
Improving Grammar Constraints Generation Alignment by Sampling Highly
Probable Playouts

Killian Susini, Tristan Cazenave
LAMSADE, Université Paris Dauphine - PSL

killian.susini@dauphine.eu, tristan.cazenave@lamsade.dauphine.fr

Abstract

Large Language Models (LLMs) can generate structured out-
puts such as program code, mathematical formulas, or well-
formed markup language, but some of their outputs may end
up non-grammatical, especially when considering very pre-
cise and obscure structures. Grammar Constrained Decoding
(GCD) is used to force each subsequent token generated to
follow a particular grammar. However, simple techniques use
a distorted distribution of the LLMs. Grammar Aligned De-
coding (GAD) is the problem of aligning sampling with a
grammar constraint. Adaptive sampling with approximate ex-
pected futures (ASAp) has been proposed to solve GAD but
requires storing the change in the probabilities of the LLM
for each token in a datastructure. Furthermore, ASAp sam-
ples randomly from the aligned distribution as it is computed,
which may not be optimal to maximize the alignment speed.
We propose Greedy Best First Search with Greedy Sampling
(GBFSGS) as a method to obtain high likelihood samples,
which is more likely to maximize the alignment speed of the
distribution. GBFSGS is able to solve GAD while storing the
new probabilities in a datastructure with one element per sam-
ple drawn instead of per token changed. We show how the
method finds the most probable samples of a distribution, in-
cluding under a grammar constraint. We show how to imple-
ment the algorithm to avoid duplicate samples. We empiri-
cally evaluate our method on three sets of problems to evalu-
ate the behavior of the methods. We show GBFSGS is able to
select better samples than sampling to improve the alignment
of the distribution while reducing the memory needed to store
the aligned distribution.

Introduction
The ability to generate the complex and diverse sequences
of natural languages by Large Language Models (LLM)
may be a downside when trying to generate structured se-
quences such as program code as such sequences follow a
structured grammar. A simple method to guarantee the gen-
eration of correctly structured sentences (i.e. grammatical
sentences) is to reject any non-structured sample (rejection
sampling). As long as the distribution of the unstructured
generation is similar to the one of the structured output,
the method remains efficient, but otherwise a lot of wasted
computation occurs. One method to palliate this problem

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is to reject unstructured tokens immediately during gener-
ation, which allows one to always obtain a grammatically
correct sequence. This method is described as Grammar-
Constrained Decoding (GCD) and, as shown in Grammar-
Aligned Decoding by Park et al. (2024), it distorts the dis-
tribution over the sequences which does not match the dis-
tribution of the structured samples. Generating from the cor-
rect distribution (GAD) is formalized in the paper, and while
it is achieved by rejection sampling, it is inefficient. How-
ever, to resolve the problems highlighted above, the paper
introduces a new method, Adaptive Sampling with Approx-
imate Expected Futures (ASAp), which deals with the mis-
match of GCD generation by progressively building the cor-
rect distribution for GAD through repeated sampling. One
large downside of ASAp is the memory required to store the
info necessary for the new distribution. Each new sample
requires storing an Expected Future Grammaticality (EFG)
value for each token along the path for each sample, which
quickly grows for long sequences. Furthermore, while us-
ing random samples asymptotically computes the true GAD
distribution, randomly sampling from the approximate dis-
tribution itself may not generate the most informative sam-
ples for aligning the distribution. In fact, as the approxi-
mate GAD gets closer to the true distribution, the probability
of generating an improving sample drops to zero. We pro-
pose Greedy Best First Search with Greedy Sampling (GBF-
SGS), a method that builds an approximation of the GAD
distribution like ASAp, while limiting the memory require-
ments and improving the convergence speed on nearly every
problem tested against ASAp. Following (Park et al. 2024),
we evaluate the methods on the same two problems of for-
mal program synthesis and constituency parsing. Our exper-
iments show the faster convergence by GBFSGS compared
to ASAp on almost every problem.

Definitions
We start with the definitions and important notations in order
to present the algorithm that we extend in this paper: ASAp.

