure 6 are also virtually connected, as proved by the
sequence of Figure 7. (White 3 is a forced move because White 1 isin “atari” after
Black 2.) Figure 6 is another example of connector *>*.

29.

Figure 8 Figure 9 Figure 10

Figure 8 is not a connector, as previously described. If White playsfirst (Figure 9), the
two black strings are actually disconnected by White 1 and White 3. If Black plays
first (Figure 10), the two black strings are connected because Figure 10 equals Figure
4. In this case (Figure 8), the final state of the connector depends on who moves first,
and we give the value ‘*’ to the connector.

Then, the “connected groups’ are defined as groups of strings linked with connectors
‘>’ In our example, our program recognizes the connected group of Figure 11:

Figure 11

A very important point to underline here is the fact that the construction of connected
groups implies the use of results from local tree searches having the goal of
connection. We will take up this point in the «Tree Search» section of this paper
because this is specific to the game of Go: the EF uses Tree Search. This is one
important aspect of the EF in Go.

“Inside’, “outside” and “ morphological group”

The concepts «group», «territory», and «influence» are very closely linked to
mathematical morphology. We warmly invite the reader to refer to the «Mathematical
morphology» section of the paper so as to be familiar with some mathematical
morphology operators [Serra 82], and with the operators X and Y used in this

paragraph.

Let B (respectively W) be the set of black (respectively white) intersections of the Go
board. The «morphological groups» are the connected sets of X(B) and of X(W).
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Let G be a given morphological group. First, we call S(G) the «skeleton» of G as the
subset of G with intersections of the same color as G. Then we define the «inside» of
G, In(G), asthe set G - §G). Lastly, we cal Out(G) the «outside» of G, and define it
asthe set Y(S(G)) - G.

All these operations lead to a morphological view of positions. Figure 12 shows the
morphological view of our example (figure 3). The big dark (resp. light) grey squares
correspond to the «insides» of black (resp. white) morphological groups, and the small
dark (resp. light) grey squares correspond to the «outsides» of black (resp. white)
morphological groups. The stones correspond to the skeletons.

Figure 12

The building of groups

The notion of “group” is of paramount importance in modeling a Go position. For
human players, the notion of group corresponds neither to the connected group notion
nor to the morphological group notion, but to a certain extent to both notions. For
programs, the question of knowing which notion is better remains an open problem.
Besides, deciding which is the better notion, is a matter of integration within the whole
program [Chen 89], [Boon 91], [Fotland 86, 93].

The connected group notion may be used because the connection patterns between
stones can be demonstrated by tree searches. But this notion also raises diverse
guestions. First, the program’s response time may be excessive because of the number
of local tree searches that have to be completed to determine the existence of
connectors. Nevertheless, this may be speeded up by using patterns, but then the
problem is how to handle the patterns database. Some learning techniques may be used
to foster the expansion of the patterns database. We shall discuss this point in the
«Automatic knowledge generation» section of this paper. Furthermore, another
problem linked to the connected group notion is the fact that the connection concept is
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given undue value. Thus, we might obtain a program which systematically connects its
groups before doing anything else.

However, the morphological group notion may also be chosen because it is more
intuitive, quicker to compute, and more remote from the connection notion.
Unfortunately, it is accurate only in some quiet positions. Therefore tree searches using
this notion must reach these quiet positions, if they are, to provide significant results.
The more powerful the computer is, the more successful it will be in reaching these
quiet positions.

Go4++ uses another idea for building groups: instead of using connection whose values
are game-like values. >, *, <, it uses a probability value for each connection and builds
a connection map.

Number of “ eyes’

The“inside” of agiven group is crucia to the life of the group. Its vital contribution is
assessed by counting the number of «eyes» of the inside. The number of eyes depends
on who plays first. When an inside has more than two eyes, it is aive. For each
connected set of the inside, the vital contribution depends on its possibility to be split
into other connected sets. On the whole, for size-one-two-or-three connected sets, the
number of eyes depends on its boundary, and opponent stones. For sizes from four to
about six, it al'so depends on its shape and on the shape of prisoners. For example, Go
players say that «straight 4 is alive» and «square 4 is dead». For size bigger than about
six, the number of eyes becomes greater than two. Each Go program must contain such
expertise in counting eyes of a connected set. It is very difficult to define complete and
adequate rules for determining the number of eyes of groups. Most of the current Go
programs use heuristic rules. The most complete and recent description of these rules
are described in a reference paper [Chen & Chen 99] by the authors of two of the best
Go programs, Handtalk and Go Intellect. [Landman 96] is a combinatorial game
approach study of eyes. [Benson 76] is a mathematical study of real life without
aternating play.

Furthermore, the heuristic rules must computed be quickly. Therefore, Go programs
sometimes use tricks. For example, one heuristic rule says that a connected set whose
exterior has alength smaller than 6 has zero or one eye, and when greater than 10, has
two eyes at least [Boon 91], [Chen & Chen 99]. After assessing the number of eyes of
each connected set, the problem is to count the number of eyes of the whole group.
When the connected sets of the inside are not dependent on one another, [Chen & Chen
99] provides a clever method using binary trees. Each connected set of the inside is a
binary tree whose leaves contain the number of eyes, depending on who plays first.
The group side selects a binary tree and replaces it by its left sub-tree. The opponent
selects a binary tree and replaces it by its right sub-tree and so on. The group side
wants to maximize the number of eyes whereas the opponent wants to minimize it.
This abstract minimax search is smpler and faster than a regular one on a concrete
board.

“Interaction”
A group has friendly and opposing neighbors. For each couple of opposing groups,

“interaction” expresses the possibility for one group to dominate the other. The
evaluation of interaction between two opposing groups is determined by a set of rules
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whose expression is very complicated and domain-dependent. Therefore, we shall limit
the presentation of an interaction to a single example as simple as possible. Let us
examine the black group in the middle right-hand side of the example of Figure 3 (this
group corresponds to Figure 13) and the white group located just above (see
Figure 14).

%@
Figure 13 Figure 14 Figure 15

These two groups are opposing, their number of eyes and the size of their outside are not
sufficient. Therefore, we consider these groups as «weak». It isimportant for the program
to compare the number of liberties of each weak group. In our example, the white group
has four liberties, and so has the black group. The player who playsfirst will either delete
one of his opponent’s liberties, or give more liberties to his own group, or do both. The
difference between the number of liberties of the two groups will be crucial in deciding
which group dominates the other. When the value (relative to zero) of the interaction
depends on who plays first, its value is designated ‘*’. Such is the case in our example.
When one group dominates the other whoever plays first, the interaction is ‘>’ for the
dominating color. For example, the interaction between the black group (corresponding to
Figure 15) which is located at the bottom right of the position of Figure 3, and the big
white group encircling it, is ‘> for White. In the next paragraph, we shall see that this
fact will contribute to the «death» of this black group.

“Death”, “inversion”, aggregation

The next important point consists of detecting dead groups - this constitutes the main
difference between the concrete EF and the conceptual EF. An error in the judgement of
life and death of one group brings about tremendous consequences in calculating the
value of the EF. Exact conditions for the death of a group should be given, or when thisis
impossible, very restrictive conditions should be given to the program. In such
conditions, the program must not conclude that a group is dead when it is not. A «death»
happens when a group answers all the following conditions: its number of eyesis not big
enough; its outside is not big enough; it has no friendly group to connect with; it has no
interaction with an opponent group whose value is different from ‘<.

In our example, the group in Figure 15 fulfils al these conditions. Therefore, it is «dead».
On the contrary, the two weak groups in Figure 13 and Figure 14 have an interaction
whose valueis‘*’. They are not dead.

Once a group is dead, an «inversion» happens: the dead group changes its color and

merges with its neighbors. Figure 16 shows the conceptual description following
the inversion, consequent upon the death of the black group in the bottom right corner:
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Figure 16

Here, the black group has disappeared, becoming part of a big new white group that is
located in the bottom edge. After an inversion, the program performs an aggregation to
cluster the dead group with its opponent groups into a bigger group.

Summary

Having identified the basic tools, we are now able to describe the general form of a Go
EF:

While dead groups are still being detected, perform the inversion and aggregation processes.
Return the sum of the value of each intersection of the board (+1 for Black, and —1 for White).

At the end of aloop, if adeath is detected, the program inverts and aggregates the dead
group to give birth to a new group. If no death is detected, the loop ends and the
program computes the addition of the value of each intersection of the board. (+1 if the
intersection has a black group on it, -1 if the intersection has a white group on it, and O
in the other cases).

Each loop gives rise to one, or zero, dead groups. Successive loops are necessary to
detect several dead groups. The evaluation process may alter the life and death status of
groups previously examined in response to new information determined in later cycles
of the evaluation process.

“Lifeand death” of groups, “tsumego” ...
We have just seen the building process of an EF. However, human players also use the
terms «life» and «death». Furthermore, they call the question of determining whether a

group is dead or alive, a «tsumego» problem. It is now time to link these human terms
with the previous discussion of concepts of our EF.
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Let us first provide a few precise definitions. On the one hand, a general tsumego
problem arises when a group is weak by our standards. (This means that the number of
eyes, and the “outside” of the group, are not sufficient, and that the group has no
interaction whose value is not equal to ‘<’.) Such problems consist of finding a
solution with the following varying parameters. number of eyes of the inside, outside,
and interactions. On the other hand, basic tsumegos are problems where the outside
and the interactions are attached to insufficient values, hence the basic tsumego
problem consists of finding a solution to make only one parameter vary: the inside of
the group.

Consequently, it can be easily understood that there is a considerable gap between the
two categories of tsumego. General tsumego problems are far more complex than the
basic ones. Nowadays, GoTools solves basic tsumego problems at dan level very
smartly, and quickly. (Here, basic does not necessarily mean simple: a lot of basic
tsumego problems can be situated at a professional level). [Chen & Chen 99] gives a
set of heuristic rules to count the number of eyes of the inside of a group. However, Go
playing programs are not efficient enough to solve general tsumego problems, and
unfortunately these problems are the ones that are frequently met in actual games. The
inability of Go programs to solve these general tsumego problems constitutes the major
obstacle to Computer Go.

4.4. Conclusion

In this section, we have dwelt on the simple case of the concrete EF. This EF cannot be
used within tree search because of the very small subset of positions in which it gives
correct answers. the explicit-control endgame positions subset. Then we presented the
conceptual EF. We highlighted the main features of an EF in Go: «group», «inside»,
«eye», «outside», «interaction», «life» and «death». In spite of our effort to describe
this function as simply as possible, it remains quite complex. The first reason is to be
found in the concept of “group” which is crucia to Go and has many variants. The
Computer Go community still holds different views on its definition. The second
reason lies in the difficulty in defining intuitive, and visual, concepts such as “inside”
and “outside”. Another explanation is the very marked importance of interaction
between groups. It is very difficult to determine the state of a group without
considering its surroundings. Lastly, as regards tree search, a unique feature of an EF in
Go isthat it uses local tree searches. This aspect is new when considering the other 2
player, zero-sum, and complete information, games where tree search smply uses the
EF. The setting up of an efficient, correct, and complete, EF is the mgjor difficulty
inherent in Computer Go.

5. Move Generation

5.1. Introduction

Section 2 showed that afull global search was not possible in Go, and section 4 pointed
out the complexity of the EF. However, the aim of a game playing program is neither
to search within trees nor to evaluate boards - these two activities are only means. The
aim is to generate moves, and to select only one. Therefore, after leaving tree search
and EF aside, the first trend in Computer Go was to generate moves by giving them a
«priority» or «urgency», and then to select the move with the highest priority. The first
Go programs looked like expert systems which had neither evaluation nor tree search.
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That was the right approach to try at that time, within such a complex domain
[Lefkovitz 60], [Reitman & Wilcox 79]. Subsection 5.2 shows that Move Generation
(MG) still occupies a specia place in current Go programs. In subsection 5.3, we show
the relevance of Goa Generation (GG). Then we present some examples of MG
associated to specific goals in subsection 5.4, and we illustrate global MG, with the
help of another example, in subsection 5.5.

5.2. The specific position of MG in current Go programs

To help MG in the first Go programs, two other components were necessary: an EF to
stop playing at the end of the game correctly; and a tree search module to check the
tactical status of some local sub-positions, or to find the biggest global move.
Therefore, the crucia question is to know the position of MG in connection with the
EF and tree search. The EF of a position is complex, and uses a lot of knowledge to
describe the abstract objects which are on the board. It is appropriate to try extending
this knowledge, beyond descriptions of objects to the description of actions, or moves,
performed on the objects. In such a case, the evaluation helps MG, and applies to both
positions and moves. This approach is used in contemporary Go programs - for
example in Go Intellect [Chen 90], and aso in Shogi programs [Grimbergen 99]. In
this case, MG of Go programsis still very important.

