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Abstract. Playout Policy Adaptation (PPA) is a state-of-the-art strat-
egy that controls the playouts in Monte-Carlo Tree Search (MCTS).
PPA has been successfully applied to many two-player, sequential-move
games. This paper further evaluates this strategy in General Game Play-
ing (GGP) by first reformulating it for simultaneous-move games. Next,
it presents two enhancements, which have been previously successfully
applied to a related MCTS playout strategy, the Move-Average Sampling
Technique (MAST). These enhancements consist in (i) updating the pol-
icy for all players proportionally to their payoffs, instead of updating
it only for the winner of the playout, and (ii) collecting statistics for
N-grams of moves instead of single moves only. Experiments on a hetero-
geneous set of games show both enhancements to have a positive effect
on PPA. Results also show enhanced PPA variants to be competitive
with MAST for small search budgets and better for larger ones.

Keywords: Monte-Carlo Tree Search · Playout Policy Adaptation ·
General Game Playing.

1 Introduction

Monte-Carlo Tree Search (MCTS) [15, 8] is a simulation-based search algorithm
that has been successfully applied to various domains [2], one of which is General
Game Playing (GGP) [13]. In GGP, the aim is to create agents that are able to
play a wide variety of possibly unknown games, only by being given their rules
at run-time. The fact that MCTS does not necessarily need domain-specific
knowledge is what makes it suitable to be used in GGP.

Many successful enhancements and modifications of MCTS have been inves-
tigated [2]. In GGP, particular attention has been given to strategies that can
learn how to control the search on-line, i.e. while playing the game, because no
domain-specific knowledge is available in advance. Playout Policy Adaptation
(PPA) [3] is among the domain-independent strategies that have been proposed
to guide the search in MCTS. PPA learns the playout policy on-line by keeping
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weights for each move visited during the search and adapting them according to
the performance of the moves during game simulations. The weights of the moves
performed by the winner of a simulation are increased, while the weights of all
the legal moves that were available for the winner are decreased. The learned
weights are then used in each playout to define a move-selection policy. PPA has
been successfully applied to various two-player, sequential-move games [3]. This,
together with the fact that it is domain-independent, makes it promising to be
further evaluated in GGP.

Moreover, PPA shares some characteristics with another domain-independent
playout strategy for MCTS, the Move-Average Sampling Technique (MAST)
[11]. Like PPA, MAST collects statistics about the general performance of the
available moves in the game, and biases the playout towards moves that have
performed overall well so far. The main difference is that MAST learns the value
of a move by looking only at its average performance in the game, while PPA
learns it by comparing the move with the other available moves for the state in
which it has been played. For MAST, various successful modifications have been
tested in the literature [11, 23]. The similarity of MAST and PPA, makes such
modifications promising to be tested for the latter as well.

The main goal of this paper is to evaluate the PPA algorithm for General
Game Playing, looking at possible enhancements that can further improve its
performance. First of all, this paper extends the formulation of the PPA algo-
rithm for simultaneous-move games to make it applicable also to such type of
games. Moreover, two different modifications of the PPA algorithm are presented.
One of them consists in updating the statistics of all players proportionally to
their payoff as MAST does, instead of updating only the statistics of the winner
by a fixed amount. The other is an enhancement previously tested successfully
for MAST [23], the use of statistics collected for N-grams (i.e. sequences) of
moves, instead of only for single moves. The PPA strategy and its enhancements
are tested on a heterogeneous set of games of the Stanford GGP project [12], of
which the rules are represented in GDL (Game Description Language) [16].

The paper is structured as follows. First, Section 2 presents previous work
related to PPA. Next, Section 3 gives background knowledge on MCTS, MAST
and its enhancements. Subsequently, Sections 4 and 5 describe the PPA algo-
rithm and its enhancements, respectively. Experimental results are discussed in
Section 6. Finally, Section 7 gives the conclusions and discusses future work.

2 Related Work

The PPA algorithm seems to be a promising playout strategy for MCTS in many
domains. Previous literature already investigated variants of the algorithm that
improve its performance on a set of two-player, sequential-move games (e.g.
Breakthough, Knightthrough, Domineering, ...). For example, Cazenave [4] pro-
posed to extend PPA with move features (PPAF). The PPAF algorithm learns
weights like PPA does, but distinguishes moves depending on some features they
are associated with (e.g. whether they are a capture move or a simple movement).
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PPAF is harder to apply in GGP, because it would require an on-line analysis
of the game rules to first extract relevant move features for a given game that
might be previously unknown. Another example of PPA variant that has been
investigated is the PPAF strategy with memorization (PPAFM) [5]. With re-
spect to PPAF, the PPAFM strategy does not reset the learned policy between
game steps, but keeps it memorized and reuses it. This modification can be easily
applied to standard PPA as well.

The interest in the PPA algorithm is motivated also by the success of the
closely related Nested Rollout Policy Adaptation (NRPA) [18]. NRPA is designed
for single-player games and, similarly to PPA, it learns a playout policy by
associating weights to the different available moves. The difference is that NRPA
is structured with nested search levels and updates the policy using the best
playout found so far at each level. Because the best playout is ill-defined for
multi-player games, PPA updates the policy of a given player using the playouts
that resulted in a win for such player. NRPA has achieved good results in games,
such as Morpion Solitaire and crossword puzzles [18], but has also been applied
to solve traveling salesman problems [7, 9] and logistic problems [10], such as
vehicle routing, container packing and robot motion planning.

Finally, as already mentioned, PPA is similar to the MAST strategy, which
has been successfully applied to GGP [11] and has been subsequently extended
to the N-grams Selection Technique (NST) [23]. NST uses statistics of N-grams of
moves to guide the playouts and has been shown successful as domain-independent
strategy in GGP both for board games [23] as well as for video games [22]. More-
over, Powley et al. [17] used the same idea of NST to implement their strategy, the
N-gram-Average Sampling Technique (NAST). This technique has been shown
successful also for imperfect-information games [17].

