
Deep Catan

Brahim Driss and Tristan Cazenave
LAMSADE, Université Paris-Dauphine, PSL, CNRS

Tristan.Cazenave@dauphine.psl.eu

Abstract

Catan is a popular multiplayer board game that in-
volves multiple gameplay notions: stochastic ele-
ments related to the dice rolls as well as to the the
initial placement of resources on the map and the
drawing of development cards, strategic notions for
the placement of the cities and the roads which call
upon topological and shape recognition notions and
notions of expectation of gains linked to the proba-
bilities of the rolls of the dice. In this paper, we de-
velop a policy for this game using a convolutional
neural network. The used deep reinforcement learn-
ing algorithm is Expert Iteration (Anthony, Tian, and
Barber 2017) which has already given excellent re-
sults for Alpha Zero and its descendants.

Introduction
Monte Carlo Tree Search (MCTS) (Coulom 2006;
Kocsis and Szepesvári 2006) has been used in two-
player complete information games. Modern board
games such as Catan have more complex rules and
deal with incomplete information due to dice rolls
or drawing cards. MCTS has already been applied
to Catan with success (Szita, Chaslot, and Spronck
2009). In this paper we address the use of deep
neural network in combination with MCTS to play
Catan. The combination of Deep Reinforcement
Learning with MCTS gave strong computer play-
ers for Go, Chess and Shogi with Alpha Zero (Sil-
ver et al. 2017) and was further applied to many
games with the Polygames framework (Cazenave
et al. 2020). The underlying Deep Reinforcement
Learning for these systems is Expert Iteration (An-
thony, Tian, and Barber 2017). In this paper we ad-
vocate that the combination of deep neural networks
trained from zero knowledge in combination with
MCTS can outperform MCTS alone.

The paper is organized as follows. The sec-
ond section recalls related work. The third section

Copyright © 2022, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

presents Deep Reinforcement Learning of Catan.
The fourth section gives experimental results.

Background and Related Work
Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a general
search algorithm that was initially designed for the
game of Go (Coulom 2006). The most popular
MCTS algorithm is Upper Confidence bounds ap-
plied to Trees (UCT) (Kocsis and Szepesvári 2006).
UCT is the standard MCTS algorithm. It uses the
mean of the previous random playouts to guide the
beginning of the current playouts. There is a balance
between exploration and exploitation when choosing
the next move to try at the beginning of a playout.
Exploitation tends to choose the move with the best
mean, while exploration tends to try alternative and
less explored moves to see if they can become better.
The principle of UCT is optimism in face of uncer-
tainty. It chooses the action with the UCB formula:

argmaxa

{
Q(s, a) + C

√
log(N(s))

N(s, a)

}
(1)

where N(s, a) is the number of simulations of the
node, N(s) the number of simulations of the par-
ent node (state s before taking action a), Q(s, a)
the winrate of the action a in the state s (number of
wins/number of simulations) and C the UCB bandit
exploration coefficient.
The All Moves As First heuristic (AMAF) (Bouzy
and Helmstetter 2003) is a heuristic that was used
in Gobble, the first Monte Carlo Go program
(Brügmann 1993). It consists in updating the statis-
tics of the moves of a position with the result of a
playout, taking into account all the moves that were
played in the playout and not only the first one.
In Catan, standard MCTS with 10,000 simulations
could still be beaten easily, (Szita, Chaslot, and
Spronck 2009) used a heuristic action selection pro-
cedure inside the MCTS and virtual wins.



In order to improve the level of play, instead of
randomly sampling moves, probabilities can be as-
sociated to moves according to their type, building a
city or settlement having higher chances when avail-
able to be selected than building the road for ex-
ample and skipping the turn being the lowest, since
building is always rewarding for the player and skip-
ping when building is available is generally a bad
idea.

