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Abstract. Monte Carlo Tree Search (MCTS) is the state of the art algorithm for
General Game Playing (GGP). Playout Policy Adaptation with move Features
(PPAF) is a state of the art MCTS algorithm that learns a playout policy online.
We propose a simple modification to PPAF consisting in memorizing the learned
policy from one move to the next. We test PPAF with memorization (PPAFM)
against PPAF and UCT for Atarigo, Breakthrough, Misere Breakthrough, Domi-
neering, Misere Domineering, Knightthrough, Misere Knightthrough and Nogo.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and
problems [1]. The most popular MCTS algorithm is Upper Confidence bounds for Trees
(UCT) [27]. MCTS is particularly successful in the game of Go [9]. It is also the state
of the art in Hex [25] and General Game Playing (GGP) [17, 29]. GGP can be traced
back to the seminal work of Jacques Pitrat [31]. Since 2005 an annual GGP competition
is organized by Stanford at AAAI [22]. Since 2007 all the winners of the competition
use MCTS.

Offline learning of playout policies has given good results in Go [10, 26] and Hex
[25], learning fixed pattern weights so as to bias the playouts. AlphaGo [36] also uses
a linear softmax policy based on pattern weights trained on 8 million positions from
human games and improved with hand crafted features.

The RAVE algorithm [21] performs online learning of moves values in order to bias
the choice of moves in the UCT tree. RAVE has been very successful in Go and Hex. A
development of RAVE is to use the RAVE values to choose moves in the playouts using
Pool RAVE [33]. Pool RAVE improves slightly on random playouts in Havannah and
reaches 62.7% against random playouts in Go.

The GRAVE algorithm [3] is a simple generalization of RAVE. It uses the RAVE
value of the last node in the tree with more than a given number of playouts instead of
the RAVE values of the current node. It was successful for many different games.

Move-Average Sampling Technique (MAST) is a technique used in the GGP pro-
gram CadiaPlayer so as to bias the playouts with statistics on moves [17, 18]. It consists
of choosing a move in the playout proportionally to the exponential of its mean. MAST
keeps the average result of each action over all simulations. Moves found to be good
on average, independent of a game state, will get higher values. In the playout step, the
action selections are biased towards selecting such moves. This is done using the Gibbs
(or Boltzmann) distribution.



Predicate Average Sampling Technique (PAST) is another technique used in Ca-
diaPlayer. It consists in associating learned weights to the predicates contained in a
position represented in the Game Description Language (GDL).

CadiaPlayer also uses Features to Action Sampling Technique (FAST). FAST learns
features such as piece values using TD(λ ) [19]. FAST is used to bias playouts in com-
bination with MAST but only slightly improves on MAST.

Later improvements of CadiaPlayer are N-Grams and the last good reply policy
[38]. They have been applied to GGP so as to improve playouts by learning move se-
quences. A recent development in GGP is to have multiple playout strategies and to
choose the one which is the most adapted to the problem at hand [37].

A related domain is the learning of playout policies in single-player problems.
Nested Monte Carlo Search (NMCS) [2] is an algorithm that works well for puzzles.
It biases its playouts using lower level playouts. At level zero NMCS adopts a uniform
random playout policy. Online learning of playout strategies combined with NMCS has
given good results on optimization problems [32].

Online learning of a playout policy in the context of nested searches has been fur-
ther developed for puzzles and optimization with Nested Rollout Policy Adaptation
(NRPA) [34]. NRPA has found new world records in Morpion Solitaire and crosswords
puzzles. Stefan Edelkamp and co-workers have applied the NRPA algorithm to mul-
tiple problems. They have optimized the algorithm for the Traveling Salesman with
Time Windows (TSPTW) problem [7, 11]. Other applications deal with 3D Packing
with Object Orientation [13], the physical traveling salesman problem [14], the Multi-
ple Sequence Alignment problem [15] or Logistics [12]. The principle of NRPA is to
adapt the playout policy so as to learn the best sequence of moves found so far at each
level.