Large Language Models An (autoregressive) language
model θ defines a probability distribution P θ on the set of
all strings w ∈ Σ∗ over a vocabulary of tokens Σ via the
left-to-right factorization of the joint probability P θ(w) =
P θ(w1:n) = P θ(w1...wn) = Πn

i=1P
θ(wi|w1:i−1), where n



is the finite length (in tokens) of the sentence w. Although it
can be any size, in practice, an upper limit on the length is
fixed.

The tokens present in the vocabulary may represent sub-
words or multiple words, see (OpenAI et al. 2024) for the
list used by GPT-4.

The goal of this algorithm is to constrain the default gen-
eration of LLMs to generate sentences constrained by a
grammar.

Context-Free Grammars Context-free grammar (CFG)
are useful to logically define various structured outputs such
as properly formulated programming languages.
G = (Σ,N , S,R) is a CFG where Σ is the finite set of

tokens (vocabulary, also called set of terminal symbols), N
is the set of non-terminal symbols, S ∈ N is the starting
non-terminal symbol, and R is the set of production rules
A⇒ α,A ∈ N , α ∈ (N ∪ Σ)∗.

The repeated application of each rule defines the language
of G, L(G) = {w ∈ Σ∗|w = Sr1r2 · · · rn, ri ∈ R}.

The prefix language of G is defined as Lpfx(G) = {w ∈
Σ∗|wv ∈ L(G), v ∈ Σ∗}. It describes every sequence that
could be completed into a sentence of L(G). Although mem-
bers of the prefix language are not necessarily members of
the language of G, the opposite is true.

For simplicity, given a sequence w1:i, we say that the
word w′ is accepted by G after w1:i if w1:i · w′ ∈ Lpfx(G).

Related works
Grammar Constrained Decoding GCD is the problem
of restricting the generation of a LLM to the language of a
grammar, such that only sentences that are in the language
are generated.

As noted in (Geng et al. 2023), one traditional method
to perform GCD is by using rejection sampling. The algo-
rithm discards ungrammatical generation if it occurs and
tries again from the beginning, which may incur a signifi-
cant amount of wasted computation.

Instead of waiting for the end of the generation to check if
the sentence generated is in the language, one improvement
is to remove the possibility of the LLM generating tokens
that would make the partial sentence leave the prefix lan-
guage of the grammar. This is what the ”GCD” algorithm
does, setting the probability of ungrammatical tokens to 0
and normalizing the probabilities among the tokens remain-
ing, P θ

GCD(w′|w1:i),

P θ(w′|w1:i)1[w1:i · w′ ∈ Lpfx(G)]
Σw′′P θ(w′′|w1:i)1[w1:i · w′′ ∈ Lpfx(G)]

(1)

Contrary to rejection sampling, GCD distorts the distribu-
tion of the sentences by underestimating the effect of the
grammar later in the sentence (Park et al. 2024).

It is complex to decide if a token in the vocabulary of
a LLM can be generated without leaving the language de-
fined by a CFG, as the tokens do not necessarily match with
the symbols of the CFG. This question is explored by vari-
ous papers (Willard and Louf 2023; Geng et al. 2023; Park,

Zhou, and D’Antoni 2025), and techniques have been devel-
oped to efficiently obtain the list of the next possible genera-
ble tokens by a LLM that are accepted by the language. This
paper does not focus on this problem, but improvements on
the methods will benefit the speed of the algorithm.

GAD & ASAp Grammar Aligned Decoding is the prob-
lem of generating grammar-constrained sentences with
probability proportional to that of the LLM,

P θ
True(w) =

P θ(w)1[w ∈ L(G)]
Σw′P θ(w′)1[w′ ∈ L(G)]

. (2)

It is easy to see that rejection sampling generates samples
according to equation 2.

The equivalent conditional probability equation is

P θ
True(w

′|w1:i) =
P θ(w′|w1:i)c(w1:i · w′)

Σw′′P θ(w′′|w1:i)c(w1:i · w′′)
, (3)

Where c(w) (named Expected Future Grammaticality(Park
et al. 2024)) is a constant between 0 and 1 that is equal to
the proportion of grammatical sentences that can be obtained
starting from w,

c(w1:i) = EP θ(wi+1:n|w1:i)[1[wi+1:n ∈ L(G)]]. (4)

Note how equation 1 overestimates c(w) to 1 whenever there
is even a single grammatical sentence that can be generated
after w (Park et al. 2024).