Rules of Catan
In Catan, players compete to colonize an island rep-
resented by a board (Figure 1) of hexagonal tiles.
There are 5 resource types – Brick, Lumber, Ore,
Grain, and Wool – which can be spent to make var-
ious actions. The first player to reach 10 Victory
Points (VP) or more is considered the winner. VP
can be acquired by various means: placing settle-
ments (1VP) or cities (2VP) on the board, having the
longest road or largest army (2VP), or special devel-
opment cards (1VP). The island of Catan is repre-
sented as a board of 19 land hexagonal tiles called
hexes, randomly placed when setting up the game.
Tiles can either represent a desert, or produce one of
the 5 resources, in which case they will be assigned
a number between 2 and 12. We will call the edge of
a hex a path, and its corner an intersection.

At the beginning of the game, each player places 2
settlements, each with an adjacent road. Settlements
must be placed on intersections and can not be next
to one another. During each turn, a player can take
a sequence of actions if they have the required re-
sources for it:

• Build a Road : 1*Brick + 1*Lumber
• Build a Settlement : 1*Brick + 1*Lumber +

1*Grain + 1*Wool
• Build a City : 3*Ore + 1*Grain
• Buy a Development Card : 1*Ore + 1*Grain +

1*Wool
• Trade resources with the bank.

For trading the default ratio is four of the same re-
source for any one resource, but having a settlement
or city on a harbor can reduce the rate to 3:1 or 2:1.
There is no simple winning strategy. Basically, a sta-
ble and varied production of resources is beneficial
to obtain VP. Thus, players should prioritize placing
their settlements in intersections surrounded by bal-
anced resources and high production chance (with
numbers around 7), near promising unexploited ar-
eas or on interesting harbors. Buying development
cards is a bit of a lucky dip as the player is buy-
ing blindly from a stack of cards but they are all
beneficial to him. Development cards have different
bonuses such as blocking one hex from producing

resources and stealing a card from one of its neigh-
bors, adding a victory point, building 2 free roads for
example.

Related Work

Previous works on Catan used various methods. The
earliest agent used Model Trees trained through self-
play (Pfeiffer 2004), multi-agent systems were also
able to obtain strategic game play (Branca and Jo-
hansson 2007). Szita, Chaslot, and Spronck (Szita,
Chaslot, and Spronck 2009) used Monte Carlo Tree
Search in a perfect-information variation of the
game. Other works explored other aspects of the
game. Afantenos (Afantenos et al. 2012) focuses on
strategic conversation concerning bargaining nego-
tiation in the game of Catan. Guhe (Guhe and Las-
carides 2014) focuses on persuasions using empir-
ical data from game simulations from a game the-
ory point of view. Other papers also used Deep Re-
inforcement Learning, two of them focused only
on a subset of actions that is trading, using Deep
Q-Learning (Cuayáhuitl, Keizer, and Lemon 2015)
and Deep Q-Learning with LSTM (Xenou, Chalki-
adakis, and Afantenos 2019). A third paper (Gendre
and Kaneko 2020) also used Deep Reinforcement
Learning with an agent using a variation of Advan-
tage Actor Critic in a 2 player version of the game.
In this paper, we use Monte Carlo Tree Search com-
bined with deep neural networks within the original
rules, i.e, imperfect information and 4-player game,
without domain knowledge, refusing and never ini-
tiating trades with other players, but continuing to
trade with the bank. The used methods and objec-
tives are different from previous works, since there
is no Advantage Actor Critic (Mnih et al. 2016) and
the game is not the 2-player version (Gendre and
Kaneko 2020).We think that the 2-player version is
very different from the 4-player one. Having 3 play-
ers playing before the next turn is not the same as
having only one. There will be a higher chance for
instance to be blocked by enemies and lose good
spots for settlements, there will also be less place to
expand because of building constraints. We are also
playing the entire game not only focusing on a single
part of it, on the contrary of (Cuayáhuitl, Keizer, and
Lemon 2015) and (Xenou, Chalkiadakis, and Afan-
tenos 2019). Using Monte Carlo Tree Search (Szita,
Chaslot, and Spronck 2009) did not give good results
after 10,000 simulations, this is why we propose a
Local Value Estimation network that improves on
Monte Carlo Tree Search, learning AMAF statis-
tics during self-play. We also show that Monte Carlo
Tree Search can be further improved using deep re-
inforcement learning with Expert Iteration.