3 Background

This section provides background on MCTS (Subsection 3.1), on the UCT selec-
tion strategy (Subsection 3.2), on the MAST playout strategy (Subsection 3.3),
and on the NST playout strategy (Subsection 3.4).

3.1 Monte-Carlo Tree Search

MCTS [15, 8] is a simulation based-search strategy that incrementally builds a
tree representation of the state space of a game. MCTS performs multiple simu-
lations of the game until a given search budget expires. Each MCTS simulation
is divided into the following four phases:

Selection: during this phase, MCTS visits the tree built so far using a selec-
tion strategy to choose which move to visit in each traversed node. The selection
phase ends when a tree node that has not been fully expanded is reached. A
node is fully expanded when all its successor nodes have been added to the tree.

Expansion: during this phase, one or more nodes are added to the tree.
Such node(s) are selected among the not yet explored children of the last node
visited during the selection phase.
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Playout: during the playout phase, MCTS starts from a node that was
added to the tree during the expansion phase, and simulates the game until a
terminal state or a fixed depth is reached. A playout strategy is used in each
state to select which move to visit. The simplest playout strategy selects moves
randomly among the legal ones.

Backpropagation: during this phase, the payoff obtained at the end of the
simulation is propagated back through all the visited tree nodes, and used to
update statistics about the performed moves. For multi-player games, a tuple of
payoffs, one for each player, is propagated back in the tree.

When the search budget expires, MCTS returns one of the moves in the root
node to be played in the real game. Commonly, the move that is returned is
either the one with the highest number of visits or the one with the highest
average payoff. This paper uses the second option.

Note that for simultaneous-move games, MCTS visits in each state a joint
move. This paper uses an implementation of MCTS that represents joint moves
as vectors formed by one individual move for each player, as described by Sironi
[21]. This means that both the selection strategy and the playout strategy have
to select a move for each of the players in each visited node or state, respectively.

3.2 Upper Confidence Bounds Applied to Trees

In MCTS, a selection strategy takes care of selecting a move for each moving
player in each tree node visited during the search. The standard MCTS selection
strategy is UCT (Upper Confidence bounds applied to Trees [15]). Given a state
s, UCT chooses the move a∗ for a player p using the UCB1 sampling strategy
[1] as shown in Equation 1.

a∗ = argmax
a∈A(s,p)

Q(s, a) + C ×

√
lnN(s)

N(s, a)

 . (1)

Here, A(s, p) is the set of legal moves of player p in state s, Q(s, a) is the average
payoff of all simulations in which move a has been selected in state s, N(s) is
the number of times state s has been visited during the search and N(s, a) is the
number of times move a has been selected whenever state s was visited. The C
constant is used to control the balance between exploitation of good moves and
exploration of less visited ones.

3.3 Move-Average Sampling Technique

A successful playout strategy for MCTS is MAST [11]. The main idea behind
MAST is that a move that is good in one state is likely to be good also in other
states. During the search, MAST memorizes for each move a of each player p the
expected payoff Q(a, p) computed over all the simulations in which move a has
been played so far by player p. These statistics are used to select moves during
the playout. The original implementation of MAST selects moves in a state s
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according to the move probabilities computed using the Gibbs measure reported
in Equation 2.

Prob(s, a) =
e(Q(a,p)/τ)∑

a′∈A(s,p) e
(Q(a′,p)/τ)

(2)

Here, a is a legal move for player p, A(s, p) is the set of all the moves that
are legal for player p in s, and τ is a parameter that controls the shape of the
distribution. High values of τ make the distribution more uniform making it
favor more exploration of the moves, while low values stretch it, making it favor
more exploitation.

Later research on MAST has shown that the use of an ε-greedy strategy to
select moves gives a significantly better performance than the use of the Gibbs
measure in most of the tested games [23, 17]. The ε-greedy strategy chooses the
move with highest expected payoff Q(a, p) with probability (1-ε) and a random
move with probability ε.

3.4 N-Gram Selection Technique

The N-grams Selection Technique (NST) [23] is an extension of MAST. Like
MAST, NST biases the playouts towards moves that have performed overall
well so far. The difference is that NST also exploits information about sequences
(N-grams) of consecutive moves. For each considered N-gram of moves up to a
given length L, NST memorizes the average payoff obtained by all the simulations
in which such N-gram of moves occurred. Note that when L is set to one, NST
behaves exactly like MAST, considering statistics for single moves only.

More in detail, after each MCTS simulation, NST extracts from the simulated
path all N-grams of moves up to a certain length L and uses the payoff obtained
by the simulation to update their expected payoff. Duplicate N-grams in the
same simulation are not detected. Therefore, the payoff of an N-gram will be
updated for each of its occurrences. When extracting N-grams, NST assumes
that the game is simultaneous move and each player plays a move in each turn.
The N-grams of each player are updated with the payoff obtained by such player
at the end of the simulation. For a game with n players, NST orders the players
according to their index, p = 1, ..., n. For games specified in GDL, the index of
a player corresponds to its order of appearance in the game rules. Assume the
notation a(p,t) to indicate the move selected by player p during step t of the
simulation. For a given player p, N-grams are extracted from a simulation with
T steps as follows:

1-Grams = {〈a(p,t)〉|t = 1, ..., T}
2-Grams = {〈a((p−1+n)mod n,t−1), a(p,t)〉|t = 2, ..., T}
3-Grams = {〈a((p−2+n)mod n,t−2), a((p−1+n)mod n,t−1), a(p,t)〉|t = 3, ..., T}

...