5.3. Goa generation

Moreover, when the programmer makes more extensive use of knowledge to describe
moves, he naturally enters the domain of Goa Generation. Instead of generating
moves, the program first generates the goals which may prove useful in winning the
game. Once the goal has been selected, a specific evaluation function adapted to this
goal is chosen, and a specific move generator is associated with this goal. A goal-
oriented approach has the advantage of reducing the complexity of the problem to be
solved, but the drawback may be the lack of global balance when more than one godl is
relevant to winning the game. Current programs such as Go Intellect [Chen 90, 92],
Goliath [Boon 91], and Many Faces of Go use such a goal-oriented approach. Other
explicit goal-oriented studies in Go are [Friedenbach 80], [Hu 95], [Hu and Lehner 97],
and [Ricaud 97]. Decisive goals to be generated in a position are: «occupy big empty
points», «kKill», «live», «attack», «defend» «groups» [Chen 92], «expand», «reduce»,
and «invade» «territories». Furthermore, the sub-goals may be «make eyes», «destroy
eyes», «CONNECt», «cut groups», «capture», «save strings», and so on. [Fotland 96]
proposes a hierarchy of goals, which can be used to build a Go program. For each goal,
or sub-goal, the program generates specia moves, and performs goal-oriented tree
search.

5.4. Goal-oriented MG

This subsection provides an example of moves generated according to the context of
goal-oriented MG. Let us consider the position in Figure 3 and to its evaluation shown
by Figure 16. The evauation identifies three «weak» groups: the middle left white
group, the top right black group, and the top right white group. It also identifies
territories to be expanded or reduced: the bottom white territory, the middle left black
territory, and the top black territory. Each «weak» group, and each territory, generates
goals to be pursued: attack or defend a «weak» group; expand or reduce aterritory.
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Expanding/reducing territories

MG is quite simple in such acase. A program has a pattern database suggesting moves
according to this goal. Let us assume the database has the following patterns:

Figure 17 Figure 18 Figure 19 Figure 20

Let ‘X’ be the good move, and ‘Y’ the bad one. Then the MG generates the moves of
Figure 21 for expanding or reducing the territories.

Figure 21

When such generated moves are used, tree search allows one to select the best
expanding/reducing move. In the case of territory, when assuming that the depth-one
positions are still quiet, tree search selects the «best» expanding/reducing move.
However, in actual cases, depth-one positions are not necessarily quiet. Therefore,
evaluations of territory are not significant, and a quiescence search must be performed
[Chen 00]. Instead of performing tree search to select one move, another possibility is
to refine the patterns for expanding/reducing territory by specializing them as much as
possible, and to associate each of them with avalue to be used by the move selector. In
such cases, the program selects the generated move with the best value. The approach
of knowledge refinement is performed manually in most Go programs, when their
authors are strong Go players who like introspection. However, this difficult
refinement task can be achieved by the computer itself. This aspect will be discussed in
the «Automatic Knowledge Generation» section.

Attacking/defending groups
The other relevant goal-oriented MG is the attack and defense of groups. A program
contains a pattern database suggesting moves relevant to this goal. Let the database
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contain the patterns of Figure 17, 18, 19, 20, plus arule advising to capture/defend the
strings which belong to the group, and whose Conway’s state is ‘*’ (see Combinatorial
Game Theory section). The generated moves are those of Figure 22.

Figure 22

Move ‘C’ is generated by the rule advising to save the white string whose state is **’,
and belonging to the middle left white group. Other moves are generated by the pattern
database. Beyond this simple example, Go programs contain many more complex
patterns. For instance, the move generation is not symmetrical, and the pattern must
also specify which stones of the pattern belong to the «weak» group. A very good
description of attack and defense in Go Intellect can be found in [Chen 92]. In this
section we have presented only simple rules. In fact, rules are more complex in current
Go programs: rules may advise a set of moves for each side; they may contain
information about the number of liberties of the string; or they can make use of logical
expressions.

5.5. Global MG

This subsection illustrates an example of moves generated at the global level. We keep
the example of Figure 16. We assume that the global level considers only the two
kinds of goals described in the previous subsection: «expanding/reducing territories»
and «attacking/defending groups».

First, in a Go program that, for speed performance, avoids tree search, the previous
MG may be used simply to provide a priority to each goal. For each goal, this priority
may be proportional both to the size (or size variation, in the case of territory) of the
object associated with the goal, and to a factor specific to the goal class. Therefore, a
very rough and simple method consists in selecting the move with the highest priority,
which is associated with the goal with the highest priority. This move decision process
suffers from a lack of coherence because the program does not verify whether the
selected move actually achievesits goal or not.
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In our example, we assume that the priority of group is significantly higher than the
priority of territory. In such a case, the program decides to attack/defend the middle | eft
white group. Then, assuming that the rule which advises saving the string whose state
is “*’, has a higher priority than the patterns' priority, the program chooses to play
move ‘C’.

This method may be sharper with the help of a goa-oriented Tree Search so as to
eliminate the ineffective moves. For example, move ‘C’ will not work for White and
the TSwill select ‘A’ or ‘D’. TS may eliminate all the moves of the goal-oriented MG.
In this case, the goal is unreachable. For instance, if the program is strong enough, it
may want to defend its white group and check that the moves‘A’, ‘C’, ‘D’ do not reach
the goal. Therefore, the program will switch to the top right fight, and try moves ‘E’,
‘F,'G’. Another TS will conclude ‘E’ and ‘G’ are good moves to select at the global
level.

5.6. Conclusion

The previous description of MG is similar to the plausible move heuristic, which is
well-known in computer games, together with selective search. It was used in the early
days of Computer Chess [Greenblatt & al. 67]. It is currently used in Computer Shogi
[Kakinoki 96], [Yamashita 98], [Grimbergen 99], and it will still be used for a long
time in Computer Go. An explicit contribution to MG in Go is the reference paper
[Chen 90], which describes the move decision process of Go Intellect, and fits very
well with the above description. Like other programs, Go Intellect contains about 20
move generators. Most of them are goal-oriented and heuristic. A «move coordinator»
combines all the values by using linear combinations dynamically determined by the
status of the game. A «move checker» is provided to avoid obvious errors in the choice
of candidate moves. If a candidate move has a significantly higher value than the other
ones, and if it passes the move checker, then it is selected without look-ahead. But,
when they are several highly recommended candidate moves, Go Intellect uses global
look-ahead on these candidate moves, and selects the best one. Once more, the
example of Go Intellect shows how important static MG is. In some cases, MG may be
sufficient to select the move without global tree search, or, in other cases, sufficient to
order the moves for tree search.

6. Tree Search

6.1. Introduction

This section describes the link between Computer Go and Tree Search (TS). In
classical games like Chess, the goal of TSisto find amove among many moves, using
an EF as a black box. Numerous publications deal with this problem, and study the
well-known minimax and Alpha-Beta algorithms, as well as their variants [Berliner
79], [Stockman 79], [Campbell & Mardland 83], [Knuth 75], [Korf 85]. A recent trend
has favored new approaches, such as the conspiracy numbers approach [McAllester
88|, [Schaeffer 90], and proof-number search [Allis & al. 94]. Computer Go follows
this trend. But in Go, TS is completely different because of the importance of locality.
Until now, few methods have emerged. The fundamental issue in computer Go TS is
selectivity. Section 6.2 deals with the different TS methods used in current programs,
and section 6.3 focuses on the new parameters of TSin Go.
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6.2. Current use of Tree Search

To begin with, let us give the relevant information related to TS in the current Go
programs (Handtalk, Many Faces of Go, Go4++, Golntellect, and GoAhead).

Handtalk generates very few(about 4) moves at the global level, and performs only
little tree search. Handtalk’ s author believes that there are many more important things
than TS [Chen 970].

The author of Many Faces of Go underlines that his program has multiple TS engines
[Fotland 96]: capturing a string, connecting two strings, making an eye, making a
group dead or alive, performing a global quiescence search. An important feature is
that TS gives adegree of reliability concerning the result of the search.

Michael Reiss says that Go4++ tries about 40 candidate moves, evaluates the score for
each move, and plays the move with the highest value [Reiss 95].

Ken Chen [Chen 00] has recently given some heuristics that enable his program, Go
Intellect, to perform an efficient global selective search. His first heuristic consists in
cutting off the search at quiescence, returning the value of the evaluation function for
stable positions in the global game tree. The second one is to cut off search when a
target value is reached. The last heuristic is to associate an urgency value with a move,
and to take this value into account when evaluating the position. The author concludes
that a balanced combination of global selective search, and decomposition search
[Mueller 99a], may well be the best approach to computer Go.

Peter Woitke says [Woitke 964] that his program does not calculate variations except
for string captures, life and death, and endgame positions.

6.3. Main Features

In this section, we depict the main features of TS in Go, concentrating on the features
that make TS in Go different from TS in other games. To us, the most important
element islocality, since all movesin Go are played at a precise location on the board -
in other words, an intersection. We shall later examine other features, such as the goal
of TS, the definition of terminal positions, the initiative, abstraction, the dependency
between local situations, and finally uncertainty. All these features are linked to TS.

L ocality

Given the size of a board, searching by selecting the moves localized on a part of the
board only is called alocal TS. It isvery similar to what human players do when they
examine different sequences of moves, at different places on the board, in a separate,
and independent, way. Local TSisakind of selective search. It is an approximation of
the usual TS, which is called global TS. In practice, owing to current computer power,
global TS, unlike local TS, cannot be completed, and local TS becomes mandatory.
Even with greater computer power, a brute-force global search would not be an
efficient approach. There are too many clearly sub-optimal, or even bad, movesin a Go
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position. A detailed analysis of a position can eliminate many useless moves. A goal-
oriented global search, or the splitting of the search into different local searches, are
two options which may be worth considering. Splitting the game into sub-games was
proved to be useful in the endgame, when used with decomposition search [Mueller
99a]. Applying this technique to the middle game is a promising, but difficult, research
area.

However, several obstacles arise when using local TS. First, the locality criterion hasto
be defined. The problem of defining the *distance’, that discriminates between a * near’
move and a ‘far’ move, is open. Each Go program employs its own distance. It depends
on the data structures chosen in the program. Apart from problem in defining distance,
the second obstacle is to know when to stop the local TS. Unfortunately, a loca TS
often goes beyond its departure point. This happens when all the local moves have
been played, and when the local situation is still uncertain and, therefore, impossible to
evaluate. In practice, the search has to be stopped. Consequently, the result of a local
TS contains some uncertainty. The last problem in using local TS is in the
reconstruction of the global result, given the results of local TS. To address this issue,
the program simplifies the problem by assuming that they are relatively independent of
each other. Although this hypothesis is wrong in theory, it is essential to make this
assumption if we are to get results. Assuming independence between local situations,
the game of Go can be considered as a sum of independent sub-games. It makes global
TS look like a set of local TS. Conway’s combinatorial game theory gives some clues
for dealing with local results. One of the most popular strategies among programs is
based on thermographs (see the section on combinatorial game theory). It consists of
playing in the ‘hottest’ local game. This particularity of Go is aso used in
decomposition search [Mueller 99a] that drastically reduces the size of the global
search.

In short, locality allows TS to obtain aresult otherwise impossible with a unique global
TS. Current difficulties linked to the locality criterion relate to the definition of a good
distance, the criterion for stopping a search, the specification of a measure of
uncertainty in the result of search, and the evaluation of the global result once the
results of local search are obtained. To circumvent these obstacles, formulating the
hypothesis about the independence between local games makes it possible to use
Conway’ s combinatorial game theory.

Use, and Goal, of Tree Search

In classical game programs, TS calls EF at the terminal nodes of the tree. In Go, EF is
complex and its value relies on the state of the board’s abstract elements. Moreover,
knowledge of the state of these elements relies on the results of local and abstract TS.
So, EF uses the results yielded by some TS. The usual order - whereby TS calls EF, as
in Chess - is reversed in Go. TS, which was the user in Chess, also becomes the
supplier in Go. Unlike in Chess, the precision of the result of EF in Go makes it
necessary to perform tactical TS, so as to find the state of the elements of the
evaluation (connections, eyes, life and death of groups, etc.). Here again, the goal of
TSinGoisnot, asin Chess, to select amove, but to prove the value of a situation.
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Problems specific to Minimax search in Go

[Mueller 00] identifies difficulties specific to Minimax search in Go: recognizing
terminal positions, pass moves, and local position repetitions, or ko. In Go, apositionis
terminal if no more points are contested, and al points can be classified as black,
white, or neutral. Such classification is hard because of the complexity of the
evaluation. A terminal position, and a non-terminal position, may be very similar. In
Go, passing is legal, and pass moves must be generated during search. In positions
where there is no good move, players are alowed to pass instead of damaging their
position. Adding pass moves to a tree search, increases the size of the search space.
Global position repetitions are forbidden by the rules, but alocal tree search must cope
with local position repetitions, or ko. A local repetition is produced by the possibility
of playing outside the local position at any time during the search. Ignoring the
possibility of ko gives misleading results.

