
Strategic Evaluation in Complex Domains

Tristan Cazenave

LIP6
Université Pierre et Marie Curie

4, Place Jussieu, 75005 Paris, France
Tristan.Cazenave@lip6.fr

Abstract
In some complex domains, li ke the game of Go, evaluating
a position is not simple. In other games, li ke Chess for
example, material balance gives good and fast to compute
insight on the value of a position. In Go all the stones have
the same value, so material balance is not a good heuristic.
To evaluate a Go position, a computer needs a lot of
knowledge and much more time. Evaluation in computer
Go is interesting from an AI point of view, because it
shows the power of knowledge in complex and real world
domains.

Introduction1

Evaluation functions are usually quite simple and fast.
The simplicity of evaluations functions enables to
concentrate on the search algorithm, and to replace the
knowledge used by humans to solve problems by
intensive search. Many researchers have recognized that
there is a search vs. knowledge tradeoff [Michie 1977]
[Berliner & al. 1990] [Junghanns & Schaeffer 1997].
However in some domains li ke the game of Go, simple,
fast and good evaluation functions do not exist (or at least
have not been found despite a lot of efforts). Evaluating
positions in such domains requires some times and a lot of
knowledge. These domains are interesting for AI because
they show the power of knowledge over brute force. They
enable to devise, test and compare AI techniques related
to the acquisition, learning, management and use of
different types of knowledge [Pitrat 1990]. Finding a way
to use knowledge so as to be eff icient in these complex
domains will also advance the state of the art of domains
where search is important by improving search with
knowledge. This is a more general approach to problem
solving, this is the one humans use [McCarthy 1997].

In the first part we present the interest of the game of
Go from an AI point of view. Then, we present our
method to evaluate positions. In the following part, we
show our this evaluation is integrated into a Go playing
program.

1Copyright © 1997, American Association for Artificial Intelli gence
(www.aaai.org). All rights reserved.

Computers and the game of Go

The game of Go
Go was developed three to four millennia ago in China; it
is the oldest and one of the most popular board game in
the world. Like chess, it is a deterministic, perfect
information, zero-sum game of strategy between two
players. In spite of the simplicity of its rules, playing the
game of Go is a very complex task. [Robson 1983] proved
that Go generali zed to NxN boards is exponential in time.
More concretely, [Van den Herik & al. 1991] and
[Alli s 1994a] define the whole game tree complexity A.
Considering the average length of actual games L and
average branching factor B, we have A = BL. The state-
space complexity of a game is defined as the number of
legal game positions reachable from the initial position of
the game. In Go, L≈150 and B≈250 hence the game tree
complexity A≈10360. Go state space complexity, bounded
by 3361≈10172, and game tree complexity are far larger than
those of any other perfect-information game. Moreover, a
position is very diff icult to judge, on the contrary of chess
where a good heuristic for evaluating a position is the
material balance. This makes Go very diff icult to
program.

Computer Go
As searching deep enough is not possible for the game of
Go, the best Go playing programs rely on a knowledge
intensive approach. They are generall y split i nto two
parts:

�
 A tactical module that develops narrow and deep

search trees. Each tree is related to the achievement of
a goal of the game of Go.

�
 A strategic module that chooses the move to play

according to the results of the tactical module.

We will focus on the strategic module that takes into
account the global position to evaluate. Concerns about
evaluating global positions in the game of Go appeared in

[Fotland 1993], where fuzzy status of groups were used to
make strategic decisions. [Bouzy 1995] developed further
the strategic part involved in Go programs and managed
relations between groups with fuzzy status. [Cazenave &
Moneret 1997] gives a method to develop strategic plans
in situations involving uncertainty.

Evaluating a position

Strategic knowledge in games is about long term goals. In
games such as Chess and Go, the high number of possible
moves makes it impossible to forecast in the long term the
consequences of the moves played. A solution to this
problem is to have a gradual achievement of long term
goals. It enables to know if a move makes the goal easier
or harder to achieve. There are mainly two ways of
managing a complex situation, breaking the problem into
subproblems and relax the problem by defining a gradual
achievement of it.

2

4

3

2

2222

2

222

1

11

1

1

3

3

Figure 1

This is particularly true for the strategy in the game of Go.
The ultimate goal of a player is to make li ve the more
stone on the board. However, in the middle game, most of
the groups of stones (a group of stones is a set of stones of
the same color which cannot be disconnected, stones of
the same group have the same number in Figure 1) are in
an uncertain state, and the evolution of this state cannot
be precisely foreseen. It is very useful in such a case to
have a gradual evaluation of their states and of the
evolution of this state when playing different moves.

A friend intersections of a group is an empty
intersection that can be connected to the group whatever
the opponent plays, moreover, this empty intersection
must not be connectable to a li ving opponent group.