Figure 1: A Catan board

Deep Reinforcement Learning of Catan
Supervised Learning of the value network
We train a value network using games played by
MCTS. The value network takes a random state of
the game as an input and predicts the MCTS win-
rates of the root nood for the 4 players given by the
average of the rollouts from that state. The output of
the network is a softmax over the 4 outputs giving
the winning probabilities for the 4 players.

Figure 2: Value network architecture

Board (2D channels) 29
Roads 1(x4)
Settlements 1(x4)
Cities 1(x4)
Ports 2
Resources types 1(x5)
Resources odds 1(x5)
Robber odds 1(x5)
Vector input
Game phase 12
Visible VP 11(x4)
Resources cards 11(x4)
Developpment cards 11(x4)
Ressources left 21(x5)
Largest Army 1(x4)
Longest Road 1(x4)
Buildings left

Roads left 16(x4)
Settlements left 6(x4)
Cities left 5(x4)

Table 1: Neural network 2D input channels

Since Catan has multiple information unrelated to
the board (e.g visible victory points, development
cards or resources left), the network used two inputs:
A 2-dimensional input for the board and a scalar in-
put for game information. The 2 dimensional input
is transformed using residual blocks to process the
board. A regular board of Catan contains 19 hexes,
72 paths and 54 intersections. We employ a similar
architecture to the Alpha Zero network. We pass in
the board position as a 23×13 image and use convo-
lutions to construct a representation of the position.

The Catan board is different from boards in games
such as Chess and Go. In these games all cells
are similar. Catan cells are hexagons and the board
topology of Catan is unlike that of Hex or Havan-



nah for instance. The hexes, path and intersections
have different roles and features. We split features
of different types in 29 channels to prevent the con-
volution from processing them in the same way. The
description of the different channels is shown in Ta-
ble 1.

We also use the brick coordinate (Gendre and
Kaneko 2020). We use a 5×3 kernel which makes
the neighbors comparable to the actual neighbors on
the hexagonal board. The mapping is explained in
Figure 3.

The kernel used in the convolutions of the residual
blocks is the 5x3 brick coordinate kernel. The opti-
mizer is Adam (Learning rate = 0.001), ReLU acti-
vation functions in the hidden layers with Dropout
(0.3 and 0.5 rate), Softmax in the output layer. The
loss is the Mean Absolute Error.

Local Value Estimation
A second neural network with dense layers and
ReLU activations, was trained on AMAF statistics
obtained during rollouts. The purpose of this neural
network is to evaluate the player moves to reduce the
breadth of the search in the tree, without removing
the simulations in the playout phase, by modifying
the UCB bandit value, adding an evaluation term:

argmaxa

{
Q(s, a)+C

√
log(N(s))

N(s, a)
+C2× eval

}
(2)

where eval is this neural network prediction of the
value of the move. Instead of focusing on the board
as a whole state, the network evaluates the possible
moves locally, giving more data to train on that is
less complex (n pairs of moves and scores instead
of a single state and its value). It is updated after
each training iteration with data from the self-play
games. The inputs of the network are the moves and
their local corresponding features as shown in Fig-
ure 4 and the output is the prediction of the AMAF
score of MCTS playouts. For buildings, the neighbor
hexes of the construction are the features. This net-
work will be used in the UCTNet experiment and be
compared to UCT without the network evaluation,
provided with the same budget of rollouts.

Expert Iteration of the value network
Compared to imitation learning techniques, Expert
Iteration (ExIt) is enriched by an expert improve-
ment step. Improving the expert player and then
solving the imitation learning problem allows us to
exploit the fast convergence properties of imitation
learning, even in contexts where no strong player
was originally known, such as when learning from
scratch.

At each iteration i, the algorithm proceeds as fol-
lows: we create a set Si of game states by playing
the π̂i−1 learner. In each of these states, we use our
expert to compute an imitation learning target at s
(e.g., the expert’s π∗

i−1(a|s) action); the state-target
pairs (e.g., (s, π∗

i−1(a|s))) form our dataset Di. We
train a new apprentice π̂i on Di (learning by imita-
tion). Then, we use our new apprentice to update our
expert π∗

i = π∗(a|s; π̂i) (expert improvement).