Since c(w) is untractable in general, Adaptive Sam-
pling with Approximate expected futures probability
(ASAp)(Park et al. 2024) is a method proposed to solve
GAD by progressively building an approximation c̃S(w) ≈
c(w) through a succession of samples S, defined inductively
as

c̃S(w1:i) = Σwi+1
P θ(wi+1|w1:i)c̃S(w1:i+1), (5)

with the base case (no samples starting with w1:i) defined as

c̃S(w1:i) = 1[w1:i ∈ Lprefix(G)]. (6)

In practice, ASAp initializes its approximation with the
same definition as GCD. After each sample w1:n, ASAp
goes backward to update the approximation using equation
5. The space required to store the approximation c̃S(w) for
every sentence is roughly equal to that of storing every sam-
ple.

Greedy Best First Search with Greedy
Sampling

We propose a new algorithm to improve upon ASAp, called
Greedy Best First Search with Greedy Sampling (GBFSGS).
This algorithm replaces the sampling used by ASAp to pro-
gressively build the approximation of c(w), in order to ob-
tain better convergence properties. We show further

GBFS Greedy Best First Search is a simple algorithm be-
longing to the family of Best First Search algorithms like
A*. It keeps a list of potential next moves, repeatedly ex-
panding the best move according to a metric. For example,
to find the path with the least number of moves in a graph,
we start with the root, then repeatedly select the sequence



Algorithm 1: GBFSGS

Initialise L← {root}, c̃S(·)← 1
for k ≤ K do

w1:i ← best leaf from L according to P θ(·)
L← L ∪ {w1:i · w′|w1:i · w′ ∈ Lpfx(G)}
wi:n ← greedy completion of w1:i according to P θ(·)
for i in (n− 1 . . . 1) do

c̃S(w1:i)←
∑

w′ P θ(w′|w1:i) · c̃S(w1:i · w′)

with the fewest number of moves to expand. If we are in-
stead interested in the path of least cost, we will instead se-
lect the sequence of moves with the least cost to select the
next node to expand.

In the context of sentence generation, each token gener-
ated is a move. Using the LLM and the grammar as a metric
to define the score of a sequence of moves as the likelihood
of those moves, and the update rule defined by equation 5,
we can use GBFS to progressively build the approximation
of c(w) for each token. However, we fail to consider the ef-
fect of the grammar deep into the sentences until the algo-
rithm runs for long enough.

GBFSGS We observe that GBFS uses the top part of the
sentences (the token closest to the root) to update the ap-
proximation. To incorporate additional information further
down the tree, we can sample a full sentence from the node
selected by GBFS. Since we are interested in maximizing
the potential of the improvement, we aim to select a sen-
tence with high likelihood. We propose to use greedy sam-
pling, which differs from standard sampling by shifting the
distribution entirely toward the most probable token at each
step.

GBFSGS like ASAp progressively builds an approxima-
tion of c(·) ≈ c̃S(·) by accumulating a series of samples
S, but improves upon ASAp by selecting the samples most
likely to improve the approximation.

Properties and Optimization
A basic implementation of GBFSGS leads to a compute cost
and space requirement similar to that of ASAp, since only
the nature of the samples accumulated in S are changed.
However, GBFSGS is deterministic since it uses the greedy
choices according to the current approximation, which is ex-
pected to be the choice that improves the approximation the
most. We first show that GBFSGS approximation c̃S(·) con-
verges properly to the true value of c(·), and we also show
several improvements that can be implemented to limit re-
dundant work and the space needed by GBFSGS.

Convergence At every step, GBFS selects a different sub-
sequence from the root, and eventually every complete se-
quence. As different sequences accumulate in S, eventually,
c̃S(·) → c(·), like ASAp. Contrary to ASAp, the greedy
nature of the sampling should lead to higher likelihood sam-
ples, which should accelerate the speed of convergence over
ASAp.