Initiative

Given the multiplicity of local situations, either one player or the other can play first in
a given loca situation. To cope with this property, current programs are required to
perform at least two TS on a given local situation, the initiative being taken each time
by a different player. We can indicate that a local situation is described by two TS,
using a notation such as {B|W} where B (respectively W) is the situation found if
Black (respectively White) plays first. When the opponent does not answer to a move
in alocal situation, but rather plays in a different local situation, the player can play a
second move in arow in thefirst local situation. Thereis a possibility that a player may
play multiple movesin arow on the same local situation. So, theoretically, multiple TS
should be performed. In practice, current Go programs do not consider all these
possibilities that increase computation time. The combinatoria game theory that takes
these problems into account is used as a reference. Recently some progress has been
made in the safe cutting of combinatorial game trees [Kao 00]. This improvement is
comparable to the improvement of Alpha-Beta over Minimax, and is a breakthrough in
the computation of the mean, and the temperature of combinatorial games in which
there is a dominant move at each stage.
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Abstraction and local tree search with a goal

We have shown that the locality criterion reduces the global evaluation to a sum of
local evaluations, thus greatly reducing the complexity of the corresponding TS. But, to
avoid combinatorial explosion, the Computer Go programmer can also use abstraction
in addition to locality. Rather than locally evaluating a position, the program can first
identify atyped local goal - for example the connection of two strings, or the life of a
group - and then perform a TS with this goal. It reduces the complexity of the EF, as it
only takes three values (‘0" if the goal cannot be achieved, ‘1 if the goa is
achieved, ‘7 in other cases). The EF is therefore rapidly computed. For alot of typed
local goals - such as connection, eyes, and life and death of completely encircled
groups - the corresponding TS is achieved in a short time, and the program has
certainties that are better than the non-termination of the local evaluation TS.
Moreover, the three-value EF enables the program to use the Proof-Number Search
algorithm, which generally obtains better results than Alpha-Beta. However, it is
impossible to obtain these abstract results without the inherent counterpart to
abstraction: simplification, and consequently inaccuracy.
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Figure 23

Figure 23 gives an example of a proof tree for the goal connect. Black is the friendly
color, and the goal is to connect the two black stones. The first move works (the
leftmost arrow) and, as it is an OR node, the other branches are cut. The moves at the
OR nodes are given by rules terminating on moves that can achieve the goa if two
moves are played in a row by the friendly color. This heuristic is used because these
moves lead to positions containing threats of winning by the friendly player, and
therefore forced moves for the other player.
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The rules of Figure 24 indicate the moves to try at the OR levels of the proof trees.
Thisisvisually explained in the first diagram of Figure 24, where atree is represented
with the color of the moves associated to the branches. The only available information
is that Black can reach the goal if it plays two moves in a row (state W of the first
diagram). Otherwise, the three other combinations lead to unknown situations (state
U). When Black plays the moves advised by the rule, it switches to a threatening
situation, represented by the tree on the right of the first diagram. Black can now win
the goal if it plays one move, and therefore White now has to play to prevent Black
from doing so.

Thefirst rule of Figure 24 is used to find the upper left move of the proof tree of Figure
23. Black plays on aliberty of the right black string; this liberty is neighboring aliberty
of the left Black string. So, if Black plays another move on the liberty of the left Black
string, the left and the right Black strings will be connected. The second rule of Figure
24 advises a move to threaten to make an eye, if Black plays another move on the
empty lower right intersection, it will then make an eye.
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Figure 25

Figure 25 gives the second proof tree developed by the Go program when White plays
first, and searches with the goal «Disconnect the two black stones». In order to save
space, we have numbered the sequences of moves at the leaves of the tree (odd
numbered moves are black moves, and even numbered moves are white, single forced,
moves). The two forced white moves - at the root of the proof tree - are refuted by
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Black. As a result of the two proof trees, Black can connect its two stones even if
White playsfirst: the two black stones are virtually connected.
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Figure 26

Forced Moves

The last rule of Figure 26 is used to find the forced move at the lowest AND node of
Figure 25. The first rule of Figure 26 is used to find the two forced moves at the root of
the proof tree of Figure 25: these two moves are the only ones to be considered out of
all the possible moves. The second rule is used to find the only possible forced move to
prevent an eye. The visual definition of a forced move is given in the first diagram: a
White move leads to an unknown state (state U), whereas a Black move leads to a lost
state for White (alost state L for White is a winning state W for Black: White loses if
Black is connected in our example).

Dependency/I ndependence of local situations

Some local situations are highly dependent on one another - a move can influence two
local situations simultaneously. A local TS cannot be reduced to finding a good move,
but also has to take into account all the answersto the first move. Otherwise, the global
move choice will rely on incomplete information. At the top of the local TS, al the
moves have to be played. The dependency of neighboring local situations also implies
the existence of moves that do not work in any situation, but that are threats for each of
them. These moves enable the player to change one of the situations, thereby they are
proved to be efficient. A good program should be able to find them.

Uncertainty

Given the complexity of local situations, numerous local TS terminate without finding
the good move, or proving the goal. The results of the local TS remain uncertain. The
global level of the program has to handle the uncertainty of the non-terminated TS.
There are many ways to represent, and use, uncertainty in Go programs. For example,
Gogol [Cazenave 96c] represents the uncertainty about the result of a game using a
taxonomy of games. The most general game is ‘U’ - its value is unknown whoever
plays first. A ‘WU’ game is a game where one player can win the game if he plays
first, and the result is unknown if the other one plays first. A ‘WU’ game is a sub-class
of the U games. ‘UL’ games can be defined similarly. Other sub-classes of games can
be defined such as ‘“WUUU’ or ‘“WL’. This representation of uncertainty in games is
useful to describe the elementary sub-games of the game of Go such as the game of
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capturing a string, the game of making an eye, the game of connecting two strings, and
so on. Indigo [Bouzy 96a] also represents uncertainty in its evaluation function using
the local uncertainties identified in the local fights. Many Faces of Go uses a
confidence degree for the result of an evaluation during its TS.

6.4. Which algorithms?

To perform searches, some already existing techniques can be used, each offering its
advantages and drawbacks, depending on the context of the TS. For connection, or
Tsume-Go, problems, a three-value evaluation function can be used, as well as Proof-
Number-Search (PN-Search) [Allis & al. 94]. The drawback of PN-Search is the time
used to copy positions, and the memory required to store them. For all the problems
with uncertainties, quiescence search algorithms [Beal 89] are recommended. Other TS
can use Alpha-Beta. Depth-First search, which offers the advantage of looking at
positions in such an order that the results of the evaluation of the former position can
be reused in order to evaluate the current position rapidly. The incrementality principle
(see the optimization section) can be used. At depth zero, alocal TS has to consider all
the moves, so that the global TS can detect those moves that may help achieve two
goals ssimultaneously. The game of Go, as a sum of games, shows that programs need
both to perform an efficient TS, and to know how to use its results. Combinatorial
game theory solves some of the problems that arise when combining the results of
multiple TS (see the Combinatorial Game Theory section).

Many heuristics can be used when developing search trees. Thomas Wolf [Wolf 00]
gives some heuristic search techniques used in GoTools. For example, at each node of
the search tree, the relevant moves are tried, and their usefulness is then evaluated.
Other heuristics consist in giving low priorities to moves that are forbidden for the
opponent, in trying as the second move the move of the opponent that has refuted the
first move. Some heuristics to improve global search are given by Ken Chen [Chen
00].

6.5. Conclusion

In this section, we have shown the specificity of tree search in Go. We have identified
many important features of tree search: locality, strong links with the evaluation
function, initiative, abstraction, dependency, and uncertainty. Computer Go enriches
the classical paradigm of tree search with new viewpoints. Moreover, the large
branching factor of Go calls for clever selective search techniques, either in tactical
search (Gotools), or in global search (Go Intellect). An increase in computer power will
not allow an efficient brute force global search. The special properties of the game of
Go make selective [Chen 00], and decomposition search [Mueller 99a], much more
efficient than brute force global search.

7. Optimization

7.1. Introduction

As in other games, the speed of a program is of paramount importance in the game of
Go. Even if current problems are mainly linked to a good modeling of the Go player, it
is still very important to do a fast tactical search, and to use knowledge efficiently, to
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have a competitive Go program. Computer Go optimization techniques range from
very low level considerations, like the raw representation of the board, to high level
considerations, like the use of abstract strategic representations, so as to choose which
search trees to develop. Some mid-level optimizations are also used - for example
calculations of the search dependencies, can indicate whether, or not, to recalculate the
search tree, if the move played does not modify its result. Optimizations are time-
consuming for the programmer. Subsection 7.2 presents some possi ble optimization for
pattern matching. Subsection 7.3 gives some hints on how to stop tactical search early.
Subsection 7.4 deals with the ordering of the different loops, and tests that occurs in
both manually, and automatically, generated Go programs. Subsection 7.5 is about the
choice of search algorithms. Subsection 7.6 explains how to optimize the operators of
mathematical morphology. Subsection 7.7 sheds light on the optimization of string
capture. Subsection 7.8 details the use of incrementality, and, finaly, subsection 7.9
says aword about high level optimizations.

7.2. Pattern-matching

The representation of the patterns, and the board to match the patterns on, is a problem
that every Go programmer has to face. The patterns represent small parts of the board.
One essential property of a string of stones lies in its number of liberties, so that

patterns are associated with conditions on the liberties of strings.
>2 liberties outside the
pattern if Black plays

>2 libertiesoutside
the pattern

Figure 27

Figure 27 gives examples of some patterns associated with a set of conditions. These
patterns represent an eye. M. Boon described how he optimized the pattern matcher of
his program, Goliath [Boon 90]. He represented 5x5 patterns, and 5x5 parts of the
board, using 32 bit strings, which enabled the program to perform very fast logical
operations on integers to match patterns with parts of the board. Other algorithms have
been used to optimize pattern matching. For example, the Explorer program uses
Patricia trees to match patterns [Mueller 95]. Gogol [Cazenave 00] represents the
patterns in one or two 32 bit integer, and performs a binary search on its sorted patterns
list, so asto match them rapidly.

7.3. Stopping Search Early

The patterns and rules are used, both to select possibly interesting moves, and to stop
search early. The following trees are developed to prove that the two black stones are
connected. The left tree is developed by using only simple rules to find interesting
moves, whereas the right tree is developed by using more clever rules and patterns:
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The left tree of Figure 28 has 31 nodes whereas the right tree has only 7 nodes. In the
game of Go, the overhead of matching smple patterns is largely compensated for by
the time gained thanks to search savings. The Figure 29 gives two patterns to cut the
right tree. The first pattern shows that there are only two moves to try at the root of the
tree, and the second one shows that Black can connect the two stonesif he playsfirst.

>2 liberties outside
>2 liberties outside of the of the pattern
pattern if Black plays \A |

Forced moves to prevent connection

AND

#

Figure 28

Figure 29

7.4. Ordering the conditions of rules

Another approach to speed up the use of rule-based knowledge is program
transformation. A metaprogram can make a program faster by automatically ordering
the conditions of the rules, or by partialy evaluating the rules [Cazenave 96a, 99].
While reordering conditions is very important for the performance of rules generated
by a metaprogram, it is also important when hand-writing rules for a Go program. The
following two rules are simple examples that show how important a good order of
conditionsis.

connect (S1,S2,11):- color_intersection(l1,enpty), color_string(Sl, Q,

color _string(S2,C, liberty(l1,S1),
liberty(l1,S2).

connect (S1,S2,11):- color_string(S1,C), color_string(S2, Q),
liberty(l11,S1), liberty(l1,S2),
color_intersection(l1, enpty).

The two rules give the same results but do not have the same efficiency when 11 is

unknown, because there are more empty intersections than liberties of the string S1.

When based only on the number of free variables in a condition, reordering does not

always work well. Conditions, and therefore variables, are ordered once only, and not

dynamically at each match, because it saves more time. Reordering the conditions of a

given rule optimally is a NP-complete problem. To reorder conditions in our generated
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rules, asimple and efficient algorithm can be used. It is based on the estimated number
of subsequent nodes, which the firing of a condition will create in the semi-unification
tree. Here is a metarule used to reorder conditions of generated rules:

branchi ng(Li st At orrs, Li st Bi ndVvari abl es, nei ghbor(X,Y),3.76):-
nenber (nei ghbor (X, Y), Li st At ons),
menber _tern(X ListBindVvari abl es),
non_nenber _tern(Y, Li st Bi ndVari abl es).

A metarule evaluates the branching factor of a condition based on the estimated mean
number of facts which match the condition in working memory. Metarules are fired
each time the system has to give a branching estimation for al the conditions left to be
ordered. When reordering arule containing N conditions, the metarules will be fired N
times - the first time to choose the first condition, and at T time to choose the T
condition. In the first reordering metarule above, the variable X is already present in
some of the conditions preceding the condition to be chosen. The variable Y is not
present in the preceding conditions. The condition * nei ghbor (X, Y)* is therefore
estimated to have a branching factor of 3.76 which is the mean number of bindings of
Y (that is, the mean number of neighboring intersections of another intersection on a
19x19 grid - this number can vary from 2 to 4).