Experimental Results
Importance of the budget
The budget allocated to the different MCTS is im-
portant. An experiment was performed to verify the
impact of the number of rollouts on the MCTS per-
formance. Four matches of 200 games were per-
formed, opposing an improved MCTS (number of
rollouts multiplied by 2) against 3 normal MCTS.
The results of this experiment are shown in Table 2:

Match Games won Winrate
100 vs 50 70 35%
200 vs 100 56 28%
400 vs 200 63 31.5%
800 vs 400 59 29.5%

Table 2: Matches between MCTS using twice as
many rollouts as its 3 opponents.

We can see that the MCTS with the most rollouts
always has a positive winrate (higher than 25%). A
higher number of rollouts improves the level of the
MCTS.

Training performance
First iteration The neural network is trained on
the scores of 800 games played in self-play (4 dif-
ferent players using the same method in order to find
the best move) and evaluated on 200 games that do
not exist in the training data at each ExIt iteration. To
avoid having similar states, all games are mixed, and
the network is trained on mini-batches of 64 states.
At the end of the iteration, the network will have
learned about 50,000 game states with their Monte
Carlo scores.

Figure 5 shows that at the beginning of the train-
ing the network has an average loss of 0.2 in the pre-
dictions which eventually stabilizes at 0.1 at the end
of the training over the 1,000 games played. The net-
work is then able to make Monte Carlo score predic-
tions for the 4 players with an average error of 0.1
without simulating the game.



Figure 3: 5x3 kernel on brick coordinate

Figure 4: Input example for the Local Value network

Figure 5: Evolution of the network loss during train-
ing at the 1st iteration

Second iteration The second iteration is the step
where the network trained in the first iteration is used
in an MCTS and replaces the rollouts by a single
neural network evaluation.

The new scores obtained are the labels of a new
neural network. The new neural network is then
trained on 1,000 games of self-play by MCTS using
the first network.

Figure 6: Evolution of the network loss during train-
ing at the 2nd iteration

We notice as shown in the Figure 6 that the net-
work starts with the same error of 0.2 and stabilizes
at a lower error than the first iteration (0.05 in the
test compared to 0.1 in the first iteration).

We also notice that the training of the new net-
work is less noisy, with smaller variance of the error
during the training.



Figure 7: Results of the games played between the
two models

Figure 8: Results of the games played between UCT
and UCTNet

Evaluation of neural networks

Value network 400 games opposing the two value
networks (ExIt 1 is the first iteration and ExIt 2 the
second) in 2 vs 2 were played, with the same bud-
get of rollouts given to the two networks, the posi-
tions (1,2,3,4) of the players are drawn randomly at
the beginning of the game. The network of the sec-
ond iteration won 231 games out of 400 played (58%
winrate) against the network of the first iteration. Re-
sults of the games are shown in Figure 7.

Local Value Estimation Network 400 games op-
posing UCT (Classic MCTS algorithm) and UCT-
Net (UCT using the Local Value Estimation), with
the same budget of rollouts given to the two UCT,
the positions (1,2,3,4) of the players are drawn ran-
domly at the beginning of the game. UCTNet won
240 games out of 400 played (60% winrate) against
UCT. The results are shown in Figure 8.

Conclusion and Future Work
The first experiment shows that Expert Iteration
can improve the level of play in a game involving
chance. Since the Monte Carlo evaluations of the
network were less noisy, the training in the second
iterations had less variance. The second experiment
evaluates moves instead of entire boards and there-
fore was easier to train. Using such a network, UCT-
Net was able to defeat UCT in 60% of games.
For future work, we plan to improve the current en-
vironment. Firstly, we are using Python, the code
can be further improved to give faster simulations
in order to do more iterations of our reinforcement
algorithm. Almost 50,000 samples were needed for
the value network at each iteration. Secondly, trad-
ing between players is a social and interesting part
of the game. Adding trading is the next step, which
would require some changes in the game loop and an
update to the MCTS structure, since trading involves
multiple players in the same turn.