Duplicate greedy samples We can exploit the fact that
some samples could change little to c̃(·), leading to mini-
mal change to the underlying distribution. While the initial
search performed with GBFS already increases the explo-
ration of unseen paths (paths closer to the root are naturally
more likely than further down the tree), it is possible to de-
tect that the greedy continuation of a sub-sequence selected
by GBFS will be the same as one that was previously com-
puted. When we update c̃(·), we can note if anywhere in the
sequence the greedy choice changes because of the change
to c̃(·). If no change in the greedy choice is made, we can
conclude that a subsequent greedy sample passing through
those tokens will produce the same sample, and therefore we
can skip generating the sample entirely and simply expand
GBFS. The actual implementation simply adds a binary flag
to the actions added to GBFS, which indicates when the
greedy sampling step can be skipped.

Replay for optimizing memory use The approximation
c̃S(·) is simple to obtain at the start (when no samples have
been obtained, i.e. S = {}) since it only relies on the gram-
mar. However, each new sample w1:n will change the initial
estimation to every token along its path, and in the case of
ASAp (Park et al. 2024), these new estimations are stored in-
side a tree. This is particularly inefficient when we consider
tokens much further down the tree, which are unlikely to be
resampled. However, it is unavoidable to guarantee correct-
ness. In the case of GBFSGS, however, because the samples
are greedy, and therefore deterministic, it is possible to come
up with a scheme to only require storing a single value per
sample (instead of one per token generated).

First consider the progressive evolution of the set of sam-
ples S, denoting S0 = {}, S1 = {w1}, S2 = {w1, w2},...

The effect of the kth sample wk is limited to only a few
numbers of values of the approximation c̃S(·). Denoting
c̃Sk

(·) as the state of the approximation after the kth sam-
ple, we look back to the equation 5 and derive the update in
the value of the approximation due to the new sample,

c̃Sk
(w1:i) = c̃Sk−1

(w1:i) + P θ(wi+1|w1:i)c̃
∆
Sk
(w1:i). (7)

Where the ”residual value” c̃∆Sk
(·) = c̃Sk

(·) − c̃Sk−1
(·) rep-

resents the change in the approximation due to sample k at
w1:i. From eq. 7 we get,

c̃Sk
(w1:i+1) = c̃Sk−1

(w1:i+1) +
c̃∆Sk

(w1:i)

P θ(wi+1|w1:i)
, (8)

Furthermore, from eq. 8 we derive that,

c̃∆Sk
(w1:i+1) =

c̃∆Sk
(w1:i)

P θ(wi+1|w1:i)
(9)

Equations 8 and 9 give us a top-down definition of c̃S .
We can move forward in token from w1:i to w1:i+1 and in
samples from Sk to Sk+1 by keeping track of certain values.
The values we need are the residual c̃∆Sk

(w′) (the change due
to the kth sample sentence at position w′, chosen wisely) and
the sequence of tokens the sentence takes afterward.



For almost every w1:i we have c̃∆Sk
(w1:i) = 0, except

potentially at c̃∆Sk
(wk

1:i). Furthermore, to use equations 8
and 9 requires determining w1:i+1 from w1:i and c̃Sk−1

(·);
thankfully, GBFSGS uses greedy sampling, and therefore
we know that w1:i+1 is the greedy choice following w1:i.

We therefore need only to keep a record of the residual at
the sub-sequence wk

1:i selected by GBFS at step k. The im-
pact of sample wk on the rest of the tree is derivable from
the above equation at runtime, essentially allowing us to re-
play this sample when we need. Where ASAp needs to keep
all the information of the sub-tree in memory, GBFSGS only
keeps a single value and computes the sub-tree as needed.

Experimental Evaluation
Using an implementation of GCD (Geng et al. 2023) and
of ASAp (Park et al. 2024), we compare GBFSGS against
both in terms of convergence to the target distribution. For
numerical stability and accuracy, we use log probabilities
where possible.