(3)

This means that N-grams of an arbitrary length l < L for player p are formed
by the move of player p at a certain time step t in the simulation, preceded by
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the moves in the previous l − 1 steps of the simulation, each performed by the
previous l − 1 players in the cyclic order, respectively.

The statistics collected for the N-grams are used by NST to select moves
during the playout. The selection of a move in a state during the playout works as
follows. Like for MAST, with probability ε a move is chosen randomly. Otherwise,
with probability (1− ε) the move with the highest NST value is chosen. Assume
s to be the state visited during step t of the simulation, and ap to be the move of
player p for which to compute the NST value. This value is computed as follows:

NST (ap) =(Q(〈ap〉)+
Q(〈a((p−1+n)mod n,t−1), ap〉)+
Q(〈a((p−2+n)mod n,t−2), a((p−1+n)mod n,t−1), ap〉)+
...

Q(〈a((p−L+1+n)mod n,t−L+1), ..., ap〉))/L

(4)

When computing the NST value of a move, the expected value of the correspond-
ing 1-gram is always considered, while the value of longer N-grams is considered
only if the N-gram has been visited more than V times. This ensures that longer
N-grams are used only when their value becomes more accurate.

The presented implementation of NST can also be applied to a sequential-
move game by considering that players play a pass move (e.g. noop) when they
are not on their turn. For sequential-move games, the order of players that is
used by NST is the same in which the players play their turn. For some GDL
games this order corresponds to the order in which roles are reported in the
game rules. When this does not happen, NST re-computes the player order for
each simulation by looking at which player(s) have legal moves other than noop
in each turn. Quad is an example of such game, where a player can choose to
perform more than one move before giving the control to another player. In this
way, there will only be N-grams formed by meaningful moves of each player, and
N-grams formed by noop moves only. Thus, no N-grams will mix meaningful
moves with noop moves. This means that the statistics for the N-grams that are
formed only by noop moves will not influence the selection of other moves.

4 Simultaneous-Move Playout Policy Adaptation

The Playout Policy Adaptation (PPA) strategy [3, 4] is used in MCTS to guide
the search during the playout. Similarly to MAST, PPA collects information
about the moves visited during the search and uses it to guide future playouts.
More precisely, PPA keeps a weight for each possible move of a player, and during
the playout it selects moves with a probability proportional to the exponential
of their weights. At the start of the search, the weights are initialized to 0. At
the end of each playout, the weights of the moves visited by the winning player
are increased by a constant α. At the same time, all its legal moves in the visited
states are decreased proportionally to the exponential of their weight. The α
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Algorithm 1 Pseudocode for PPA

1: procedure playout(s, P,W, playout)
Input: state s from which to start the playout, set P of all the players in the game,
matrix W of move weights for each player, playout that contains the states and
joint moves visited so far in the current MCTS simulation from the root.
Output: tuple ~q of payoffs obtained by the players in the terminal state of the
current MCTS simulation.

2: while not s.isTerminal( ) do
3: ~a∗ = 〈a∗1, ..., a∗|P |〉 ← empty vector of size |P | . empty joint move
4: for p← 1, ..., |P | do
5: z ← 0.0
6: for move a ∈ A(s, p) do
7: z ← z + exp(k ×W(p,a))

8: Prob ← empty probability distribution
9: for move a ∈ A(s, p) do . creation of probability distribution

10: Prob(a)← exp(k×W(p,a))

z

11: a∗p ∼ Prob . sampling move from distribution

12: add s and ~a∗ to the playout
13: s← next(s,~a∗) . advance to next state

14: w ← s.getWinnerIndex( )
15: if w 6= null then
16: W ← adapt(w,W, playout) . adapt weights if there is a winner

17: ~q = 〈q1, ..., q|P |〉 ← s.getPayoffs( )
18: return ~q

—————————————————————————————————————–

1: procedure adapt(w,W, playout)
Input: index w of the player that won the playout, matrix W of move weights for
each player, playout that contains all the states and joint moves visited so far in
the current MCTS simulation from the root.
Output: updated matrix of move weights for each player, V .

2: V ←W . copy the weights
3: for i← 1, ..., |playout | do
4: s← playout i.getVisitedState( )
5: ~a∗ ← playout i.getVisitedJointMove( )
6: z ← 0.0
7: for move a ∈ A(s, w) do
8: z ← z + exp(W(w,a))

9: for move a ∈ A(s, w) do
10: if a = a∗w then
11: V(w,a) ← V(w,a) + α . increment weight of visited move

12: V(w,a) ← V(w,a) − α×
exp(W(w,a))

z
. decrement weight of all legal moves

13: return V
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constant represents the learning rate of the algorithm. The algorithm presented
in this paper memorizes the weights at the end of each turn to re-use them in the
subsequent turn. This choice is motivated by previous literature, which showed
that memorizing the playout policy for the PPAF algorithm is beneficial [5].

The pseudocode for the PPA playout strategy for simultaneous-move games is
given in Algorithm 1. The algorithm is also applicable to sequential-move games
by assuming that players play the noop move when it is not their turn. The
procedure playout(s, P,W, playout) shows how one playout is performed. The
procedure requires the state from which to start the playout, s, and the list of
players P . Moreover, PPA uses a matrix of weights W , where each entry W(p,a)

represents the weight for move a of player p. It also requires a list that memorizes
the states and the players’ joint moves visited so far during the selection phase of
the current MCTS simulation (the playout variable in the pseudocode). During
the playout, PPA selects a move a∗p for each player p in each visited state s. To
select a move for a player in s it computes a probability distribution over the
legal moves proportionally to their weights. Note that the probability of a move
is computed using the Gibbs measure presented in Equation 2, where τ = 1

k . We
keep the notation with k to be consistent with how previous literature introduced
the PPA algorithm. Once the moves of all players have been selected, the joint
move ~a∗ is used to advance to the next state. At the end of the playout, if there is
a single winner, its weights are updated by the adapt(w,W, playout) procedure.
Finally, a tuple of playoffs, ~q, with an entry for each player, is returned.