The branching factors of al the conditions to be reordered are then compared, and the
condition with the lowest branching factor is chosen. The algorithm is very efficient
because it orders rules better than programmers do and because it runs fast, even for
rules containing numerous conditions.

7.5. Alpha-beta or PN-Search: a difficult choice

Another practical problem lies in the use of an appropriate search algorithm for the
problem at hand. For example, during a tactical search, Alpha-Beta enables the
program to reuse the abstract information of the parent node (such as the numbers of
liberties, or the list of adjacent strings), in order incrementally to calculate information
about the current node, without occupying too much memory. On the contrary, a Best-
First algorithm, like Proof-Number search, uses a lot of memory if incremental
information is kept. Moreover, it takes time to copy the information for each node.
However, the trees developed with PNS are often smaller than the trees developed with
Alpha-Beta, because the sub-games of the game of Go have a variable number of
moves at each node. The choice between these two algorithms depends on the data
structures used, and on the sub-games at hand. For example, Many Faces of Go uses
Alpha-Beta incrementally, and updates the liberties of the strings at each move. On the
contrary, Gogol uses PNS, copies the raw board, and recalculates only the useful sets
of liberties at each node.

7.6. Dilation and erosion

Dilation and erosion are crucia operations in a Go program. They are very often used
to calculate liberties, influence, territories, and, more generally, the neighborhood of an
object. Howard Landman uses an optimization to calculate the dilatation and erosion
operations of mathematical morphology. These operations are useful in calculating
both the influence of stones, and their associated territories. To assess dilatations and
erosions rapidly, the board can be represented as a bit string - an erosion corresponds to
some standard bit-string operations. SHIFT and OR.
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7.7. String capture

An optimization used by Goliath [Boon 91] is to put many moves simultaneously in a
tactical search. When a given program calculates a ladder, it has to play the same two
moves repeatedly. Goliath plays all the moves at the same time.

&

%

For example in the left position of Figure 30, to calculate whether the white stone -
marked with a triangle - in the lower left can be captured, the program tries, first, to
play the liberty of the stone that has the greatest number of second order liberties, and
secondly, to play on the other liberty to avoid capture. These same two moves are
played repeatedly across the board until the position in the second diagram of Figure
30 isreached. Instead of analyzing the position at each ply and playing the same moves
every two plies, the program can be optimized to go directly to the position of the
second diagram of Figure 30. This optimization enables the program to save timein 80
percent of the ladders calculated by Goliath. Instead of analyzing the position for each
move of the ladder, Goliath analyzes the position only once.

Figure 30

Another optimization, specific to string capture, consists of ordering moves during a
tactical search. For example, when trying to save a string by playing on its liberties, it
is usually better to try first the moves on the intersections likely to give the string as
many liberties as possible.

7.8. Incrementality

[Bouzy 97] introduces the concept of the “incrementality” of a tactical search.
Incrementality is an example of a mid-level optimization, which aims at associating a
tactical search with a «track» that represents parts of the board involved in the result of
the search. If amove is played in the track of an object, then the object must be del eted.
If amove is played outside the track of an object, then the object remains unmodified.
Whenever amove is played, the program knows which search remains unchanged, and
thus saves time. In practice, incrementality of tactical search enables a program to play
twice as fast on a 19x19 board. With the track mechanism, the programming task is
nicely simplified, but the incrementality problem has become a definition problem. If
the programmer defines a track bigger than the optimal one, then the behavior of the
program remains correct but is slower than it could be. If the programmer defines a
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smaller track than the optimal one, then the program forgets to destroy some objects
and the program quickly adopts an erratic behavior. The problem of correctly
specifying the tracks of objectsis difficult to solve.

7.9. High-level optimizations

An example of a high level optimization is the use of an abstract strategic
representation of the board that allows the program to focus on some important tactical
computations, and to neglect useless ones that might be time-consuming [Ricaud 95,
97], [Hu and Lehner 97], [ Cazenave and Moneret 97].

8. Combinatorial Game Theory

8.1. Introduction

This section deals with those basic features of combinatorial game theory which have so
far been useful to Computer Go. The reader may refer to [Conway 76] or [High 90] to
have a mathematical overview, to [Conway & al. 82] for arecreational presentation, and
to [Berlekamp 91] or [Mueller 93] for the practical applications of the theory to
Computer Go. These different viewpoints will alow the novice to understand the
surprising differences between this theory and classical games theory [Von Neumann &
Morgenstern 44]. Combinatorial game theory is also called Conway’ s game theory.

8.2. The results of combinatorial game theory when applied to Computer Go

The results of applying the theory to the problem of playing the whole game are few, and
limited. However, with specific sub-problems, like late endgame positions, this theory is
highly successful. This section deals with these excellent results, and then points out the
difficulties in extending them to other well-identified concepts of Go — «eyes», «ko» or
«fights» - and to complete games.

L ate endgame positions or «yose»

During the endgame phase, it is partly possible to model a position as the sum of games.
We list four key features of such a model. The first feature corresponds to the
identification of «groups» and «territories». As a game nears its end, the identification of
«groups» and «territories» becomes easier, and thus, the transformation from the position
into a list of sub-games becomes possible. In addition, when moves are played, the
identification of «groups» and «territories» becomes more stable. Stability is our second
feature. It is fundamental because, if not verified, the local tree searches in each sub-game
would become pointless. Furthermore, as a game nears its end, the moves played in one
sub-game have less influence on other sub-games. Therefore, near the end of the game,
the sub-games become independent. Independence of sub-games constitutes the third
feature. Besides, as a game nears its end, local searches become shorter. Therefore local
searches can be fully completed and the sub-games described. Completion of tree
searches is the fourth feature.

Thereby, in positions in which criteria for the use of these four features are fulfilled,
Berlekamp and Wolfe have obtained outstanding results. When an abstract description of
the positions, in terms of groups and territories, is given to Berlekamp’s mode, it finds
moves that have the same result, or even one point more, than professional players
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moves [Berlekamp 91], [Berlekamp & Wolfe 94]. This result had a tremendous impact in
the Go community because everybody thought professiona players were playing the
endgame optimally. Berlekamp’s model lucidly demonstrated the contrary. It would take
too long to dwell on the mathematical details explaining why the result is so good. In
outline, one can smply say that combinatorial game theory employs infinitesimal
numbers (like up, down and *) which describe the sub-games. They transform themselves
into one point when the number of sub-games is odd. The proof, and the test positions,
can be found in [Berlekamp & Wolfe 94].

This result is correct, of course, when the four sets of criteria are fulfilled, and it should
be capable of being extended to the endgame with the help of more robust tools than
Berlekamp’s model. Martin Mueller has been working on applying this theory to Go
endgames for severa years [Mueller 93, 95], [Mueller & Gasser 96], [Mueller & al. 97].
[Mueller 99a] describes Decomposition Search, which is an algorithm which identifies
safe groups, and territories, in a position, finds the sub-games, computes their value, and
selects the sub-game. In test positions, Decomposition-Search performs much better than
a classical apha-beta. This paper is a very nice demonstration of the power of the
combinatorial game theory applied to the endgame in Go.

Recently, [Kao 00] described a method for computing the mean, and the temperature, of
combinatorial games, where each player can have only one option at each local non-
terminal position. This method is based on the stable theorem, and on the algorithm MT-
Search (Mean-Temperature-Search). Although the method can be applied to games other
than Go endgames, MT-Search works very well with endgame positions. The
improvements in the computation of mean and temperature, due to this method, are
comparable to the improvement of Alpha-Beta over Minimax.

«Eyes»

After the success in the endgame, mathematicians have investigated other sub-problems
to be found in actual games. Eyes are very useful for life and death problems. [Landman
96] is the reference paper that shows the link between Conway’s theory and the eye
concept of the game of Go.

«K o»

Game theory is far more complex in loopy games. A loopy game is a game whose graph
contains loops. In the game of Go, loops are forbidden by the rules, but when you model
the whole game as a sum of sub-games, its sub-games may be loopy. For a given sub-
game containing a «ko», the first player takes the ko; as the rules do not allow the second
player to take the ko again, he plays elsewhere - in another sub-game. If the first player
also plays elsewhere with the following move, then the global position has changed, and
the second player is now alowed to take the ko in the given sub-game, whose sub-
position is the same as two moves before. Therefore, the given sub-game must be
considered as loopy under such modeling. Not only does Berlekamp's model encompass
ko, but also studies about ko and combinatorial game theory classify the different
contexts of ko [Mueller & al. 97]. [Spight 98] extended the thermograph theory to
process multiple-ko positions.

«Fights»

[Mueller 99b] described a method for modeling «fights» in Go, and computing their
game values. In order to test the validity of the approach, this method was integrated into
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his program, Explorer, and tested on specific fight positions. The results were very
impressive: its system outperformed the current best programs such as Go4++ and Many
Faces of Go. This illustrates the power of describing of Go local situations by game
values.

Thewhole game

Unfortunately, the conditions for applying Conway’s theory to the whole game are not
fulfilled. In brief, even if you have a sub-games model of the global game, the sub-games
are greatly dependent on one another. Each model of a global position into sub-games
already contains an approximation. Nevertheless, Conway’s theory is a source of
inspiration to model the game of Go for the computer. This paragraph shows the work
accomplished using this perspective.

Goliath [Boon 91] - three times world champion in 1989, 1990 and 1991 - modeled local
searches with switches. Explorer [Mueller 93, 95] is, by far, the program that uses the
theory in the most efficient way. For example, Explorer contains tools to compute
thermographs of games. In addition, Indigo [Bouzy 95a] uses Conway’s classification
(positive, negative, fuzzy or zero). Unfortunately, local searches in some sub-games
cannot be completed, and such sub-games are placed in the ‘unknown’ category.
Furthermore, Gogol [Cazenave 96c¢] does not strictly follow this classification. It defines
a taxonomy of games. ‘U’ games correspond to games whose searches are unknown, or
not completed. ‘W’ games correspond to won games, and ‘L’ games to lost games. Then,
‘U’ games can be classified into ‘“WU’, *WL’, or ‘UL’ games. A ‘WU’ game is a game
where the left outcomeis ‘W', and its right outcome is *U’, and so on. This classification
cannot be justified from a theoretical viewpoint, nevertheless it is preferable to Conway’s
in practice, because it takes the unknown sub-games into account and gives results, even
when alocal search is not fully completed.

8.3. Conclusion

Until now, classical game theory [Von Neumann & Morgenstern 44] has been very well
adapted to Chess, Checkers, and Othello, but has lacked power sufficient to model the
game of Go. Combinatorial game theory partly makes up for this weak point by giving
optimal strategies for playing in some specific endgame positions [Berlekamp & Wolfe
94]. It also gives ideas for defining sub-optimal strategies for playing the whole game.
Before this theory can be used for the whole game, extensive research has to be done.
Future researches might focus on the splitting of the global game into dependent sub-
games (rather than independent ones). In addition, experiments should be carried out
which relate to searches that may not end. Needless to say, this theory remains to be put
into practice, and adapted to all phases of the game.

9. Automatic generation of knowledge

Writing a Go program is difficult because the most efficient programs use a lot of
knowledge. Consequently, methods that generate Go knowledge automatically offer
great advantages. Research into automatic generation of knowledge in mind games has
mainly concentrated on the generation of an evaluation function. However, the
evaluation of a position in the game of Go requires many specific concepts, and
extensive reasoning. As the game of Go can be divided into subgames, a reasonable
goal for knowledge generating systems is to generate knowledge for these subgames,
and not for the whole game of Go.
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Knowledge can be generated through various techniques. Neural networks learning can
be used to learn to select good tactical moves with backpropagation, as shown in
subsection 9.1. With the help of temporal difference methods, it can also be used to
learn to evaluate the probability of an intersection becoming territory. In subsection,
9.2 we will show how neural networks have learned enough Go knowledge to enable
some neura-network-based programs to be competitive. Knowledge is a key
component of Go programs - in subsection 9.3 we describe the kind of knowledge used
in Go programs, and we insist on the difficulty in acquiring and maintaining it. The
problems related to knowledge maintenance, and knowledge acquisition, are partially
solved by the declarative learning techniques presented in subsections 9.4 (retrograde
analysis), and 9.5 (logic metaprogramming). These techniques have proved useful in
generating many useful tactical rules that increase the tactical problem-solving abilities
of Go programs. Some other techniques for pattern generation have also been tried,
such as the ecological algorithm of Kojima[Kojima & al. 97] - discussed in subsection
9.6.