We implement the GBFSGS algorithm by using the ASAp
algorithm implementation of the ASAp paper (Park et al.
2024) as a base. While ASAp uses random samples, the up-
date code of c̃ remains the same.

To use the algorithm 1, we need to find the best leaf from
set L according to P̃ θ

Sk
. We represent L as a tree, where a

path w1:n in the tree gives the values we stored associated
with w1:n (such as c̃S(w1:n), R(w1:n),...). To get the best
leaf, we construct at every step a priority queue of the most
probable sequences starting with the root and repeatedly se-
lect the top sequence of the priority queue, adding the chil-
dren to the priority queue. This leads to a search taking at
most O(k log(k)) steps, but in practice much less, and is
dominated by sampling from the LLM. A smarter way to
search (down to O(k) by a simple linear search, or even
O(log(k))) may be useful, but the potential impact is too
low in our tests. This leads to having a tree containing at
most k ∗ vocab size nodes at step k, the current number of
samples.

Datasets. Following precedent works in Grammar Con-
straint Decoding and since we are trying to solve the same
problems, we test GBFSGS on the same problems that
ASAp was tested on (Park et al. 2024). Two sets of bench-
marks come from Syntax-Guided Synthesis (SyGuS) (Alur
et al. 2019) and another from the constituency parsing (CP)
task (Geng et al. 2023). SyGuS involves generating a term
that respects a logical specification and a context-free gram-
mar (given to each algorithm). For CP, a context-free gram-
mar is given to the model to generate a correctly paren-
thesized parse tree of English sentences. The specifications
and grammars may be implicitly or explicitly defined. For
more info on the specific problems, see ASAp (Park et al.
2024). Due to limited computing resources, we limit our-
selves to the same randomly chosen problems from the
benchmarks, 15 from SLIA (strings with linear integer arith-
metic), 15 from INV-BV (loop invariant generation with bit-
vector arithmetic) and 6 CP problems. The evident tendency
seen in the results will allow us to infer conclusions beyond

Figure 1: 200 steps rolling average KL Divergence on SLIA/name-combine-4-
long

those sets of problems. We use the open-source model Mis-
tral 7B [12] on an NVIDIA RTX A6000 for all the tests.

Measures. We use the same measures as were used for
ASAp (Park et al. 2024) for comparison. We give each al-
gorithm on each problem 2000 generations to estimate the
target distribution. To assess the convergence to the distri-
bution, two metrics are used, the KL divergence and the
empirical expectation. We use the Kullback–Leibler (KL)
divergence to estimate the distance between GCD, ASAp
and GBFSGS to the target distribution at each iteration. The
samples generated by each method can be used to make
an estimate of the true target distribution, since the distri-
bution of the grammar-constrained samples by the LLM is
linearly proportional to the ideal GAD distribution. Then
the quantity KL(Q∥P ) differs only by a constant from
KL(Q∥Qtrue). See (Park et al. 2024) for the derivation.
A 200-rolling average is used for the KL-divergence plot.
While the samples of GCD and ASAp are randomly taken
based on the distribution at iteration k, GBFSGS samples
cannot be used to estimate the distribution of the distribu-
tion obtained at step k. To get a sample, we generate an ad-
ditional sample using GCD on the distribution at every step;
note that this sample is for measurement only and does not
affect the distribution being computed.

We also want to evaluate the behavior of the sampling
done by the two algorithms. We plot a 200-rolling average
of the log likelihood of the samples made by each algorithm,
and also add a line to show what random samples made by
GBFSGS would look like if they were made instead of the
greedy samples.

To evaluate the effect of the two optimizations proposed,
we record for each problem the full tree that would be gen-
erated by GBFSGS if we do not use the technique presented,
as well as record the number of times a greedy sampling step
is skipped.