The procedure adapt(w,W, playout) shows how the weights of the winner
are updated at the end of the playout. Other than the index of the winner w
and the matrix of weights W , the procedure takes as input the playout variable,
which now contains the complete list of states and joint moves visited during
the current simulation. First of all, the matrix of weights is copied in the matrix
V , so that, while V is being updated, the weights of the policy for the previous
simulation can still be accessed in W . Subsequently, the algorithm iterates over
all the entries in the playout. For each visited state s, the weight of the move
played by the winner w in s is incremented by α, while the weight of all the legal
moves of w in s is decreased proportionally to the exponential of their weight.
This means that the sum of all the performed updates in a state is always zero.

5 PPA Enhancements

This section presents the enhancements for PPA that are evaluated in this paper.
Both of them have been previously used for MAST [11, 23], and are adapted to
be combined with PPA. More precisely, Subsection 5.1 presents the payoff-based
update of PPA weights, and Subsection 5.2 explains how PPA can be modified
to consider weights for N-grams of moves instead of only for single moves.

5.1 Payoff-Based Update

A characteristic that distinguishes MAST from PPA is that after a simulation,
MAST updates the statistics of the moves performed during the simulation for
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all the players, while PPA updates the weights only of the winner of the simu-
lation. Moreover, MAST updates statistics of each player proportionally to the
payoff that the player obtained in the playout. This paper proposes a modifi-
cation of PPA that updates after each simulation the weights of all the players
proportionally to their payoffs. Assume the payoff of the current simulations,
~q = 〈q1, ...q|P |〉, to have values in the interval [0, 1] (note that in GDL scores
have values in [0, 100], thus they need to be re-scaled). Given a state s in the
playout and the corresponding visited joint move ~a∗, the weights of each player
p will be updated as follows:

W(p,a∗p)
= W(p,a∗p)

+ α× qp

W(p,a) = W(p,a) − α× qp ×
eW(p,a)∑

a′∈A(s,p) e
W(p,a′)

,∀a ∈ A(s, p)
(5)

5.2 N-Grams Playout Policy Adaptation

Subsection 3.4 presented the NST strategy, which has been designed by extending
MAST to memorize statistics for N-grams of moves other than for single moves. A
similar approach can be used to extend the PPA strategy. This paper proposes
the N-gram Playout Policy Adaptation (NPPA) strategy, which is similar to
PPA, but memorizes weights also for N-grams of moves.

Considering a simultaneous-move game, NPPA creates N-grams of moves in
the same way described in Subsection 3.4 for NST. In NPPA, a move for a player
in a state of the playout is selected as in PPA, i.e. with Gibbs sampling. The
only difference is that the weight of a move is computed as the average of the
weights of the N-grams of length 1 to L. This is analogous to Equation 4, but
instead of the expected value Q, the weight W is considered for each N-gram.
As NST, also NPPA considers the weights of N-grams of length greater than one
only if they have been visited more than V times.

The adaptation of weights after a simulation for NPPA is slightly more com-
plex than for NST. While NST updates statistics only of the N-Grams extracted
from the simulation, NPPA updates the weights also for the N-grams that end
with all the other legal moves in each visited state. More precisely, at the end of
a simulation, NPPA extracts all the N-grams for the player p that won the sim-
ulation as shown in Equation 3. Subsequently, for each of the extracted N-grams
of player p it updates the weights as follows. Let 〈a(t−l+1), ..., at−1, a

∗
t 〉 be one of

the N-grams of length l extracted from the playout for player p, where a∗t is the
move selected by player p in state s at step t of the simulation. For readability,
the player index is omitted from the subscript of the moves in the N-gram, and
only the simulation step is indicated. NPPA updates the following weights:

W〈a(t−l+1),...,at−1,a∗t 〉 =W〈a(t−l+1),...,at−1,a∗t 〉 + α

W〈a(t−l+1),...,at−1,a〉 =W〈a(t−l+1),...,at−1,a〉

− α× e
W〈a(t−l+1),...,at−1,a〉∑

a′∈A(s,p) e
W〈a(t−l+1),...,at−1,a′〉

,∀a ∈ A(s, p)

(6)
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6 Empirical Evaluation

This section presents an empirical evaluation of the PPA playout strategy and its
enhancements, comparing them with other playout strategies: random, MAST
and NST. Multiple series of experiments have been performed. First, Subsection
6.1 describes the experimental setup. Next, Subsections 6.2, 6.3, and 6.4 present
the evaluation of the basic version of PPA, the payoff-based adaptation of the
policy and the use of N-grams, respectively. Finally, Subsection 6.5 evaluates the
performance of MAST, NST and the best version of PPA and NPPA for different
simulation budgets, and Subsection 6.6 compares their search time.

6.1 Setup

The strategies evaluated in this paper have been implemented in the framework
provided by the open source GGP-Base project [20], as part of an MCTS agent
that follows the setup described by Sironi [21]. Experiments are carried out on
a set of 14 heterogeneous games taken from the GGP Base repository [19]: 3D
Tic Tac Toe, Breakthrough, Knightthrough, Chinook, Chinese Checkers with 3
players, Checkers, Connect 5, Quad (the version played on a 7 × 7 board), Sheep
and Wolf, Tic-Tac-Chess-Checkers-Four (TTCC4) with 2 and 3 players, Connect
4, Pentago and Reversi.