Figure 2

In Figure 2, the white friend intersections are fill ed with a
small white point. The black friend intersections are fill ed
with a small black point. The intersections thatcan be
connected both to a white and a black group are fill ed
with a small gray point. Each group owns a set of fr iend
intersections of its own color.

The number of fr iend intersections of a group is a very
good heuristic to approximate the degree of li fe of a
group. For example, the group marked with 2 in Figure 2
has more than twelve friend intersections, it will t herefore
have no problems to li ve. Whereas the group marked with
3 in Figure 2 has only 7 friend intersections, it is not
completely ali ve and may have some problems. Its degree
of li fe is around 0.5. Two rules define the degree of li fe of
a group given its number of fr iend intersections:

Degree_of_li fe (N, G, F) :-
Number_of_friend_intersections (N, G, H),
H > 3,
F1 = (H - 3) / 9,
F = min (F1, 1.0).

Degree_of_li fe (N, G, F) :-
Number_of_friend_intersections (N, G, H),
H < 4,
F = 0.0.

After these rules have been fired, one rule chooses the
greatest of all the degrees of li fe.

The gradual degree of li fe is given by the real number
F, the group is represented by the variable G, and the
integer N is the number of moves to play to achieve this
degree of li fe. The Figure 3 gives the graphical
representation of the gradual achievement defined by the
rules above.

1

0 1 2

Number of friend intersections

43 1098765 1211

Figure 3

Many predicates contributes to the final goal of the
game: having more li ving stones than the opponent. These
contributions are more or less graduals. They are
represented in Figure 4. The vertical axis always
represents the degree of li fe of the group, between 0 and
1.

1

0 1 2

Number of won li fe bases

1

0 1 2

Number of unsettled life bases

3

1

0 1 2

Number of won eyes

3

1

0 1 2

Number of connections to living friends

3

1

0 1 2

Number of unsettled eyes

3 54 6

Figure 4

Table 2 gives an evaluation of the attributes for the four
groups of Figure 1.

Attributes\Groups 1 2 3 4
Number of won li fe bases
Number of unsettled li fe bases
Number of won eyes
Number of unsettled eyes
Number of fr iend intersections
Number of stones
Number of connections to li ving
friends

0
1
1
1
3
5
0

0
0
0
0
26
7
0

0
0
0
0
7
3
0

0
0
0
0
11
1
2

Table 2

Table 3 gives the degrees of li fe corresponding to each
attribute for each group and also gives the final degree of
li fe for the groups.

Attributes\Groups 1 2 3 4
Number of won li fe bases
Number of unsettled li fe bases
Number of won eyes
Number of unsettled eyes
Number of friend intersections
Number of connections to li ving
friends

0
0.5
0.33
0.16
0
0

0
0
0
0
1
0

0
0
0
0
0.44
0

0
0
0
0
0.8
9
1

Degree of li fe of the group 0.5 1 0.44 1
Table 3

The strategic evaluation function in a Go
playing program

GroupsAND/OR
Tree Search

Move

Tactical
Games
Status

Strategic
Rules

Board

Figure 5

Our Go playing program is named Gogol. It develops
AND/OR tree searches to calculate the states of tactical
games. Each tactical game corresponds to a simple
subgoal of the game of Go. The tactical games status are
used to create the groups and to fill t he predicates used by
the strategic module. Gogol develops approximately 1000
proof tree searches on a position. It develops trees using
Proof Number Search [Alli s & al. 1994b], the result of a
tree is a tactical theorem that applies to the board at hand:
the moves advised by the theorem always reach the
tactical goal used during the search. These proof trees
contain between 2 and 600 nodes. Once the tactical results
are deduced, the program fires the strategic evaluation
rules that evaluate the degree of li fe of each group and its
evolution after each interesting move. This information is
used to choose the best move. The best move is chosen by
evaluating the difference of the board value after and
before each move. The best move is the move that has the
highest difference.

To evaluate the value of the board, the system has to
evaluate the degree of li fe and the importance of each
group. The importance of a group is the evaluation of the
difference of points at the end of the game between the
li fe of the group and its death. It is computed using the
following rule:

Value (G, N) :-
Number_of_stone (G, N1),
Number_of_friend_intersections (G, N2),
Number_of_shared_friend_intersections (G, N3),
N = N1 + N1 + N2 + N3.

Groups 1 2 3 4
Value of the group 24 80 32 31

When the values and the degrees of li fe of the groups
have been computed, the system can evaluate a Go board:

Evaluation =

∑ (Degreei * Value) - ∑ (Degreej * Value)
 i j

with i ∈ Friends Groups and j ∈ Opponent Groups.

2

4

3

2

2222

2

222

1

11

1

1

3

3

28

59

Figure 6

In the example of Figure 2, if black is the friend color, the
evaluation of the position gives:

Evaluation=0.5*23+0.44*32-1.0*80-1.0*31=-85.4

This evaluation means that black is probably going to lose
the game by 43 points. This analysis is compatible with
the analysis of Go expert players. This evaluation function
has been tested on numerous Go boards and it gives a
good approximation of the evaluation of a position.