Results. We show the convergence of each algorithm on
different selected problems that exemplify the general be-
havior. The full list of figures is available in the supplemen-
tary materials. Figures 1, 2, 3 and respectively figures 5, 6,
7 are example problems where both ASAp and GBFS con-
verge as the number of iterations increases. In each case,
we can see that GCD exhibits variable levels of initial ”fit-



Figure 2: 200 steps rolling average KL Divergence on INV-BV/find-inv-eq-bvand-
4bit

Figure 3: 200 steps rolling average KL Divergence on SLIA/firstname

Figure 4: 200 steps rolling average KL Divergence on INV-BV/find-inv-bvugt-
bvurem0-4bit

Figure 5: 200 steps rolling average KL Divergence on SLIA/name-combine-4-
long

Figure 6: 200 steps rolling average KL Divergence on INV-BV/find-inv-eq-bvand-
4bit

Figure 7: 200 steps rolling average KL Divergence on SLIA/firstname

Figure 8: 200 steps rolling average KL Divergence on INV-BV/find-inv-bvugt-
bvurem0-4bit

Figure 9: 200 Rolling average of samples log likelihood @t, plus a pseudo random
sample of GBFSGS on SLIA/name-combine-4-long.



Figure 10: Final Expectation against theoretical expectation on SLAI problems

Figure 11: Final Expectation against theoretical expectation on INV-BV problems

ness” to the distribution, reflected by both the stagnating
KL difference and empirical average. On almost every prob-
lem, when comparing ASAp to GBFSGS, GBFSGS shows
a faster initial improvement, and converges to a better value.
This behavior occurs on nearly every problems.

Figures 10, 11 and 12 show the behavior of each algo-
rithm’s samples, plus the behavior fully random samples for
GBFSGS instead of greedy sampling would look like. As
can be seen, in every case the behavior is very different be-
tween GBFSGS and ASAp. As the number of samples in-
creases, GBFSGS samples get more surprising with respect
to the LLM; the opposite behavior occurs for ASAp. Ran-
dom samples that would be made by GBFSGS (in a similar
fashion as ASAp) show the same behavior as ASAp, and
in fact go higher even faster, slowing down when the KL
divergence has shown convergence (see figure 9 and corre-
sponding figure 1).

Discussions
As we aimed to do, GBFSGS improves upon the conver-
gence rate of ASAp in the vast majority of the cases with
the same amount of compute.

Every final expectation of P̃ θ
S(·) (except for one problem)

of GBFSGS is higher than ASAp. There are a few cases
where we see GBFSGS perform better in alignment com-
pared to GCD when ASAp performs worse than GCD, but it
is pretty rare. If ASAp manages to converge, then GBFSGS
will converge even faster. Furthermore, the convergence of
GBFSGS seems more stable than that of ASAp.

One limitation to our approach is that if ASAp fails to
converge at all early on (or very slowly), then neither will
GBFSGS converge. In those cases, however, neither GCD
nor any of the proposed algorithms will perform well (this
was already noted by (Park et al. 2024)).

Figure 12: Final Expectation against theoretical expectation on CP problems

ASAp and GBFSGS samples’ likelihood have very dif-
ferent behavior; the samples generated by ASAp get more
likely as ASAp gets closer to the distribution, whereas GBF-
SGS generates samples with lower and lower likelihood. The
fact that the original distribution (P theta(·) scores the ran-
dom samples higher as we align with the grammar indicates
that most of the weight of the sentences with correct gram-
mar is scored highly by the distribution. We suppose that this
explains the slow down in convergence of ASAp; the closer
the distribution is to the true distribution, the less likely ran-
domly sampling finds an informative sample. We suppose
that limiting the repetition of samples helps GBFSGS too.

It would be worth exploring other methods used to gen-
erate high-quality samples, such as beam search instead
of greedy sampling, together with GBFS. The apparatus
needed to efficiently store the samples may be too complex,
but worth it if the convergence is improved. The compres sed
representation is not needed for the improved convergence,
so a hybrid method using random sampling and some form
of greedy sampling may get an even better convergence.

Investigating why certain problems show very little im-
provement when others behave nicely may lead to a bet-
ter approach for those cases. Some works (Melcer et al.
2024) point to problems where the probability of error (un-
grammatical) is greater towards the end of the samples;
this makes computing the distribution by only relying on
precisely recording erroneous samples (like GBFSGS and
ASAp) to be less practical in those cases than their pro-
posed solution. Their solution, however, does not truly sam-
ple from the distribution, but exploring how GBFSGS and
Approximately aligned decoding (AprAD) (Melcer et al.
2024) can be used together may be a potentially interesting
next exploration.