Five basic playout strategies are used in the experiments: random, MAST,
NST, PPA and NPPA. All of them are combined with the UCT selection strat-
egy with C = 0.7. The fixed settings of these strategies are summarized below.
For PPA and NPPA some settings vary depending on the experiment, thus, their
values will be specified in the corresponding subsections. MAST and NST use
an ε-greedy strategy to select moves with ε = 0.4, and decay statistics after each
move with a factor of 0.2 (i.e. 20% of the statistics is reused in the subsequent
turn). NST uses N-grams up to length L = 3, and considers them only if visited
at least V = 7 times. All the mentioned parameter values are taken from previ-
ous literature, where they were shown to perform well [23, 21]. PPA and NPPA
use the Gibbs measure to select moves with k = 1, keep statistics memorized
between moves and do not decay them. These settings are taken from previous
publications on PPA [3–5]. The use of an ε-greedy strategy and of statistics de-
cay after moves has been investigated, but preliminary results on PPA did not
show any improvement in performance. For NPPA, the same values of L = 3
and V = 7 that are set for NST are used.

For each performed experiment, two strategies at a time are matched against
each other. For each game, all possible assignments of strategies to the roles are
considered, except the two configurations that assign the same strategy to all
roles. All configurations are run the same number of times until at least 500
games have been played. Each match runs with a budget of 1000 simulations per
turn, except for the experiments in Subsection 6.5, that test different budgets.
Experimental results always report the average win percentage of one of the two
involved strategies with a 95% confidence interval. The average win percentage
for a strategy on a game is computed looking at the score. The strategy that
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Table 1. Win% of different configurations of PPA against a random playout strategy
and against MAST with a budget of 1000 simulations.

Game
vs random playout strategy vs MAST
PPA1 PPA0.32 MAST PPA1 PPA0.32

3DTicTacToe 78.2(±3.62) 89.4(±2.70) 88.8(±2.77) 38.1(±4.26) 52.7(±4.37)
Breakthrough 66.0(±4.16) 66.4(±4.14) 62.2(±4.25) 62.2(±4.25) 63.0(±4.24)
Knightthrough 51.6(±4.38) 53.4(±4.38) 85.2(±3.12) 12.2(±2.87) 11.0(±2.75)

Chinook 64.0(±3.28) 65.7(±3.26) 69.3(±3.30) 45.9(±3.64) 50.8(±3.56)
C.Checkers 3P 64.7(±4.18) 71.4(±3.95) 74.0(±3.83) 46.6(±4.36) 52.4(±4.36)

Checkers 60.0(±4.00) 68.1(±3.78) 75.3(±3.44) 35.6(±3.91) 37.1(±3.92)
Connect 5 63.8(±4.17) 75.9(±3.69) 80.7(±3.27) 33.2(±3.55) 49.5(±3.58)

Quad 73.9(±3.85) 81.7(±3.36) 82.1(±3.35) 36.7(±4.18) 45.7(±4.33)
SheepAndWolf 59.2(±4.31) 61.4(±4.27) 46.0(±4.37) 69.2(±4.05) 69.4(±4.04)
TTCC4 2P 75.4(±3.78) 76.8(±3.69) 76.0(±3.74) 50.8(±4.37) 58.1(±4.32)
TTCC4 3P 59.3(±4.28) 61.5(±4.23) 59.2(±4.27) 53.9(±4.30) 49.0(±4.34)
Connect 4 24.8(±3.71) 36.3(±4.12) 27.3(±3.80) 48.2(±4.30) 55.9(±4.27)
Pentago 55.0(±4.32) 62.9(±4.20) 72.1(±3.89) 27.1(±3.86) 39.2(±4.23)
Reversi 55.3(±4.30) 62.7(±4.19) 82.8(±3.26) 21.9(±3.58) 26.0(±3.72)

Avg Win% 60.8(±1.12) 66.7(±1.08) 70.1(±1.05) 41.6(±1.12) 47.1(±1.13)

achieves the highest score is the winner and gets 1 point, if both achieve the
highest score they receive 0.5 points each, and it is considered a tie. In each
table, bold results represent the highest win percentage for each game in the
considered part of the table.

6.2 Basic PPA

This series of experiments evaluates the basic version of the PPA playout strategy
presented in Algorithm 1. PPA is compared with MAST by matching both of
them against a random playout strategy, and by matching them directly against
each other. Two values for the learning rate α are evaluated, 1 and 0.32. The
first one is the value used by the first proposed version of PPA [3]. However,
subsequent research has shown the value 0.32 to perform better for the PPAF
variant of the algorithm [5], therefore it is considered here as well.

Table 1 reports the results, indicating the two PPA variants with PPA1 and
PPA0.32, respectively. First of all, we can see that both PPA variants and MAST
are better than the random playout strategy. Only in Connect 4 they all perform
significantly worse than random playouts. When comparing PPA1 and PPA0.32,
it is visible that the latter has a significantly better overall performance than the
former, both against the random playout strategy and against MAST. Moreover,
looking at individual games, the performance of PPA0.32 is never significantly
inferior to the performance of PPA1, being significantly higher in a few of the
games. In 3D Tic Tac Toe, Connect 5 and Quad the win rate of PPA0.32 is
higher both when the opponent uses random playouts and when it uses MAST.
Moreover, against the random opponent PPA0.32 seems better than PPA1 in
Checkers and Connect 4, while against MAST it seems better in Pentago.

When comparing the performance of PPA with the one of MAST, it is
clear that the latter has a significantly higher overall win rate. However, for
PPA0.32 the difference with MAST is smaller, especially when PPA is matched
against MAST directly. It is also interesting to look at the performance of MAST
and PPA on individual games. MAST seems a particularly suitable strategy for
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Table 2. Win% of PPA without and with payoff-based update against MAST with a
budget of 1000 simulations and α = 0.32.