The two moves we are examining in the board of
Figure 6 are the black moves at i28 and i59. Table 4 gives
the outcomes of the black move at i28 and Table 5 gives
the outcomes of the black move at i59.

Attributes\Groups 1 2 3 4
Number of won li fe bases
Number of unsettled li fe bases
Number of won eyes
Number of unsettled eyes
Number of fr iend intersections
Number of connections to li ving
friends

+1
-1
+1
-1
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

Table 4

Attributes\Groups 1 2 3 4
Number of won li fe bases
Number of unsettled li fe bases
Number of won eyes
Number of unsettled eyes
Number of fr iend intersections
Number of connections to li ving
friends

0
0
0
0
0
0

0
0
0
0
-4
0

0
0
0
+1
0
0

0
0
0
0
-1
-1

Table 5

If the board is evaluated after the two black moves, there
is a variation of +12 points for the black move at i28 and
a variation of +11 points for the black move at i59. The
system will choose the black move at i28.

Results

The best Go programs are those that have the best
strategic evaluation function and the most precise tactical
search engines. But it takes times to evaluate position,
because for each strategic position evaluation, a lot of
tactical searches have to be performed. So Go programs
cannot search very deep at the strategic level. The
precision of the evaluation function is therefore very
important. It is based on a good knowledge of what are
the important concepts of the game of Go (such as
territory, influence, groups and their degrees of li fe).

Gogol plays a move in 10 seconds on a Pentium 133
MHz. It has participated in the 1997 FOST cup held
during IJCAI97. It has finished 6 out of 40 participants.
The five first programs are commercial programs.

Future work is to use learning, as described in
[Cazenave 1996], at the strategic level. The goal of
learning will be to improve the evaluation of positions and
to find strategic moves interesting to try.

Conclusion

Evaluation in computer Go is interesting from an AI point
of view, because it shows the power of knowledge in
complex and real world domains. In the search versus
knowledge tradeoff , the game of Go is the one that has the
most important knowledge component. We have shown
how a complex evaluation function can be devised by
breaking the problem into subproblem, and relaxing the
goals by making them gradual. This approach has been
used to write the evaluation function of a Go playing
program. It has shown its usefulness during the last FOST
cup [Fotland 1997], an international competition between
Go programs.

References

Alli s, L.V. 1994a. Searching for Solutions in Games and
Artifi cial Intelli gence, Ph.D. Thesis, Vrije Universitat
Amsterdam, Maastricht, September 1994.

Alli s, L.V.; Meulen, M. van der; Herik, H.J. van den
1994b. Proof-Number Search. Artificial Intelli gence, Vol.
66, No. 1, pp. 91-124.

Berliner, H.; Goetsch, G.; Campbell , M.; Ebeling, C.
1990. Measuring the performance of potential chess
programs. Artificial Intelli gence, 43(1) :7-21, April 1990.

Bouzy, B. 1995. Modélisation cogniti ve du joueur de Go.
Thèse de l'université Paris 6, 1995.

Cazenave, T. 1996. Système d’Apprentissage par Auto-
Observation. Application au Jeu de Go. Thèse de
l'Université Paris 6, Décembre 1996.

Cazenave, T.; Moneret, R. 1997. Development and
Evaluation of Strategic Plans. Game Programming
Workshop’97, Hakone, Japan 1997.

Fotland, D. 1993. Knowledge Representation in The Many
Faces of Go. Second Cannes/Sophia-Antipoli s Go
Research Day, Février 1993.

Fotland, D.; Yoshikawa, A. 1997. The 3rd fost-cup world-
open computer-go championship. ICCA Journal 20
(4):276-278.

Junghanns, A.; Schaeffer, J. 1997. Search Versus
Knowledge in Game-Playing Programs Revisited.
IJCAI97 p. 692-697, Nagoya, Japan, 1997.

McCarthy, J. 1997. Review of Monty Newborn’s Kasparov
versus Deep Blue : Computer Chess Comes of Age.
Science , 6 June 1997.

Michie, D. 1977. A theory of advice. Machine Intelli gence
8, p. 151-170, 1977.

Pitrat, J. 1990. Métaconnaissances. Futur de l’I ntelli gence
Artifi cielle. Editions Hermes, Paris, 1990.

Robson, J. M. 1983. The Complexity of Go - Proceedings
IFIP - pp. 413-417 - 1983.

Van den Herik, H. J.; Alli s, L. V.; Herschberg, I. S. 1991.
Which Games Will Survive ? Heuristic Programming in
Artificial Intelli gence 2, the Second Computer Olympiad
(eds. D. N. L. Levy and D. F. Beal), pp. 232-243. Elli s
Horwood. ISBN 0-13-382615-5. 1991.