Acknowledgment
This work was supported in part by the French gov-
ernment under management of Agence Nationale
de la Recherche as part of the “Investissements
d’avenir” program, reference ANR19-P3IA-0001
(PRAIRIE 3IA Institute).

References
Afantenos, S.; Asher, N.; Benamara, F.; Cadilhac,
A.; Dégremont, C.; Denis, P.; Guhe, M.; Keizer, S.;
Lascarides, A.; Lemon, O.; et al. 2012. Develop-
ing a corpus of strategic conversation in the settlers
of catan. In SeineDial 2012-The 16th Workshop On
The Semantics and Pragmatics Of Dialogue.
Anthony, T.; Tian, Z.; and Barber, D. 2017. Think-
ing fast and slow with deep learning and tree search.
In Advances in Neural Information Processing Sys-
tems, 5360–5370.
Bouzy, B.; and Helmstetter, B. 2003. Monte-Carlo
Go Developments. In ACG, volume 263 of IFIP,
159–174. Kluwer.
Branca, L.; and Johansson, S. J. 2007. Using multi-
agent system technologies in settlers of catan bots.
In Agent-based Systems for Human Learning and
Entertainment (ABSHLE).
Brügmann, B. 1993. Monte Carlo Go. Technical
report.
Cazenave, T.; Chen, Y.-C.; Chen, G.-W.; Chen, S.-
Y.; Chiu, X.-D.; Dehos, J.; Elsa, M.; Gong, Q.; Hu,
H.; Khalidov, V.; Cheng-Ling, L.; Lin, H.-I.; Lin,
Y.-J.; Martinet, X.; Mella, V.; Rapin, J.; Roziere,
B.; Synnaeve, G.; Teytaud, F.; Teytaud, O.; Ye, S.-
C.; Ye, Y.-J.; Yen, S.-J.; and Zagoruyko, S. 2020.



Polygames: Improved Zero Learning. ICGA Jour-
nal, 42(4): 244–256.
Coulom, R. 2006. Efficient Selectivity and Backup
Operators in Monte-Carlo Tree Search. In Comput-
ers and Games, 5th International Conference, CG
2006, Turin, Italy, May 29-31, 2006. Revised Papers,
72–83.
Cuayáhuitl, H.; Keizer, S.; and Lemon, O. 2015.
Strategic dialogue management via deep reinforce-
ment learning. volume abs/1511.08099. Springer.
Gendre, Q.; and Kaneko, T. 2020. Playing catan
with cross-dimensional neural network. In Neural
Information Processing. (ICONIP 2020), 580–592.
Springer.
Guhe, M.; and Lascarides, A. 2014. The effective-
ness of persuasion in The Settlers of Catan. In
2014 IEEE Conference on Computational Intelli-
gence and Games, 1–8. IEEE.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based
Monte-Carlo Planning. In Machine Learning:
ECML 2006, 17th European Conference on Machine
Learning, Berlin, Germany, September 18-22, 2006,
Proceedings, 282–293.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lilli-
crap, T.; Harley, T.; Silver, D.; and Kavukcuoglu, K.
2016. Asynchronous Methods for Deep Reinforce-
ment Learning. In Balcan, M. F.; and Weinberger,
K. Q., eds., Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, 1928–
1937. New York, New York, USA: PMLR.
Pfeiffer, M. 2004. Reinforcement learning of strate-
gies for Settlers of Catan. In Proceedings of the In-
ternational Conference on Computer Games: Artifi-
cial Intelligence, Design and Education. Citeseer.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou,
I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Ku-
maran, D.; Graepel, T.; Lillicrap, T. P.; Simonyan,
K.; and Hassabis, D. 2017. Mastering Chess and
Shogi by Self-Play with a General Reinforcement
Learning Algorithm. CoRR, abs/1712.01815.
Szita, I.; Chaslot, G.; and Spronck, P. 2009. Monte-
carlo tree search in settlers of catan. In Advances in
Computer Games, 21–32. Springer.
Xenou, K.; Chalkiadakis, G.; and Afantenos, S.
2019. Deep reinforcement learning in strategic
board game environments. In Slavkovik, M. (ed.)
Multi-Agent Systems, 233—-248. Springer.