Game PPA0.32 PPAP0.32

3DTicTacToe 52.7(±4.37) 61.0(±4.26)
Breakthrough 63.0(±4.24) 65.2(±4.18)
Knightthrough 11.0(±2.75) 12.2(±2.87)

Chinook 50.8(±3.56) 53.7(±3.61)
C.Checkers 3P 52.4(±4.36) 41.5(±4.31)

Checkers 37.1(±3.92) 42.6(±3.99)
Connect 5 49.5(±3.58) 57.3(±3.81)

Quad 45.7(±4.33) 47.2(±4.34)
SheepAndWolf 69.4(±4.04) 71.2(±3.97)
TTCC4 2P 58.1(±4.32) 56.0(±4.33)
TTCC4 3P 49.0(±4.34) 53.1(±4.33)
Connect 4 55.9(±4.27) 51.3(±4.31)
Pentago 39.2(±4.23) 41.3(±4.30)
Reversi 26.0(±3.72) 29.7(±3.93)

Avg Win% 47.1(±1.13) 48.8(±1.14)

Knightthrough, for which it achieves a much higher win rate than PPA. Also
for Pentago, Reversi and Checkers MAST seems to perform better than PPA.
On the contrary, PPA seems to be particularly suitable for Sheep and Wolf and,
when matched against MAST directly, for Breakthrough as well. Finally, when
α = 0.32, PPA performs significantly better against MAST in TTCC4 with 2
players and Connect 4.

The results presented in Table 1 for Breakthrough and Knightthrough can
also be compared with results obtained for these games in previous work on PPA
by Cazenave [4]. First of all, as shown by previous literature, Table 1 confirms
that PPA and MAST perform significantly better than random playouts on these
two games. Moreover, for Knightthrough, MAST clearly performs better than
PPA, as it was also shown in previous work, where MAST achieved a win rate
of 78.2%, while PPA, for α = 0.32, only reached 70.4%. Note that in Table 1
the difference in performance seems to be even higher. This could be due to the
fact that the experiments in this paper have some different settings than the
ones used by Cazenave. For example, MAST is using an ε-greedy strategy to
select moves, which has been shown to perform generally better than the one
based on the Gibbs measure that is used by Cazenave. Moreover, the search
budget used by Cazenave is higher than the 1000 simulations used in Table 1.
For Breakthrough, Table 1 seems to suggest that PPA performs slightly better
than MAST, while in previous work it seemed to be the opposite, with MAST
reaching a win rate of 63.4% and PPA with α = 0.32 only of 59.2. However,
the difference between MAST and PPA does not seem to be particularly high in
either case, and the difference between this and previous work might be due to
the difference in the experimental setup.

6.3 Payoff-Based Update

This series of experiments looks at the impact of a modification of PPA inspired
by MAST: the update of statistics based on the payoffs obtained by the players
during a simulation. Given that PPA0.32 performed best in the previous series
of experiments, it is used as a baseline for this series of experiments to extend
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Table 3. Win% of different configurations of NPPA against a random playout strategy,
against NST, and against PPAP0.32 with a budget of 1000 simulations.

Game
vs random playout strategy vs NST vs PPAP0.32

NPPA1 NPPAP0.32 NST NPPA1 NPPAP0.32 NPPA1 NPPAP0.32
3DTicTacToe 71.6(±3.96) 51.4(±4.39) 93.4(±2.18) 20.6(±3.55) 8.4(±2.43) 24.8(±3.79) 9.4(±2.56)
Breakthrough 73.6(±3.87) 52.6(±4.38) 68.8(±4.07) 58.4(±4.32) 37.0(±4.24) 57.6(±4.34) 38.4(±4.27)
Knightthrough 74.0(±3.85) 57.2(±4.34) 89.8(±2.66) 28.4(±3.96) 17.6(±3.34) 76.4(±3.73) 52.0(±4.38)

Chinook 62.2(±3.31) 53.2(±3.50) 67.9(±3.45) 47.8(±3.70) 33.4(±3.36) 47.2(±3.40) 36.3(±3.41)
C.Checkers 3P 71.4(±3.95) 53.2(±4.36) 68.5(±4.06) 53.0(±4.36) 30.8(±4.03) 61.9(±4.24) 35.7(±4.19)

Checkers 72.3(±3.66) 48.4(±4.13) 73.8(±3.54) 48.6(±4.04) 24.7(±3.44) 58.8(±3.92) 34.8(±3.81)
Connect 5 61.6(±4.20) 51.2(±4.39) 84.0(±2.99) 30.5(±3.47) 18.2(±3.10) 36.5(±3.97) 21.8(±3.58)

Quad 75.7(±3.76) 51.8(±4.38) 87.7(±2.85) 38.3(±4.23) 16.6(±3.25) 42.8(±4.31) 19.9(±3.50)
SheepAndWolf 65.2(±4.18) 50.6(±4.39) 49.0(±4.39) 72.2(±3.93) 52.0(±4.38) 48.2(±4.38) 39.0(±4.28)

TTCC4 2P 71.2(±3.95) 53.8(±4.36) 72.1(±3.92) 46.0(±4.37) 25.7(±3.83) 45.2(±4.35) 25.7(±3.83)
TTCC4 3P 63.5(±4.16) 52.2(±4.36) 59.8(±4.26) 55.3(±4.31) 41.2(±4.25) 50.7(±4.35) 39.3(±4.23)
Connect 4 44.5(±4.29) 48.7(±4.27) 47.2(±4.28) 42.6(±4.20) 51.8(±4.27) 61.1(±4.21) 67.7(±3.99)
Pentago 59.6(±4.26) 54.6(±4.33) 70.2(±3.96) 42.7(±4.29) 30.5(±3.98) 46.5(±4.35) 40.5(±4.25)
Reversi 84.7(±3.09) 55.5(±4.30) 80.4(±3.40) 55.3(±4.31) 18.4(±3.32) 72.5(±3.84) 40.6(±4.25)

Avg Win% 67.9(±1.07) 52.5(±1.14) 72.3(±1.02) 45.7(±1.13) 29.0(±1.03) 52.2(±1.14) 35.8(±1.10)

upon. The PPA variant that updates the weights of all players proportionally to
their payoff is identified as PPAP0.32. Both variants of PPA are matched only
against MAST, because it is a more competitive agent than the one that uses
random playouts, and it is more interesting to compare against.