Playout Policy Adaptation (PPA) [4] is inspired by NRPA since it learns a playout
policy in a related fashion and adopts a similar playout policy. However PPA is different
from NRPA in multiple ways. NRPA is not suited for two player games since it mem-
orizes the best playout and learns all the moves of the best playout. The best playout
is ill-defined for two player games since the result of a playout is either won or lost.
Moreover a playout which is good for one player is bad for the other player so learning
all the moves of a playout does not make much sense. To overcome these difficulties
PPA does not memorize a best playout and does not use nested levels of search. Instead
of learning the best playout it learns the moves of every playout but only for the winner
of the playout.

PPA also uses Gibbs sampling, however the evaluation of an action for PPA is not
its mean over all simulations such as in MAST. Instead the value of an action is learned
comparing it to the other available actions for the states where it has been played. PPA
is therefore closely related to reinforcement learning whereas MAST is about statistics
on moves. Adaptive sampling techniques related to PPA have also been tried recently
for Go with success [23, 24].

The use of features to improve MCTS playouts has also been proposed in the Gen-
eral Game AI settings [30]. The approach is different from PPAF since features are part
of the state and are used to evaluate states. Instead PPAF use features to evaluate moves.



As our paper deals with learning action values it is also related to the detection of
action heuristics in GGP [39].

We now give the outline of the paper. The next section details the PPA and the PPAF
algorithms and particularly the playout strategy and the adaptation of the policy. The
third section explains the PPAF algorithm with memorization of the policy. The fourth
section gives experimental results for various games. The last section concludes.

2 Playout Policy Adaptation with Move Features

PPAF [6] is UCT with an adaptive playout policy. It means that it develops a tree exactly
as UCT does. The difference with UCT is that in the playouts it has a weight for each
possible move and chooses randomly between possible moves proportionally to the
exponential of the weight. The playout algorithm for PPAF is given in algorithm 1.

For each game state where it has to find a move to play, PPAF starts with a uniform
playout policy. All the weights are set to zero. Then, after each playout, it adapts the
policy of the winner of the playout. The weights of the moves of the winner of the play-
out are increased by a constant α and the weight of the other moves of the same state are
decreased by a value proportional to the exponential of their weight. The Adapt algo-
rithm is given in algorithm 2. The Adapt algorithm replays the playout and for the states
where the winner has played it modifies the weights of the possible moves, increasing
the played move weight and decreasing the possible moves weights proportionally to
their probability of being played.

Move features are enriched information about the moves. A move is represented in
PPAF by a code. When not using features the code is calculated using the location of the
move on the board. When using features both the location of the move and properties
of the move are coded. An example of a property is whether a move is a capture or not.
Another example is to code the colors of the intersections adjacent to the move.

The PPAF algorithm is given in algorithm 3. The policy is initialized at first with
a uniform policy, then for each playout PPAF adapts the policy for the winner of the
playout.

In order to be complete, the UCT algorithm is given in algorithm 4. When UCT
uses a uniform playout policy it is named UCT in the following. When it is called by
the PPAF algorithm, the same code is used as in UCT for the descent of the tree but the
playouts use a non uniform policy in algorithm 1.

3 PPAF with Memorization of the Playout Policy

The principle of PPAFM is to initialize the playout policy before each move with an
already trained policy instead of initializing it with an uniform policy. In the first two
moves of the game, the policy can be initialized with a game specific policy. In order
to test the efficiency of game specific initial policies we will test PPAFM both with an
initial uniform policy and with an initial game specific policy.

For moves after the first two moves, PPAFM initializes its policy with the policy
learned during the previous call to PPAFM for the state two moves before. It is better



Algorithm 1 The playout algorithm
playout (board, player, policy)
while true do

if board is terminal then
return winner (board)

end if
z← 0.0
for m in possible moves on board do

z← z + exp (k× policy [code(m)])
end for
choose a move for player with probability proportional to exp(k×policy[code(move)])

z
play (board, move)
player← opponent (player)

end while

Algorithm 2 The adapt algorithm
adapt (winner, board, player, playout, policy)
pol p← policy
for move in playout do

if winner = player then
pol p [code(move)]← pol p [code(move)] + α

z← 0.0
for m in possible moves on board do

z← z + exp (policy [code(m)])
end for
for m in possible moves on board do

pol p [code(m)]← pol p [code(m)] - α ∗ exp(policy[code(m)])
z

end for
end if
play (board, move)
player← opponent (player)