Conclusion
We proposed a new algorithm to compute an approxima-
tion of the ideal distribution of the Grammar-Aligned De-
coding (GAD) problem. We showed that it is guaranteed to
converge eventually to the true distribution. We introduced
a method that leverages the deterministic nature of greedy
sampling to have a compact representation of the distribu-
tion being approximated that can still be used as is to sample
with any techniques with low overhead. We demonstrated
its ability to converge faster and smoother, as well as reach
a lower difference with the target grammar-aligned distribu-
tion.



References
Alur, R.; Fisman, D.; Padhi, S.; Singh, R.; and Udupa,
A. 2019. SyGuS-Comp 2018: Results and Analysis.
arXiv:1904.07146.
Geng, S.; Josifoski, M.; Peyrard, M.; and West, R. 2023.
Grammar-Constrained Decoding for Structured NLP Tasks
without Finetuning. In Bouamor, H.; Pino, J.; and Bali,
K., eds., Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, 10932–10952.
Singapore: Association for Computational Linguistics.
Melcer, D.; Gonugondla, S.; Perera, P.; Qian, H.; Chi-
ang, W.-H.; Wang, Y.; Jain, N.; Garg, P.; Ma, X.; and
Deoras, A. 2024. Approximately Aligned Decoding.
arXiv:2410.01103.
OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.;
Akkaya, I.; Aleman, F. L.; Almeida, D.; Altenschmidt, J.;
Altman, S.; Anadkat, S.; Avila, R.; Babuschkin, I.; Bal-
aji, S.; Balcom, V.; Baltescu, P.; Bao, H.; Bavarian, M.;
Belgum, J.; Bello, I.; Berdine, J.; Bernadett-Shapiro, G.;
Berner, C.; Bogdonoff, L.; Boiko, O.; Boyd, M.; Brakman,
A.-L.; Brockman, G.; Brooks, T.; Brundage, M.; Button, K.;
Cai, T.; Campbell, R.; Cann, A.; Carey, B.; Carlson, C.;
Carmichael, R.; Chan, B.; Chang, C.; Chantzis, F.; Chen,
D.; Chen, S.; Chen, R.; Chen, J.; Chen, M.; Chess, B.;
Cho, C.; Chu, C.; Chung, H. W.; Cummings, D.; Currier,
J.; Dai, Y.; Decareaux, C.; Degry, T.; Deutsch, N.; Deville,
D.; Dhar, A.; Dohan, D.; Dowling, S.; Dunning, S.; Ecof-
fet, A.; Eleti, A.; Eloundou, T.; Farhi, D.; Fedus, L.; Felix,
N.; Fishman, S. P.; Forte, J.; Fulford, I.; Gao, L.; Georges,
E.; Gibson, C.; Goel, V.; Gogineni, T.; Goh, G.; Gontijo-
Lopes, R.; Gordon, J.; Grafstein, M.; Gray, S.; Greene, R.;
Gross, J.; Gu, S. S.; Guo, Y.; Hallacy, C.; Han, J.; Harris,
J.; He, Y.; Heaton, M.; Heidecke, J.; Hesse, C.; Hickey, A.;
Hickey, W.; Hoeschele, P.; Houghton, B.; Hsu, K.; Hu, S.;
Hu, X.; Huizinga, J.; Jain, S.; Jain, S.; Jang, J.; Jiang, A.;
Jiang, R.; Jin, H.; Jin, D.; Jomoto, S.; Jonn, B.; Jun, H.; Kaf-
tan, T.; Łukasz Kaiser; Kamali, A.; Kanitscheider, I.; Keskar,
N. S.; Khan, T.; Kilpatrick, L.; Kim, J. W.; Kim, C.; Kim, Y.;
Kirchner, J. H.; Kiros, J.; Knight, M.; Kokotajlo, D.; Łukasz
Kondraciuk; Kondrich, A.; Konstantinidis, A.; Kosic, K.;
Krueger, G.; Kuo, V.; Lampe, M.; Lan, I.; Lee, T.; Leike,
J.; Leung, J.; Levy, D.; Li, C. M.; Lim, R.; Lin, M.; Lin, S.;
Litwin, M.; Lopez, T.; Lowe, R.; Lue, P.; Makanju, A.; Mal-
facini, K.; Manning, S.; Markov, T.; Markovski, Y.; Martin,
B.; Mayer, K.; Mayne, A.; McGrew, B.; McKinney, S. M.;
McLeavey, C.; McMillan, P.; McNeil, J.; Medina, D.; Mehta,
A.; Menick, J.; Metz, L.; Mishchenko, A.; Mishkin, P.;
Monaco, V.; Morikawa, E.; Mossing, D.; Mu, T.; Murati, M.;
Murk, O.; Mély, D.; Nair, A.; Nakano, R.; Nayak, R.; Nee-
lakantan, A.; Ngo, R.; Noh, H.; Ouyang, L.; O’Keefe, C.;
Pachocki, J.; Paino, A.; Palermo, J.; Pantuliano, A.; Paras-
candolo, G.; Parish, J.; Parparita, E.; Passos, A.; Pavlov, M.;
Peng, A.; Perelman, A.; de Avila Belbute Peres, F.; Petrov,
M.; de Oliveira Pinto, H. P.; Michael; Pokorny; Pokrass,
M.; Pong, V. H.; Powell, T.; Power, A.; Power, B.; Proehl,
E.; Puri, R.; Radford, A.; Rae, J.; Ramesh, A.; Raymond,
C.; Real, F.; Rimbach, K.; Ross, C.; Rotsted, B.; Roussez,
H.; Ryder, N.; Saltarelli, M.; Sanders, T.; Santurkar, S.;