Table 2 reports the win rate of the two variants of PPA. Looking at the
overall win rate, the payoff-based update of the policy does not seem to have a
significant overall impact with respect to the update based only on the winner.
Moreover, both variants of PPA are performing worse than MAST, although
their performance is rather close. More interesting results emerge when looking
at individual games. There are still some games for which both variants of PPA
perform significantly better than MAST, namely Breakthrough, Sheep and Wolf
and TTCC4 with 2 players. Moreover, PPAP0.32 is the variant that performs
better than MAST in more games. Other than in the already mentioned games,
it is significantly better than MAST also in 3D Tic Tac Toe, Connect 5 and
Chinook. For this reason, this is the variant that will be further enhanced and
evaluated in the next series of experiments. In addition, this variant might have
the advantage of speeding up the learning process because after each simulation
it adapts the policy of each player, and not only of the winner.

6.4 N-Grams Playout Policy Adaptation

This series of experiments evaluates the NPPA playout strategy, which behaves
like PPA, but in addition uses weights for N-grams of moves. Two settings for
the strategy have been tested. The first one corresponds to the initial setting of
PPA evaluated in Subsection 6.2 and taken from previous literature [3, 5]. Thus,
NPPA with move selection based on Gibbs, policy update only for the winner
and α = 1 (NPPA1). The second setting corresponds to the best settings found
in previous experiments for PPA. Thus, with move selection based on Gibbs,
payoff-based policy update for all players, and α = 0.32 (NPPAP0.32). These
two variants of NPPA are compared with NST by matching them all against
random playouts and by matching them against each other. Moreover, NPPA is
also matched directly against the best version of PPA tested so far, i.e. PPAP0.32.

Looking at results in Table 3, it is evident that both NPPA and NST per-
form overall significantly better then random playouts. In addition, none of them
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performs significantly worse than random playouts on any of the games, except
for NPPA1 in Connect 4. This seems to confirm results in Table 1, where ran-
dom playouts seemed to work better than more informed playouts for this game.
Comparing NPPA with NST, both variants of the former are performing signif-
icantly worse than the latter, especially NPPAP0.32. One of the reasons for this
could be that NPPA is updating statistics of N-grams more often than NST.
NPPA does not update only statistics of visited N-grams of moves, but also of
N-grams that end with all the other legal moves in each visited state. This means
that at the start of the search, statistics are updated more often using results of
less reliable playouts, and it might take longer for NPPA to converge to optimal
values for the policy. This would also explain why α = 1 seems to have a bet-
ter performance than α = 0.32. When updating weights, a higher learning rate
enables NPPA to give more importance to the result of new and possibly more
reliable simulations. There are still a few games where NPPA1 performs signifi-
cantly better than NST, namely Breakthrough, TTCC4 with 3 players, Reversi
and Sheep and Wolf. In the latter, also NPPAP0.32 shows a good performance.

Results also show that NPPA1 is significantly better than NPPAP0.32 in al-
most all the games, and for each of the tree different opponents they are matched
against (i.e. random, NST, PPAP0.32). Therefore, the setting that achieved the
highest results for PPA do not seem to work as well for NPPA. When matched
against PPAP0.32, NPPAP0.32 has a significantly lower win rate in all games
except Connect 4. On the contrary, NPPA1 has a higher overall win rate, and
performs significantly worse only on four games (3D Tic Tac Toe, Connect 5,
Quad and TTCC4 with 2 players). In Knightthrough, NPPA1 achieves a much
higher win rate than PPAP0.32. This is in part likely due to the settings of
PPAP0.32 being sub-optimal for this game, but might also indicate that collect-
ing statistics for N-grams of moves improves the selection of moves during the
playout for this game. Finally, the performance of NPPA can be compared with
the one of PPA against random playouts, that is reported in Table 2. Considering
the best version of NPPA (i.e. NPPA1), it is visible that its overall performance
against random playouts is significantly higher than the one of PPA1, and at least
equal to the one of PPA0.32. Moreover, it is significantly better than PPA0.32 in
Knightthrough and Reversi, for which the general PPA strategy does not seem
to perform well against MAST.

6.5 Simulation Budget Analysis

This series of experiments analyzes the performance of MAST, PPAP0.32, NST
and NPPA1 with different numbers of simulations per turn. The versions of PPA
and NPPA considered for the experiments are the ones that seemed to perform
best in previous experiments. PPA and NPPA are updating the statistics of
more moves per simulation than MAST and NST, respectively. This means that
it might require more time for this statistics to be reliable. This motivates the
interest in analyzing how these strategies are influenced by the search budget.

Figure 1 shows how the win rate over all the games of the considered strate-
gies changes against the random playout strategy depending on the budget. For
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Fig. 1. Win% of MAST, PPAP0.32, NST and NPPA1 against a random playout strategy
for different numbers of simulations per turn.

Table 4. Time (in milliseconds) that each of the different playout strategies takes to
perform 1000 simulations.