end for
policy← pol p

Algorithm 3 The PPAF algorithm
PPAF (board, player)
for i in 0, maximum index of a move code do

policy[i]← 0.0
end for
for i in 0, number of playouts do

b← board
winner← UCT (b, player, policy)
b1← board
adapt (winner, b1, player, b.playout, policy)

end for
return the move with the most playouts



Algorithm 4 The UCT algorithm.
UCT (board, player, policy)
moves← possible moves on board
if board is terminal then

return winner (board)
end if
t← entry of board in the transposition table
if t exists then

bestValue←−∞

for m in moves do
t← t.totalPlayouts
w← t.wins[m]
p← t.playouts[m]

value← w
p + c×

√
log(t)

p
if value > bestValue then

bestValue← value
bestMove← m

end if
end for
play (board, bestMove)
player← opponent (player)
res← UCT (board, player, policy)
update t with res

else
t← new entry of board in the transposition table
res← playout (board, player, policy)
update t with res

end if
return res



than using a policy learned for any game state since the state of the previous call is
much closer to the current state than another state. A policy learned for any state is less
relevant than the last state policy since it does not capture state specific knowledge.

The PPAFM algorithm is given in algorithm 5. The descent of the tree is the same
as in UCT and the adapt function is the same as in PPAF. The playout algorithm is
also the same as in PPAF and is different from UCT. PPAFM uses Gibbs sampling and
UCT uses uniform playouts. The main difference with PPAF is the initialization of the
playout policy. The first test in the PPAFM algorithm enables to start a game with a
policy already learned on the initial state, is can also be a uniform policy. If the move is
not the first move of a game then we enter the code following the else and the playout
policy is initialized with the memorized policy. At the end of the algorithm the policy
learned for the board is memorized.

A nice property of PPAF is that the move played after the algorithm has been run is
the most simulated move, this is also the case for UCT. In the case of PPAFM it means
that the memorized policy is related to the state after the move played by the algorithm
since it is the most simulated move. So when starting with the memorized policy for the
next state, this state has already been partially learned.

Algorithm 5 The PPAFM algorithm.
PPAFM (board, player)
if board has less than two moves then

for i in 0, maximum index of a move code do
policy[i]← initialPolicy[i]

end for
else

for i in 0, maximum index of a move code do
policy[i]← memorizedPolicy[i]

end for
end if
for i in 0, number of playouts do

b← board
winner← UCT (b, player, policy)
b1← board
adapt (winner, b1, player, b.playout, policy)

end for
for i in 0, maximum index of a move code do

memorizedPolicy[i]← policy[i]
end for
return the move with the most playouts

4 Experimental Results

PPAFM was tested against PPAF without memorization and also against UCT. As the
best overall performing α constant for PPAF against UCT among the tested games is



0.32, we use this constant both for PPAF and for PPAFM. Each result is the winning
percentage of PPAF with memorization in a 500 games match, 250 with Black and 250
with White. In order to decide which move to play, all algorithms use 10 000 playouts.

4.1 Games

The games we have experimented with are:

– Atarigo: the rule are the same as Go except that the first player to capture a string
has won. The move feature we use for Atarigo is to add a code for the pattern sur-
rounding the move. The code takes into account the colors of the four intersections
next to the move.

– Breakthrough: The game starts with two rows of pawns on each side of the board.
Pawns can capture diagonally and go forward either vertically or diagonally. The
first player to reach the opposite row has won. Breakthrough has been solved up
to size 6× 5 using Job Level Proof Number Search [35]. The best program for
Breakthrough 8×8 uses MCTS combined with an evaluation function after a short
playout [28]. The move feature we use for Breakthrough is to distinguish between
capture moves and moves that do not capture.

– Misere Breakthrough: The rules are the same as Breakthrough except that the first
player to reach the opposite row has lost. We use the same move feature as in
Breakthrough.