Sastry, G.; Schmidt, H.; Schnurr, D.; Schulman, J.; Sel-
sam, D.; Sheppard, K.; Sherbakov, T.; Shieh, J.; Shoker,
S.; Shyam, P.; Sidor, S.; Sigler, E.; Simens, M.; Sitkin, J.;
Slama, K.; Sohl, I.; Sokolowsky, B.; Song, Y.; Staudacher,
N.; Such, F. P.; Summers, N.; Sutskever, I.; Tang, J.; Tezak,
N.; Thompson, M. B.; Tillet, P.; Tootoonchian, A.; Tseng,
E.; Tuggle, P.; Turley, N.; Tworek, J.; Uribe, J. F. C.; Val-
lone, A.; Vijayvergiya, A.; Voss, C.; Wainwright, C.; Wang,
J. J.; Wang, A.; Wang, B.; Ward, J.; Wei, J.; Weinmann, C.;
Welihinda, A.; Welinder, P.; Weng, J.; Weng, L.; Wiethoff,
M.; Willner, D.; Winter, C.; Wolrich, S.; Wong, H.; Work-
man, L.; Wu, S.; Wu, J.; Wu, M.; Xiao, K.; Xu, T.; Yoo,
S.; Yu, K.; Yuan, Q.; Zaremba, W.; Zellers, R.; Zhang, C.;
Zhang, M.; Zhao, S.; Zheng, T.; Zhuang, J.; Zhuk, W.; and
Zoph, B. 2024. GPT-4 Technical Report. arXiv:2303.08774.
Park, K.; Wang, J.; Berg-Kirkpatrick, T.; Polikarpova, N.;
and D' Antoni, L. 2024. Grammar-Aligned Decoding. In
Globerson, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet,
U.; Tomczak, J.; and Zhang, C., eds., Advances in Neural
Information Processing Systems, volume 37, 24547–24568.
Curran Associates, Inc.
Park, K.; Zhou, T.; and D’Antoni, L. 2025. Flexible and Ef-
ficient Grammar-Constrained Decoding. arXiv:2502.05111.
Willard, B. T.; and Louf, R. 2023. Efficient Guided Genera-
tion for Large Language Models. arXiv:2307.09702.