9.1. Backpropagation

Golem [Enderton 92] is a program that learns to select tactical moves by using neural
networks. Golem starts by doing a tactical search to find the status of strings having
three liberties, or fewer - the goal of the search being to find whether, or not, the string
can be captured. Golem uses a neural network to discard moves when they are too
numerous. The inputs of the neural network correspond to those abstract concepts of the
game of Go which are likely to influence the capture of strings.

The results of the tactical searches, and some abstract concepts, are used as inputs of
another neural network. This network istrained on games between professiona players.
For each position, the goal of Golem is to rank the professional move above another
move chosen randomly. After 2,000 attempts, it ranks the moves in the test database
correctly 87 percent of times. Golem has learnt to beat Many Faces of Go at the latter’s
low level.

9.2. Temporal Differences(TD) Learning

TD learning has been successfully applied to Backgammon by Tesauro [Tesauro 94]. It
might also be applied successfully to other games. Two fundamentally different abilities
can be defined in games. The first one is to foresee the likely continuation of a game,
either by tree search, or by reasoning. The second one is the ability to assess a position
accurately, using patterns and some features of the position, but without calculating
explicit move. Backgammon is a suitable game for TD learning because positional
judgements are more important. Unlike Chess it does not require the ability to see many
moves ahead. The game of Go is also played by using alot of positional judgement, and
knowledge about the shape of stones. The application of TD methods to the game of Go
has yielded reasonable results, but Go programs based only on TD learning do not play
as well as the best Go programs. However, the TD method has great potential to
improve programs that already have alot of knowledge. Two programs have so far used
this method for the game of Go. Chronologically, the first one is the program designed
by Schraudolph, Dayan and Sejnowski, the second one - that plays better but relies on
more Go knowledge - is NeuroGo by Markus Enzenberger.

The program of Schraudolph, Dayan and Sejnowski
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Schraudolph, Dayan and Sejnowski have applied TD learning to Go in the same way
that Tesauro applied it to Backgammon [Schraudolph & al. 94]. Their first experiment
was to train a completely connected 82-40-1 network by letting it play stochastically
against itself.

As the game of Go is deterministic, moves are chosen stochastically, so as to explore
enough state space. The best moves have an exponentially higher probability of being
chosen than the worse ones. The output of the network learned to forecast the number
of points by which Black or White would win. This network had to play 659,000
games before beating Wally, the worst public domain Go program. The direct
application of TD to Go yields disappointing results in comparison to Backgammon.
However, improvements can be made to enable TD to learn better. These
improvements concern the architecture, the inputs, and the output of the network.

The first improvement consists of changing the output. The goal of the game of Go is
to occupy as much territory as possible. Each intersection occupied by a color, at the
end of the game, counts as one point. It is therefore worthwhile to make the network
learn the final destiny of each intersection. It is easier to find the destiny of an
intersection than the final score. Moreover, the game of Go has properties that make it
possible to constrain the architecture of the network. For example, when colors are
reversed, or when areflection, or arotation, of the board is performed, the properties of
the shape of stones remain unchanged. Color symmetry is taken into account by giving
opposite values to the inputs for Black and White (+1 for Black, -1 for White), and by
putting the bias neuron to —1 when White has to play first. Weight adjustments take
into account rotations and symmetries by sharing equivalent weights, and by adding the
errors resulting from different, but equivalent, intersections.

The improved network was trained against three opponents. a random move generator,
as well as the Wally program (a very weak, and ssimple, public domain Go program),
and Many Faces of Go. The program learned to beat Wally after 2,000 games, and
Many Faces of Go, at its weak level, by playing 1,000 games. Another network playing
against itself learned to beat Wally after 3,000 games. To date, these programs have
never participated in any Computer Go competitions.

The NeuroGo program

NeuroGo is a program that uses more elaborate inputs than the former program
[Enzenberger 96]. In NeuroGo too, the goal of learning is to foresee whether an
intersection will be friendly territory at the end of the game. The input of the network is
constituted of units. One unit can be either an empty intersection, or a string of stones.
The architecture of the network is therefore dependent on the position being
considered.

Each unit has its own properties. Each string possesses four properties. having 1, 2, 3,
4, or =5 liberties; having 1, 2, 3, or=4 stones; the possibility of being captured if the
color of the string moves first; the possibility of being captured if the color of the string
plays second. The properties of empty intersections are: Black has 1, 2, 3, 4, or =5
liberties if he plays on the intersection; White has 1, 2, 3, 4, or =5 liberties if he plays
on the intersection; Black can be captured if he plays on this intersection; White can be
captured if he plays on this intersection; eye for Black in O, 1, 2, or =3, unanswered
moves, eye for Whitein 0, 1, 2, or 23 moves.
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In addition to calculating the properties of the units, NeuroGo detects groups of stones
(sets of connected strings), and the distances between strings (connectable in one move
or in two moves). It uses this information to link units with weights corresponding to
the relations between the units. The set of units of a position is converted into a graph.
This graph enables the program to build relations within the neural network. There
cannot be more than one relation between two units. If there is more than one,
NeuroGo decides which one is the most important, and selects it. Two neurons of
adjacent layers that correspond to two units are linked by the weight corresponding to
their relation.

Neurogo has learned to beat 'Many Faces of Go’ at an average level (8/20) after 4,500
games against itself whereas the program by Schraudolph & al. only beat it at a weak
level (3/20). NeuroGo participates in the Internet Computer Go ladder. It plays on
small 9x9 boards as well as on 19x19 boards. It is currently situated in the top third of
the ladder of Computer Go programs.

Conclusion and futurework

To learn how to play well against another program, TD based programs have to play
thousands of games, but they have a considerable advantage: they do not require much
work from their programmer (NeuroGo is 5,000 lines of C). As often with this type of
learning, it is facilitated by the quality of the inputs of the neural network. Such is the
case with NeuroGo, which learns better than another program which has only a
physical description of the board. An interesting study would be to use the elaborate
knowledge of the best programs as an input of networks trained by TD methods. This
might greatly upgrade the level of programs. A problem might arise with the learning
time, which would be much longer than with a simple representation. However, this
approach offers the advantage of having the highest ratio Level of the program/ Time
to developit.

9.3. Knowledge in Go programs

Knowledge in Go programs is constituted of specialized procedures to compute some
specific Go concepts, and of pattern databases. The Go knowledge contained in the
procedures ranges from simple concepts, such as the number of liberties of a string, to
high level ones, such as the safety of a group. Ken Chen, the author of Go Intellect,
(one of the best Go programs) provides a good description of the knowledge contained
in a competitive Go program [Chen 92]. Go Intellect has 3 types of frames: Blocks (i.e.
strings in our terminology), Chains (sets of strongly connected strings), and Groups
(loosely connected strings), each with about 30, 10, and 50 slots, respectively. The
knowledge of Go Intellect is made up of the frame updating procedures, of about
twenty goal-oriented move generators, and two pattern libraries. A good example of
the heuristic rules used to evaluate the life and death of a group can be found in [Chen
& Chen 00]. The rules combine patterns, conditions on the intersections, and
exceptions. Approximately forty rules are described in this paper. They rely on other
knowledge, such as knowledge about the possibility of connecting a string to an
intersection. A typical Go program contains approximately 3,000 patterns. The number
of patternsin a program is highly dependent on the design, and the architecture, of the
program. For example, Goemate has only 40 patterns, whereas Golois has millions of
patterns.
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Acquiring this specialized knowledge is very difficult. The traditional way for the
programmer is to add knowledge. The difficulty lies in performing introspection. New
knowledge interacts with existing knowledge in unpredictable ways. Whenever a
programmer tries to improve his program by adding knowledge relating to a particular
sub-problem, this new knowledge often interacts with other knowledge in another part
of the program, and finally produces bad results. Furthermore, even if the programmer
is a very good Go player, he has difficulties in finding rules without exceptions. He
often inserts new rules, forgetting the exceptions, and produces bad results again.

A potential solution to the knowledge acquisition problem is declarative knowledge
learning. Some Go knowledge can be formalized, and can be considered independently
of other knowledge. The insertion of a new rule into a declarative setting does not
interfere with previous knowledge. Moreover, the use of automatic generating
techniques produces a large amount of knowledge, which would take too long to write
down for any programmer. The following two subsections highlight these techniques.

9.4. Generation of rules using retrograde analysis

Retrograde analysis

Retrograde analysis has aready been used for one-and-two-player games. Given some
final positions, retrograde analysis enumerates all the positions, and associates them
with a value that can be Won, Lost, or Drawn for two players games, as well as with
the minimal distance to the final position. Well-known results of retrograde analysis
are the Chess endgame databases [Stiller 96, Thompson 86, 96], and the Checkers
endgame databases of Chinook. The Chess endgame databases have enabled the Chess
community to discover new Chess knowledge [Nunn 93], and they enable programs to
play perfectly some endgames that are hard for human players. The endgame databases
of Chinook, for Checkers, have contributed to its World Champion title [Lake & a. 94,
Schaeffer 97].

For single agent problems, retrograde analysis has been used to reduce the number of
necessary nodes to solve standard 15-Puzzle problems. The generated database enables
the program to divide the number of explored nodes by 1,000 [Culberson & al. 98].
Retrograde analysis has also been used to find optimal solutions to Rubik’s Cube [Korf
97]. The dynamic creation of pattern databases has been used as rea time learning to
accelerate Sokoban problem solving [Junghanns & Schaeffer 98].

Generation of tactical Gorulesby retrograde analysis

The generation of simple patterns by retrograde analysis has been performed for the
game of Go regarding life, eyes, and connection [Cazenave 93, 96b]. The work has
been extended to tactical rules - in other words, patterns associated with external
conditions [Cazenave 00]. The generated patterns (and associated rules) fit in small
rectangular shapes (2x2 to 6x3) that represent parts of the board. The externa
conditions correspond to constraints on relations with objects that are outside the
rectangle. The possible objects are friendly strings, enemy strings, and empty
intersections.

Each intersection in a pattern can take on three different values (black, white or
empty). An empty intersection can be associated with two different external conditions:
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the minimum number of liberties a friendly move would have when played on the
intersection, and the maximum number of liberties an enemy move would have when
played on the intersection. Each string in a pattern can be associated with one
condition: the minimum number of liberties for a friendly string, and the maximum
number of liberties for an enemy string. Each of the external conditions can take on
three different values. The three possible conditions associated to enemy strings are : 0
external liberties, <=1 externa liberties, and other (>1 external liberties). The three
possible conditions associated to friendly strings are : 0 external liberties, >=1 external
liberties, and >=2 external liberties. Therefore, there are three possibilities for each
string, and nine possibilities for each empty intersection. A pattern that contains two
empty intersections on the edge of the pattern and two strings generates 9x9x3x3=729
different rules.

One can compare the number of rules covered by this representation with the number
of endgame positions in Checkers [Lake & a. 94]. There are 406,309,208,481
endgame positions, with 8 pieces, in Checkers, whereas the number of possible rulesin
a 5x3 rectangle in the center of a Go board is 59,241,069,331,995. The number of
possible patterns is much lower, as there are at most three possible values for each
intersection of a pattern (Friend, Enemy, and Empty). Therefore there are 3" possible
patterns for a 5x3 rectangle pattern in the center. Table 6 provides the total number of
possible patterns and rules corresponding to the size of the pattern and its location.

Sizeof the | Location | Total number of | Total number of possible
pattern possible patterns rules
2x2 Corner 81 5,133
3x2 Corner 729 184, 137
4x2 Corner 6, 561 6, 498, 165
3x3 Corner 19, 683 23,719,791
5x2 Corner 59, 049 228, 469, 857
4x3 Corner 531, 441 3, 238, 523, 049
6x2 Corner 531, 441 8, 023, 996, 893
5x3 Corner 14, 348, 907 464, 991, 949, 659
3x2 Side 729 541,101
4x2 Side 6, 561 18,513, 177
3x3 Side 19, 683 191, 890, 599
5x2 Side 59, 049 631, 651, 053
4x3 Side 531, 441 20, 752, 761, 345
6x2 Side 531, 441 21, 555, 306, 681
3x4 Side 531, 441 68, 094, 804, 369
5x3 Side 14,348,907 | 2,353, 796, 975, 871
3x3 Center 19, 683 663, 693, 159
4x3 Center 531, 441 239, 111, 765, 601
5x3 Center 14,348,907 | 59, 241, 069, 331, 995
Table 6

The algorithms used to generate these rules are dightly different from those used to
generate endgame databases.

Usually, when one generates a pattern database, or an endgame database, only one or
two bits are used to code each element (these two bits are used to code one of the three
values. Won, Lost or Drawn) [Lake & al. 94], [Korf 97], [Culberson & a. 98],
[Junghanns & Schaeffer 98]. The bit arrays can be compressed by using standard
compressing methods, such as Run-Length Encoding, which is used by Chinook. The
positions are sometimes associated with a byte that stores the minimal number of
moves before winning, or the maximal number of moves before losing [ Thompson 86,
96], [Schaeffer 97].
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Given the large number of possible rules, this representation is not used for databases
of rules. Instead, each pattern is represented by a 32-bit unsigned integer, associated
with a set of conditions. The only rules that are kept are the rules about won and
winning states, since they represent only a small proportion of the possible rules. This
allows one to store the generated rules within a reasonable space. Table 7 provides the
number of generated rules for eyes on the side.