Game Random MAST PPAP0.32 NST NPPA1

3DTicTacToe 352 196 1357 268 2362
Breakthrough 683 226 604 275 1374
Knightthrough 492 166 470 190 633

Chinook 485 281 1568 324 1882
ChineseCheckers3 191 171 539 191 731

Checkers 1974 1923 3545 1661 4164
Connect 5 822 404 2061 520 3100

Quad 435 300 1248 381 1691
SheepAndWolf 471 379 718 406 1008
TTCC4 2P 1069 651 773 745 1465
TTCC4 3P 787 599 650 619 981
Connect 4 102 89 245 98 357
Pentago 394 290 1212 357 1668
Reversi 3562 3493 3521 3433 4525

most of the considered games, the individual plots look very similar. The plot
shows that the performance of all algorithms eventually decreases with more sim-
ulations. Moreover, we can see how higher budgets benefit PPAP0.32 and NPPA1

more than MAST and NST. According to the law of diminishing returns [14],
the performance gain of a search algorithm decreases with the increase of search
effort. In this case it looks like the decrease in gain for random playouts is the
slowest, thus we notice a decrease of performance over time for all other strate-
gies. However, for PPAP0.32 and NPPA1, the decrease in gain seems slower than
for NST and MAST. Thus, PPAP0.32 and NPPA1 are able to surpass the per-
formance of MAST and NST, respectively, when the budget is increased to 5000
simulations and higher. It seems that PPAP0.32 and NPPA1 require a higher
number of simulations than MAST and NST in order to converge to a good pol-
icy, but then they can surpass the performance of MAST and NST, respectively.

The plot also confirms that the use of N-grams can significantly improve the
performance of both MAST and PPA. It also shows that the impact of N-grams
on the search is larger for higher budgets. This is not surprising, as it takes some
time for the algorithms to collect enough samples for the N-gram statistics to be
reliable and positively influence the search.
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6.6 Time Analysis

An important aspect to consider when comparing MAST, PPA, NST and NPPA
is the computational cost of these strategies. As opposed to random playouts,
they invest part of the computational time into memorizing statistics and com-
puting values on which their move-selection is based. Table 4 shows the time in
milliseconds that each strategy requires to perform 1000 simulations per turn.
These values have been obtained averaging the median time per turn over 500
runs of each game. For consistency, these experiments have been all performed on
the same machine, a Linux server consisting of 64 AMD Opteron 6274 2.2-GHz
cores. Although all strategies spend time computing statistics, it is immediately
clear that both MAST and NST are able to make up for this loss. Both of them
never take more time than random playouts to perform 1000 simulations. This
indicates that, by biasing the search towards promising moves, they are proba-
bly visiting shorter paths that lead to a faster conclusion of the simulated game.
Unfortunately, the same effect is not observed for PPAP0.32 and NPPA1, except
possibly for PPAP0.32 in Breakthrough, Knightthrough and TTCC4 with 2 and
3 players, where the search time is lower than the one of random playouts. It
could be that PPAP0.32 is visiting shorter playouts as well, but the time saved
is not sufficient to make up for the extra computation involved. These results
are not surprising, given the fact that PPAP0.32 and NPPA1 are updating more
statistics per simulation than MAST and NST, and indicate a possible limitation
of the two former strategies. Although more accurate in the long run, PPAP0.32

and NPPA1 might be less suitable than MAST and NST for domains with short
time settings, as they might not be able to reach a sufficient number of simu-
lations for their statistics to become accurate and make a positive difference in
performance with respect to MAST and NST, respectively.

7 Conclusion and Future Work

This paper investigated the Playout Policy Adaptation (PPA) strategy as a
domain-independent playout strategy for MCTS that can be applied to GGP.
First, its formulation for simultaneous-move games has been presented. Next,
two enhancements for this strategy have been introduced and evaluated: the
update of move statistics of all players proportionally to their payoffs and the
use of statistics collected for N-grams of moves (which defines the new NPPA
strategy). Both enhancements had already been successfully used for the related
MAST playout strategy.

First of all, experiments show that PPA and NPPA are suitable to be ap-
plied to a wide variety of games, as they achieve competitive results not only in
two-player, sequential-move games, but also in multi-player games (e.g. Chinese
Checkers and TTCC4 with 3 players) and simultaneous-move games (e.g. Chi-
nook). It may be concluded that both PPA and NPPA with appropriate settings
perform significantly better than random playouts.

Comparing PPA to MAST, both the enhancements that have been shown to
work well for MAST seem to also be suitable for PPA. Thus, it may be concluded
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that using a payoff-based update of the policy or collecting statistics for N-grams
is generally not detrimental and seems to improve the performance in a few
games. For N-grams, however, it is important to note that the improvement of
the performance might depend also on how other parameters are set. The setup
of NPPA that performed best is, indeed, different than the best set-up found for
PPA. A difference between PPA and MAST is that the former performs better
with a higher budget. This is likely because PPA needs more time to collect
accurate statistics, but then it might be able to converge to a better policy. The
same can be seen when comparing NPPA and NST. Thus, it may be concluded
that PPA and NPPA might be more suitable than MAST and NST when a
higher simulation budget is available. At the same time, this paper has shown
that collecting statistics for PPA and NPPA is generally more time consuming
than for MAST and NST. Therefore, the latter might be preferable for domains
with limited time settings, like usually happens in GGP competitions.

It should be kept in mind that this work did not explore all combinations
of values for the settings of the strategies. Therefore, some good configurations
might have been missed. For example, for PPA and NPPA, the α constant could
be better tuned. For NPPA the parameters L and V were set to values that
performed well for NST, but different values might be better. In addition, other
enhancements for the PPA and NPPA strategies could be evaluated. For exam-
ple, previous research has shown that including information about the length
of the simulation when updating the statistics might improve the quality of the
search [15, 6]. It is also worth noting that no single strategy and no single setting
for a given strategy is able to perform best on all games. This shows that, in
a domain like GGP, the search has to be adapted to each game online, instead
of using fixed strategies with fixed control-parameters. This could be another
promising direction for future work. Finally, it would be important to look into
ways to speed up the computation of statistics for PPA and NPPA, so that agents
can take advantage of accurate statistics even with limited time settings.
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