– Domineering: The game starts with an empty board. One player places dominoes
vertically on the board and the other player places dominoes horizontally. The first
player that cannot play has lost. Domineering was invented by Göran Andersson
[20]. Jos Uiterwijk recently proposed a knowledge based method that can solve
large rectangular boards without any search [40]. The move feature we use for
Domineering is to take into account the cells next to the domino played They can
be either empty or occupied. This simple feature enables for example to detect
moves on cells that cannot be reached by the opponent. This is an important feature
at Domineering.

– Misere Domineering: The rules are the same as Domineering except that the first
player unable to move has won. We use the same move feature as in Domineering.

– Knightthrough: The rules are similar to Breakthrough except that the pawns are re-
placed by knights that can only go forward. The first player to move a knight on the
last row of the opposite side has won. The move feature we use for Knightthrough
is to take into account capture in the move code.

– Misere Knightthrough: The rules are the same as Knightthrough except that the
first player to reach the opposite row has lost. We use the same move feature as in
Knightthrough.

– Nogo: The rules are the same as Go except that it is forbidden to capture and to
suicide. The first player that cannot move has lost. There exist computer Nogo
competitions and the best players use MCTS [16, 8, 5]. We use the same move
feature as for Atarigo.

For all the games we use standard 8×8 boards in the experiments.



4.2 Memorizing the policy from one move to the next starting a game with a
uniform policy

In the following experiments we use an initial uniform policy for PPAFM. Table 1 gives
the results for PPAFM against PPAF. Table 2 gives the results for PPAFM against UCT
with an uniform playout policy. It is clear from the first table that PPAFM is stronger
than PPAF except for Nogo where it is of equal strength. It is particularly good at Misere
Breakthrough and Misere Knightthrough where it scores an almost perfect score. We
find the same phenomenon as when playing PPAF against UCT. In these misere games
avoiding bad moves in playouts is extremely important and PPAFM is much better than
PPAF at learning move weights.

Table 2 shows that PPAFM is much stronger than UCT for all tested games.

Table 1. PPAFM with an initial uniform policy versus PPAF for different games.

Game Score

Atarigo 66.0%
Breakthrough 87.4%
Domineering 58.0%
Knightthrough 84.6%
Misere Breakthrough 97.2%
Misere Domineering 56.8%
Misere Knightthrough 99.2%
Nogo 49.4%

Table 2. PPAFM with an initial uniform policy versus UCT for different games.

Game Score

Atarigo 95.4%
Breakthrough 94.2%
Domineering 81.8%
Knightthrough 96.6%
Misere Breakthrough 100.0%
Misere Domineering 95.8%
Misere Knightthrough 100.0%
Nogo 91.6%

4.3 Starting with an initial learned policy

For each game an initial policy was computed using 100 000 playouts on each of the
possible states with less than two moves. The UCT tree was forgotten and only the



learned policy was memorized for each state. The learned policy is used to initialize
the PPAFM policy for the first call to PPAFM in a game. Table 3 gives the winning
percentage of PPAFM with an initial policy against PPAF. Table 4 gives the results for
PPAFM with an initial policy against UCT. According to these two tables, using an
initial learned policy is beneficial at Atarigo and Domineering. It is worse at Nogo and
it is equal for the other games.

Table 3. PPAFM with an initial learned policy versus PPAF for different games.

Game Score

Atarigo 79.2%
Breakthrough 86.4%
Domineering 67.0%
Knightthrough 86.6%
Misere Breakthrough 97.6%
Misere Domineering 56.2%
Misere Knightthrough 99.0%
Nogo 43.0%

Table 4. PPAFM with an initial learned policy versus UCT for different games.

Game Score

Atarigo 97.2%
Breakthrough 93.0%
Domineering 86.4%
Knightthrough 97.2%
Misere Breakthrough 100.0%
Misere Domineering 94.8%
Misere Knightthrough 100.0%
Nogo 91.4%

5 Conclusion

PPAF is an algorithm that learns a playout policy using move features. It is much better
than UCT for all the tested games. We propose a simple improvement to PPAF which is
to memorize the learned playout policy from one move to the next. Experimental results
show that it is a large improvement over PPAF. It is also a large improvement against
UCT.

In future work we plan to improve move features, possibly learning them and to
improve the policy learning algorithm.
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