Size of Location Number of Number of

the pattern won rules winning rules
3x2 Side 11 108
4x2 Side 171 1,081
3x3 Side 727 5,570
5x2 Side 1,661 5,952
4x3 Side 38, 909 146, 272
3x4 Side 14, 966 62, 329
6x2 Side 18, 194 31, 500

Table7

A simple algorithm to generate pattern databases consists of going through all possible
rules, and for each rule testing whether it is in the Won state for the given goal. After
each traverse of the possible rules, any new rules can be found only one move before
the already discovered rules. So, to discover al the possible rules, the algorithm has to
traverse all the possible rules many times, as long as there are new rules discovered
during the previous crossing. This algorithm is not suited to Go rules databases since
the number of possible rulesis very high. A more appropriate algorithm starts from the
already generated rules, and undoes the previous rules so as to find the new rules
directly, and without looking at all the possible rulesto find them.

>=1 liberty outside
& y

the pattern
0 liberty outside the —
pattern if White plays W_

Figure 31

Figure 31 shows some generated rules whose aim is to make the black group livein the
corner. The use of generated rules greatly enhances the life and death problem solving
abilities of Goloisfor open groups [Cazenave 00].

9.5. Explanation-Based Generalization and M etaprogramming

For domains - like the game of Go - that have a strong underlying theory, a deductive
learning method has been developed. It is called Explanation-Based Generalization
(EBG) [Mitchell & al. 86], and also Explanation-Based Learning (EBL) [Dejong 86].
Many studies have focused on the application of this method to planning [Minton & al.
89, Minton 90]. This type of learning is particularly useful for games. Many programs
using deductive learning for games have been described [Minton 84], [Pell 92], the
work by J. Pitrat on Chess [Pitrat 76] marking the onset of these studies.

The application of EBG to the game of Go has been partially formalized by T. Kojima
[Kojima & a. 94], and has been developed for, and efficiently applied to, many
subproblems of the game of Go, using the Introspect system [Cazenave 96c].
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Explanation-Based Generalization

The use of EBG for the game of Go has been attempted by T. Kojima [Kojima & a.
94] for the capture of stones. As shown in Figure 32, the program starts with the
positions where stones are captured, and undoes moves to find positions where stones
are captured some moves ahead.

PuetoeBoefhefoets

Figure 3

The information used by the generated rules concerns only the colors of stones and
their positions. There is other, more abstract, and potentially very useful information
which is not used to generate interesting rules. e.g. the number of liberties of the
strings, or the number of shared liberties between strings. The system does not find the
forced moves by itself. On the contrary, they are given to it. Despite its limits, this
approach offers the advantage of uncovering away to apply EBG to the game of Go.

I ntrospect

Introspect is a system for metaprogramming, and for EBG, that creates tactical rules for
multiple games, and more particularly for the game of Go. It uses predicate logic - for
example arule to connect two strings is represented as:

connect (S1, S2,1,Color) :- color_string(S1, Col or),
color_string(S2,Color), liberty(l,S1), liberty(l, S2).
This rule shows that the two strings of stones, S1 and s2, can be connected with a
move of color Col or, on intersection |, if S1 and S2 are aso of color Col or, and if
intersection | isaliberty of s1, and aliberty of s2.

The generated rules deal with the tactical sub-goals of the game of Go: capturing a
string, making a string live, connecting two strings, disconnecting two strings, making
an eye, and removing an eye. They are used to develop tactical tree searches, and to
stop search at an earlier stage, as well as to reduce the number of moves to be
examined. Their originality comes from the fact they are theorems of the game of Go.
Thanks to this characteristic, the set of forced moves they conclude on is complete. In
thisway, if we can prove that none of this limited number of forced moves works, then
we have proved that no move works. Similarly, when at some node a rule concludes
that a goal is achieved, search can be stopped, with the certainty that the goal is
effectively achieved whatever the surrounding situation.
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The rules that are used to develop the OR nodes of the search trees are created, either
by unfolding rules concluding on a won goal, or a winning goa [Tamaki 84],
[Gallagher 93], [Barklund 94], or by EBG [Pitrat 76], [Mitchell & al. 86], [Dejong 86],
[Harmelen 88], [Cazenave 96c].

Aswell asthe classical operations on logic programs that enable Introspect to generate
rules for the OR nodes, Introspect also uses metaprograms, which are specific to
games, to generate rules about forced moves for the AND nodes of the search trees
[Cazenave 98]. These specific metaprograms analyze a winning rule, and find all the
moves that invalidate a condition of this rule. All these invalidating moves constitute
the complete set of forced moves that prevent the opponent from achieving the goal
that the winning rule concludes on.

But EBG systems create too much knowledge, and sometimes useless rules that slow
the system down. To avoid this phenomenon, called the utility problem, and to enable
the system to limit itself, Introspect only generates rules that contain fewer than 200
conditions, and that do not conclude on sets of more than 5 forced moves. Unlike other
domains, where the utility problem is amajor obstacle, good results can be obtained for
the game of Go with quite ssimple utility knowledge.

The following rule is generated by Introspect regarding the capture of a string. It
concludes on the capture of the string represented by variable S. The color of the move
to capture is represented by variable C, and the intersection on which the move should
be played to capture the string is represented by variable| :

nmove_to_capture(C, S, |):-
opposite_color(C1, Q),
color_string(Ss, Cl),
nunber _of liberties of string(sS, 2),
m ni mum nunber _of |iberties_of adjacent _strings(S, 2),
liberty_string(l, S),
m ni mum nunber _of liberties_if_nove(l, C 2),
liberty_string(ll, S),
I=\=I1,
nunber of liberties of string if nove(S [I,C,[11,C1],1).

The condition i ni mum nurber _of _|iberties_of adjacent_strings(S, 2)
verifies that all the strings adjacent to the string S have at least two liberties. The
condition mi ni num nunber _of liberties_if_nove(l, C, 2) checksthat amove of
color C, on the intersection |, has a least two liberties. The condition
nurmber _of liberties_of string_ if_nove(S,[I,C,[11,Cl],1) verifies that a
move of color C, on intersection |, followed by a move of color C1, on intersection
I 1 has only one liberty. An illustration of this rule is Figure 33 where Black can
capture the White string by playing one of its liberties:

[Esse

Figure 33

Thetactical programs generated by Introspect are used by the Go program Gogol. They
have enabled it to obtain decent results in Computer Go competitions [Fotland &
Y oshikawa 97]. Once generated, the rules are gathered in a tree of conditions, and
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compiled into C. When they are integrated into Gogol, they amount to one million lines
of C.

Introspect is also a general game, and a metaprogramming, system [Pell 92][Pitrat 98]
that has generated knowledge for domains other than the game of Go [Cazenave 96c].

9.6. Pattern generation by an ecological algorithm

T. Kojima has also used an ecological algorithm to discover patterns for the game of
Go [Kojima & a. 97]. He uses games between professional players as examples. The
rules contain conditions on the relative positions of the stones (friendly or enemy
stones, relative coordinates), and on their location on the board (on the edge or not).
Each rule is considered as an individual, and has an activation value. A learning
example is considered as food, that can be eaten by the rules which match this
example. If no rule matches, then a new rule, that matches the example, is created.
When a rule has an activation value above a given threshold, it gives birth to a more
specific rule. Each rule eats at each step of the algorithm, so its activation value
decreases. The rules with an activation value of O die. This approach to pattern
generation has not yet generated a competitive Go program.

9.7. Conclusion

Many learning methods have been tried for the game of Go. So far, none has given
very astonishing results. However, the temporal differences method, and the program
specialization method (either by retrograde analysis or by metaprogramming), give
interesting results, when compared to more classical methods for game programming:
they are undoubtedly the most promising learning methods for the game of Go.

The automatic generation of knowledge still needs to be investigated more: the game of
Go is the domain, ‘par excellence’, where learning, and program specialization,
methods can be very useful. One of the principal difficulties in programming the game
of Go liesin finding knowledge, and then in writing a relevant program that represents
this knowledge. Such isthe current task of learning Go programs.

10. Monte Carlo Go
10.1. Monte Carlo methods in Physics

The variation principle lies at the heart of theoretical physics. The path taken by a
system in a state space is an extremum. The mechanisms used to find extrema are
fundamental in classical physics, in relativistic physics, and in quantum physics, as
well. Monte Carlo methods [Kirkpatrick & al. 83,0tten 89] are derived from statistical
physics. A statistical system is composed of a large number of particles. The problem
is to know how the speed, and the position, of particles evolve over time. A feature of
the evolution of the system is that a quantity, such as the energy, or the activity, is
minimized. For example, a high temperatures, a metal is liquid, and its atoms move
randomly, but when the metal is cooled, the atoms put themselves into a configuration
that minimizes energy - a crystalline structure. This process is caled annealing. The
longer the cooling, the closer to the minimum of energy the cooled structureis.
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To do Monte Carlo simulations, one has to choose a representation of the possible
states of a system. Then, one has to define a set of ergodic, elementary, moves, that
allows one to go through the state space of configurations, step by step. For a given
configuration, moves are generated randomly. The evolution of the system is
approximately assessed by choosing a move with a probability that depends on the
growth in activity resulting from the move. For example, the probability p(E) that a
particle has the energy E at atemperature T is p(E)=exp(-E/KT), k being the Boltzmann
constant. The move that increases the energy by AE is accepted with the probability
p=exp(-AE/KT).

10.2. Simulated Annealing

For a function of many variables, algorithms that follow the gradient, to find lower
values of the function enable us to find a local minimum of the function. However, if
we look for aglobal minimum of a complex, and possibly non-differentiable, function,
there is little chance of finding it by using such a method. Simulated annealing is more
appropriate to find global minima of complex functions that contain many variables,
because it also generates moves that increase the value of the function.

To find a global minimum, ssimulated annealing plays moves randomly in state space.
If the value of the function decreases after the move, the move is accepted. If the move
increases the value of the function, the move is accepted with a probability that
decreases exponentially with the increase of the value of the function, and with the
temperature. The temperature decreases with time, depending on the time given to the
algorithm to find a solution.

Simulated annealing has been applied to combinatorial optimization problems like the
traveling salesman problem. There are N! different paths between the N cities.
Simulated annealing finds a solution, close to the optimal solution, in a polynomial
time. The agorithm begins with a random ordering of the cities. There are two types of
possible moves. The first type of move is to reverse the order of severa cities, which
are next to one another on the path. The other type of move is to move severad
neighboring cities somewhere else on the path. Simulated annealing has also been used
to find an arrangement of 25 cards, in a 5x5 table, so that the values of the rows,
columns, and diagonals, when interpreted as hands in Poker, are maximized. Simulated
annealing is successful, and both much faster, and simpler, than other methods.

10.3. The Gobble program

The Gobble program [Brugmann 93] uses simulated annealing to find an
approximation of the best move on a 9x9 board. The principle is the same as the Go-
Moku program designed by Grigoriev [Grigoriev 88]. It consists of randomly
developing the different possible games, and in calculating statistics based on the
results of the sequences of moves, after each possible next move. The goa of the
program is to find an approximation of the value of the different possible moves. To
this end, it plays each sequence of moves until the last moves that do not fill eyes. In
case of captures, many moves can be played at the same intersection. At the end of a
sequence of moves, it counts the number of points for Black, and for White. The final
values, associated to an intersection, are the mean of the results corresponding to the
sequences of moves in which Black has been the first to play at the intersection.
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The problem consists of finding the order in which to play the possible moves in the
different sequences. The order of moves must be different, and must bring information
for each sequence. Therefore, Gobble uses a different vector of moves for each
sequence. The first legal move in the sequence of moves is chosen to continue the
sequence, each vector of moves corresponds to a sequence. For al sequences, the
initial order of the vector of moves is found by sorting the moves according to their
approximate values calculated with the former sequences. This initial order is then
modified by going through the vector of moves and by swapping two neighboring
moves with a probability that depends on temperature. As sequences are being played,
temperature decreases, and the probability that two moves are swapped also decreases.

The moves are sorted according to their values. The value is initialized to O, for the
first iteration, and then it is updated for each sequence of moves. Then, the program
goes through the list of moves, and swaps two neighboring moves with the probability
Pswap- The probability p(n) that a move is moved n steps down is:

p(n) = (Pswap)" = eXp(-/T)
T = -UIn(Pswap)

SO

Pswap decreases linearly down to 0, depending on the number of sequences. Then, for
some sequences, Pswap remains at O, in order to find the nearest local extremum. The
useful information obtained from random sequences is proportionate to the number of
sequences aready played. The mean error, Av, is proportional to the square root of the
number of sequences.

Av ~ 1n

Therefore, to calculate the value of a move to a precision of within one-point , and
given that the possible values for the results of the sequences can vary by 100 points,
approximately 10,000 sequences have to be played.

Gobble uses two strategies. strategy A: play between 500 and 1,000 sequences to find
the moves; strategy B: play 400 sequences, retain the 4 best moves, and play 400
sequences for each of these 4 moves. Using strategy A, and despite giving/receiving
three handicap stones, Gobble plays equal games against Many Faces of Go. Using
strategy B, and despite giving/receiving two handicap stones, Gobble plays correctly
against Many Faces of Go.

A specific property of the game of Go, which is taken into account by Gobble to
evaluate the moves, lies in the localization of the moves. Localy, the game of Go is
more stable than Chess, for example. However, the results are only an approximation
of the real result, since the localization of moves is not always verified, and the state
space of Go not aways regular.

The Gobble approach is original, because it relies on avery limited knowledge of Go —
‘do not fill your own eyes — and yet it results in an average Go program. Given the
simplicity of the program, its performances are amazing. This approach can
undoubtedly be improved, and conclusions can be drawn from these experiments for
other game programming problems.
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11. Mathematical Mor phology

11.1. Introduction

This section highlights the link between image processing and Computer Go. The size
of the board (19x19) on which the game is played, is much smaller than the size of the
pictures (more than 1000x1000) processed in the pattern recognition domain.
Therefore, the complexity of the game of Go is situated far below the complexity of
image processing. Neverthel ess these two domains have a common, and efficient, tool -
mathematical morphology [Serra 82]. Hence, this section shows how to use
mathematical morphology within Computer Go, and, more specifically, within the EF
of a Go program.

11.2. Mathematical morphology and the game of Go

Mathematical morphology is a very useful technique in the field of image processing.
For example, some operators enable systems to delete the details whose size ranks
below a given scale. Fuzzy mathematical morphology [Bloch & Maitre 92] is another
refinement that also gives good results. Besides, some Go programmers use it in their
program. At the very beginning of Computer Go, the Zobrist model [Zobrist 69],
without using it explicitly, aready performed mathematical morphology. This model
was composed of iterative dilations. It enabled the programs to recognize «influence»
as human players do. This model is the ancestor of the refinements used today in Go
programs. For example, the Indigo program makes explicit use of mathematical
morphology [Bouzy 953, b] for territory-, and influence-modeling. GnuGo [GnuGo 99]
also uses this model. This section focuses on «territories», and «influence»,
recognition, and provides information to help understand the Evaluation Function
section.

First, let us mention some basic operators of mathematical morphology. Let A be a set
of elements, and let D(A) be the morphological dilation of A - composed of A, plus the
neighboring elements of A. E(A) is the morphological erosion of A. It is composed of
A, minus the elements which are neighbors of the complement of A. ExtBound(A) is
the morphological external boundary of A ; given by ExtBound(A) = D(A)-A.
IntBound(A) is the morphological internal boundary of A ; given by IntBound(A) = A-
E(A). Closing(A) is the morphological closing of A ; where Closing(A) = E(D(A)).
Opening(A) is the morphological opening of A ; given by Opening(A) = D(E(A)). The
opening and closing operators are very helpful in image processing.

We can then adapt these operators by adding two refinements. numerical inputs and
outputs, and two colors (Black and White). We start by assigning values of +64 (resp. —
64) to black (resp. white) intersections, and O elsewhere. The D operator now consists
of adding to the absolute value of an intersection of one color, the number of
neighboring intersections of this color, provided that all the neighboring intersections
are empty, or of that color. For an empty intersection, which has neighboring
intersections of the same color, D also adds the number of neighboring intersections of
this color to the absolute value of the intersection. D is a numerical refinement of the
classical dilation operator mentioned above. Similarly, the E operator now consists of
subtracting from the absolute value of an intersection of one color, the number of
neighboring intersections whose value is either zero, or whose value corresponds to the
opposite color of the intersection. E also makes sure that the sign of the value does not
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change - otherwise, the value becomes zero. E is therefore a numerical refinement of
classical morphological erosion.

Once these refinements are added, we use the operators X = E*E...*E*D*D...*D, and
Y =D*D...*D where E iscomposed ‘€ times, and D, ‘d’ times. So as to give the same
result as the identity operator in positions where no «territory» is recognized, a link
between ‘€’ and ‘d’ must be established. For example, in the trivial position, with only
one stone located in the middle of the board, X must give the same result as the identity
operator. [Bouzy 95b] has shown that e = d*(d-1) + 1, in which *d’ is a scaling factor.
The bigger ‘d’ is, the larger the scale of recognized territoriesis.

Figure 34 illustrates an example position on which we applied operators X and Y.
Figure 35 shows the result of Y, with d=5, and e=0. Figure 36 shows the result of X,
with d=5 and, e=21. Figure 35 shows what Go players call “influence” and Figure 36
shows the “territories” quite accurately. These two points explain the success of
mathematical morphology in the game of Go [Bouzy 95a]. This technique was part of
the EF of the Indigo program [Bouzy 95a, b], and now has been integrated in the
GnuGo program [GnuGo 99].
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Figure 34

Figure 35

Figure 36
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12. Cognitive Science
12.1. Introduction

This section deals with studies carried out in Cognitive Science which use the game
of Go as an investigation aid. After showing that the game of Go is an appropriate
domain for cognitive science studies, this section investigates the different studies
conducted so far.

12.2. The game of Go is appropriate for carrying out cognitive science studies

Cognitive science experiments, aiming at exploring the human cognitive system when
it interacts with the real world, have to be set up inside sufficiently complex domains.
Thus, the subjects will be able to use their cognitive faculties that will be studied
through the experiment. So as to be effective in practice, the experiments must not be
too complex. Therefore, domains whose complexity is neither too low, nor too high,
are perfectly adapted. Furthermore, the knowledge used by the subjects during the
experiments must be representative of common sense knowledge used by human
beings in the real world. Therefore, the domain to be studied must also keep real world
features. To sum up, Cognitive Science requires domains which are representative of
the real world, and whose complexity lies between the complexity of recreational
experiments and the complexity of real-world, but technically ineffective, experiments.

[Langston 88] defends the idea that the game of Go is a simplification of the real world
while keeping its main features by the following arguments. The Go universe has two
gpatial dimensions and one temporal dimension whereas the real world has three spatial
dimensions and one temporal dimension. In addition, the Go universe is finite - there
are 361 intersections on a Go board, and these are endowed with a color which has a
discrete value (black, white, or empty). However, the real world is made up of an
infinity of points. Furthermore, an infinity of viewpoints describes each point, and each
viewpoint takes on a value belonging to an infinite set. Unlike the real world, the Go
universe is formal: the rules of the game define the characteristics of the game with
great accuracy.

Actualy, the main advantage of the game of Go compared to other games is that it is
visua: a position with its black, white, or empty intersections must not be perceived
simply as such, but rather in an abstract way. In these conditions, the player may
identify complex objects. The strength of a player relies on his skill in recognizing
complex objects where only concrete information (black, white, and empty
intersections) can be found. This aspect does not exist, as markedly, in other games
such as Chess, Checkers, or Othello, where the objects of the reasoning process are
similarly defined by the rules of the game.

Therefore, it is quite justifiable to choose the game of Go as a domain to perform
cognitive experiments [Saito & Y oshikawa 97], [Bouzy 95]. We shall now see which
studies, using the game of Go, have been done so far within the cognitive science
community.

12.3. Related works

The different studies in cognitive science that have been carried out using the game of
Go may be classified according to the chosen method: on the one hand measuring
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response times for re-building observed, and hidden, positions - on the other hand
analyzing verbal reports.

Measuring response times

In Chess, [Chase & Simon 73] measured time intervals separating the actions of the
subjects who were reconstructing positions, once seen, but later hidden. They showed
that expert players use information organized in «chunks». A chunk can be defined as a
cluster of information. The authors observed that, because Chess experts build actual
Chess positions more quickly, they seem to have a greater memory capacity than non-
experts. However, with random positions, the authors observed that the experts and
the non-experts performances were equal. The explanation given by the authors was
that the number of memorized chunks is equal for experts and non-experts, but that
experts memorize more specialized chunks. This argument would explain the time
differences when building actual Chess positions.

In Go, this experiment has been done again [Reitman 76]. As in Chess, the experiment
shows that experts use more specialized chunks than non-experts. Nevertheless, the
conclusions were more difficult to reach in Go. Unlike in Chess, the chunks in Go are
more complex, as they are not linearly structured, but may be chosen differently,
according to different viewpoints.

[Burmeister & Wiles 96] describe experiments which use “inferential” information to
build Go positions. This contrasts with “perceptual” information which was used in
previous experiments [de Groot 65], [Chase & Simon 73]. A more detailed study of
strong Japanese players (6 to 8 dan) was then conducted [Burmeister & al. 97]. The
authors conclude that the explanation for moves is an important factor in memorizing
positions, and sequences of moves. Thus, strong players clearly remember their games
against other strong players, but they have more difficulty remembering their games
against weak players, because weak moves have no meaning for them. Consequently,
the strong player must use a representation that he is not familiar with - this reduces his
memorizing capacities.

Analyzing verbal reports

Scores of cognitive studies rely on natural language production. First, let us sum up the
arguments for, and against, both the use, and the study, of such types of information,
irrespective of the domain. On the methodological side, [Ericsson & Simon 80]
proposes a method to set up cognitive models relying on verbal reports. The success of
the method simply lies in a verba production model included within the cognitive
model. Thus, the validation of the cognitive model is simply performed by comparing
the verbal production of the cognitive model with that of the subjects. Concerning the
results obtained in analyzing verbal reports, [Vermersch 91] defends the idea that it is
possible to extract knowledge from many everyday life experiments such as driving a
car, and baking a cake. The author thinks that the extraction can be done with such
precision that accurate cognitive models could be built. On the contrary, [Nisbett &
Wilson 77] argue that psychological experiments in general, and verbal reports in
particular, are strongly distorted by the experimenters themselves. For the authors, such
experimenters uncover only what they are looking for, and if the experimenters could
make other experiments aiming at proving the contrary, they would do so. As a resullt,
there are many divergent opinions as to the effectiveness of experiments which are
based on verbal reports.
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In Go, [Saito & Yoshikawa 95, 96, 97] showed that human players use natural
language terms to play their games. The authors recorded the players voices when
they were playing games, or solving Go problems. They also used specialized
hardware to record the subjects eye movements, as they looked at the Go board. The
authors observed that friendly and opposing moves are very often named. Small tree
searches appear in verba expressions, and proverbs can be found. The authors
conclude that natural language plays an important role in playing Go. They aso show
that the use of terms depends on the players’ rankings [Y oshikawa & Saito 97]. So as
to demonstrate this, they developed the «iceberg model» [Y oshikawa & al. 98], which
shows that most knowledge is implicit, and not conscious, while little information is
explicitly present in verbal reports.

[Bouzy 954] presents a cognitive model of the Go player. It was designed using the
following steps. First, a cognitive model was based on strong players’ verbal reports.
The cognitive model had to be validated with the construction of a computational
model. But, unfortunately, the results of that computational model were not conclusive.
Therefore, the cognitive model was simplified, in a second stage, by using novice
players verbalizations. Surprisingly, the level of the computational model based on
verbal reports by novice players was higher than the level of the program based on
experts’ verbal reports. This obvious paradox may be explained by the fact that the
expert verbalization-based model used high level knowledge, without referring to the
low-level knowledge. Therefore, this model - with high level knowledge - was not
grounded on solid foundations, and the corresponding program had poor results. The
low-level knowledge of the other program enabled it to play at a novice level with
better results.

Nevertheless, the most significant conclusion of this work was to be found elsewhere.
Of course, the program’s implementation required the use of concepts explicitly
expressed in the reports, but it also required the use of further concepts, which are
called hidden concepts, because they cannot be explicitly identified in the reports.
Thereby, it was assumed that a correspondence existed between the hidden concepts,
on the one hand, and the implicit knowledge used by human players, on the other hand.
This hypothesis bears great similarity to the iceberg model of [Yoshikawa & al. 98].
This correspondence hypothesis being assumed, [Bouzy 95a, 96b] has shown the
existence of human players implicit knowledge such as, the group concept, the
inside/outside concept (see «Evaluation Function» section), and the incrementality
concept [Bouzy 97] (see «Optimization» section). Incidentally, these concepts are very
intuitive, and very useful in helping to play Go. They do not appear very clearly in Go
players verba reports, thus making it difficult to set up a correct model in Go.
Nevertheless, this approach may let researchers obtain insights into the way that
humans use implicit knowledge. In [Bouzy 96b] the author argues that when one tries a
computer implementation in a complex domain, such as Go, one uncovers concepts,
which make it easier to model the domain. These concepts do not correspond, either to
verbal reports, or to natural language terms in that domain. As these concepts does not
correspond to explicit knowledge, the hypothesis is that they correspond to implicit
knowledge.

12.4. Conclusion

The game of Go, as a real world simplification that keeps its essential features, is an
appropriate domain in which to conduct cognitive studies [Langston 88]. [Reitman 76]
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reproduced the Chess experiment [Chase & Simon 73] in Go; their conclusions were
far from being obvious because the chunks were not «linearly» organized, but
corresponded to different viewpoints which were difficult to classify. [Bouzy 95a] has
shown that the bulk of Go players knowledge is not conscious, by extracting this
knowledge through the implementation on the computer. [Yoshikawa & al. 98] not
only argues that natural language plays an important role in Go, but also maintains that
Go players’ knowledge isimplicit, to alarge extent.

13. Conclusion

13.1. Summary

In this paper, we have presented Computer Go, and its numerous links with Al. First,
we have shown, in section 2, that the complexity of Go is much higher than the
complexity of the other two-player complete information games. This complexity is
not only due to the number of possible movesin a given position, but also to the cost of
the evaluation of a position.

In section 3, we mentioned that the best Go programs obtain average results, although
it took severa years to develop these programs. The best current programs are
Goemate, Go4++, Many Faces of Go, Wulu and Go Intellect. However, with sub-
problems of Go (life and death problems, and endgame problems), the results are
excellent. GoTools [Wolf 94, 00] solves life and death problems whose level
corresponds to the best amateur players. [Berlekamp & Wolfe 94] describe a
mathematical model that finds move sequences better than professional players
sequences, in some specific late endgame positions.

In contrast to the excellent results obtained with these sub-problems, the weak
performance of programs in a complete game might be explained by the difficulty in
extending the problem solving tools to become more general tools. It is vital that Go
programs find good solutions in cases which occur in actual games. For example, it is
difficult to solve life and death problems for groups that are not completely
surrounded, although GoTools solves them very well for completely surrounded groups
[Wolf 00]. Section 4 described a Go evaluation function whose complexity is dueto its
many inter-dependent concepts. grouping, inside and outside, interaction, territory,
influence, life, and death. Numerous definitions of these concepts are possible. The
choices made in the design of each program bring about a loss of information.
Moreover, these choices have to be implemented in an efficient fashion, thus making
the design of an evaluation function even more difficult.

As described in section 4, a characteristic of the evaluation function is the use of local
tree searches on simple goals. To build the EF, TS on tactical goals, such as string
capture, connection between strings, and eye verification, are commonly performed.
The results of these tactical goals are used to build groups at the upper abstraction
level. Other TS - on more abstract goals, such as life and death of groups, and
interactions between groups - may be performed at a second stage. All these results are
processed to build the EF at the global abstraction level. The EF calculation is slow
enough to prevent a classical TS. Contrary to other games in which TS uses EF, in Go
EF uses TS.
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Section 5 mentioned that the first Go programs were expert systems with a single
Move Generation module, but with neither an Evaluation Function, nor Tree Search.
So far, athough Evaluation Function, and Tree Search, modules have been necessary
to write the current Go programs, the Move Generation module has occupied and still
occupies a special position. Instead of being used by Tree Search, it can be used to
select the move directly. Because TS can only be performed locally, or in a goal-
oriented way, it must be performed after the computation of a static strategic position
evaluation which requires an important amount of knowledge. Therefore, it is worth
keeping the knowledge method, and having some static goal, and/or move evaluations,
after the position evaluation. This time-saving approach is far from being smple. Move
selection undoubtedly remains complex, and needs accurate domain-dependent
knowledge. Global move generation has multiple facets, and must be supplemented by
atree search module, which is used to check that goals have been achieved.

Section 6 considered the characteristics of TS. First, the local situations of a position
may be viewed as independent of one another, and the global TS may be approximated
by severa local TS - that iswhy alocal TSis aselective TS, where moves sufficiently
far away from preceding ones are discarded. Another important feature of the game of
Go is that, for each local situation, each player may be the first to play, which
necessitates the computation of at least two TS for each local situation. The evaluation
function is the result of local TS on simple goals, and can contain some uncertainty. A
quiet position can be defined as a position in which there is no uncertainty. Quiescence
search algorithms are thus appropriate in this approach.

The programmer can choose between many search algorithms. For the goals that use
data structures, which can be incrementally updated, Alpha-Beta is the algorithm of
choice. When the number of moves for each position varies a lot, it may be better to
use PN-Search. For a given sub-problem, the search algorithm is chosen according to
its characteristics.

Given the computational complexity of Go playing programs, it isimportant to perform
computations as fast as possible. It is then possible to compute longer sequences of
moves, and to obtain more information about the position, so as to make a more
accurate evaluation. Section 7 listed the numerous possible optimizations at each level
of abstraction of a program. For example, incrementally calculating the liberties of
strings has become a widely accepted technique at the lowest level of the program.
When computing atactical search, the same sequences of moves are often repeated. An
interesting optimization consists of playing sequences of moves, rather than playing
one move at atime, and reanalyzing the position after each move. Another example of
low level optimization centers on the use of bit-string operations, to calculate the
dilation, and erosion, operators of mathematical morphology. Other optimizations are
useful at more abstract levels. The objects related to the results of each local TS can be
memorized, and the only local TS to be computed after a move are the ones that
contain objects modified by the move. At the highest level, a program can be optimized
by eliminating beforehand some computations of the lower levels, leaving the choice of
move unchanged.

As presented in section 8, the possibility of splitting the global position into several
sub-positions enables programmers to apply the sum of game theory. Berlekamp
achieved excellent results by applying this theory to the late endgame. This result can
be explained by the specificity of the test positions in which local situations are totally
independent from one another. In real game positions, the local situations are not
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independent, and the sum of game theory does not apply directly, athough severa
attempts have been performed so far. Explorer is undoubtedly the program which uses
this theory in the best way, thanks to thermograph calculations. Other studies on eyes
[Landman 96], fights between groups [Mueller 99b], or temperature calculations [Kao
00] have aso been performed.

Neural network learning methods, described in section 9, and more specifically the
temporal difference method, alow the program to automate most of the creation of an
evaluation function, and to replace the strategic level of a Go program at a low cost.
NeuroGo uses quickly defined, and quickly computed, inputs, and it successfully
competes against some programs based on more elaborate methods and concepts. An
interesting attempt would consist of using more elaborate inputs, but the learning time
may then be prohibitive. So far, programs using EF, based on the TD method, have not
reached the level of the best programs. However, they give very good results when
comparing the design complexity of classica programs to the low complexity of
programs based on this method. Other approaches, which aim to transfer the work of
knowledge generation from the programmer to the computer, are logica
metaprogramming, and retrograde analysis applied to tactical patterns. These
approaches generate millions of rules that enable tactical problems to be solved more
quickly, and more accurately. In well-defined sub-problems, like life and death of
groups, Golois uses this automatically generated knowledge, and ranks at a similar, if
not better, level than the other programs.

Very different problem solving methods may be adapted to the game of Go. In section
10, Monte Carlo methods surprisingly provides average level Go programs, on 9x9
boards. Based on this method, Gobble is designed in a ssimple way, but, like NeuroGo,
it competes effectively against far more complex programs.

Since the game of Go is visud, it is normal to explore the usual techniques of image
processing to see whether they can be useful for Computer Go. This was examined in
section 11. Although 19x19 boards are much smaller than images processed in
Computer Vision, mathematical morphology enables Go programs, like Indigo or
GnuGo, to recognize territories, and influence by using dilation, erosion and closing
operators.

Section 12 showed that Go is a domain, well-suited to the performance of cognitive
experiments. In order to obtain significant results, without being confused by the
complexity of the real world, cognitive science requires clearly formalized domains
like games. So as to extract intuitive, and non-conscious, knowledge from human
beings, the domain has to be sufficiently complex. The game of Go, with its
intermediate complexity, is a good domain for experiments. The Indigo program has
been devised to validate the cognitive model, based on the verbal reports of novice
players. [Saito & Yoshikawa 95] has shown, on the one hand, that Go players use
natural language to guide their thinking process, and, on the other hand, that they use
implicit knowledge in a way similar to the «iceberg model». Some experiments,
already done in Chess, were repeated, for Go, by [Reitman 76]. Asin Chess, they show
that expert players recognize real game positions better than do novice players, while
obtaining comparable results on random positions.
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13.2. Future work

Given the present state of Computer Go programming, we may wonder how Computer
Go is likely to evolve over the next few years. We have mentioned many different
studies, and we can try to figure out which paradigm will result from all these studies.

Computer Go programmers currently agree on very few concepts and tools. All the
programs have modules to compute the capture of strings. They also have modules for
connecting strings, for killing groups, and for making groups live. But, even at this
relatively low level of abstraction, the underlying concepts of the modules differ from
one program to another. For example, Many Faces of Go uses an incremental Alpha-
Beta to compute strong connections, whereas Go4++ uses a connectivity probability
map. Since a Go program is an interconnected whole, it is difficult to argue about the
best way to compute a connection. The choice of method for solving a sub-problem
depends on the global architecture of the program, and on the choices made in other
modules. The problem of comparing the pros and cons of the different architectures
currently in use remains unsolved.

The EF computation is complex, because of its many interacting concepts. An
attractive approach might be to design a multi-valued EF, each value corresponding to
a concept. A bi-valued EF has been applied to fights between groups [Mueller 99b],
whereas a multi-valued EF could be applied to other sub-problems of the game of Go.
One problem will be to use this multi-valued EFinaTS.

We have shown that an automatic knowledge generator has been successfully applied
to the tactical levels of a program. We can ask whether this technique will also give
good results at more abstract levels. TD learning techniques, and simulated annealing
techniques, have been used in programs using simple data structures, to reach a global
goal. Some parts of the best programs might be improved by using such tools. First,
they could be used at low abstraction levels, for instance to estimate the connectivity.
Second, they could be used at the global levels, using more abstract information. Third,
the Monte-Carlo methods could be applied to sub-problems, such as life and death.

In 1995, Handtalk - the Computer Go world champion - played moves almost instantly.
The speed might be due to assembly coding, and to limited tree search, associated with
very good heuristics for finding good moves. The goal of a program is to select a
move, TS being one way to find it. Unlike in Chess, TS in the game of Go can be
partly replaced by other tools, that select good moves in some positions. In quiet
positions, where tree search is not useful, a method based on a very abstract description
of the board can give good resullts.

After obtaining results relating to the late endgame, eyes, and fights, combinatorial
game theory will probably be successfully applied to other Go sub-problems.
Concerning the full game: as some local computations do not reach their end, the
global level of a program needs tools to represent uncertainty. A good program has to
use an uncertainty description, which is not to be found in Conway’s theory. In
addition, the local games of an actual game are not independent of one another. On the
contrary, they are very dependent on each other. At the moment, some programs use
the ssmple idea of increasing the priority of those moves which contribute to several
local dependent games. But, so far, no study has been performed on this idea, and a
formalization of the different independence classes has yet to be set up. An interesting
idea would be to formalize, both the use of one goal by another, and the interaction
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between severa games. The problem of performing TS on conjunctions, and
digunctions, of goals remains to be solved.

The promising results of GoTools with life and death problems, containing completely
surrounded groups, offer some attractive prospects of developing a life and death
problem solver for partially surrounded groups. This kind of problem arises in actual
games, and such a problem solver would be very useful. The number of possible moves
may increase, while the search deepens, and this constitutes the major obstacle to
building this solver. Search in life and death of completely surrounded groupsis easier,
because the number of possible moves decreases as the depth increases. Another
obstacle to be taken into account is the dynamic definition of the goal to be reached
(making two eyes, escaping, and fighting).

Another possibility in the evolution of programs might be the use of parallelism. The
distributed nature of the game of Go makes this idea appealing. At present, no program
uses parallelism.

Lastly, we have to mention the likely evolution of the level of Go programs, in the
years to come. In the late *80s, Mr Ing decided to award prizes to any programs which
could beat a professional player, in a series of even games, before the year 2000.
Today, young professional players till give 9 handicap stones to the best programs,
and players who are used to playing against programs, are able to give as many as 29
handicap stones to these programs. This difference in terms of number of handicap
stones can be explained as follows. During the first few games - when its human
opponent confronts the strengths of the computer - the program may give the illusion
of being stronger than it actually is, and it plays at its «high» level. Some games later,
the human opponent discovers the weaknesses of the computer, and till later, the
human opponent identifies amost all the weaknesses of the computer, whose level
generally drops to its «low» level. Nowadays, the «high» level of the best programs
may be assessed at 5" kyu - this corresponds to an average player in a Go club.
However, their «low» level ranks at 15" kyu, namely a beginner level. As long as this
gap, between the low and the high levels, is not reduced, it is risky to make any
prediction about the evolution of the level of Go programs.
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