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Abstract. In this paper, we propose GMM-PACO, a novel Ant Colony
Optimization (ACO) for multi-objective feature selection. This algo-
rithm explicitly models each feature using Gaussian Mixture Models
(GMMs) to capture distributional characteristics. Our heuristic function
integrates mutual information with the Wasserstein distance between fea-
ture distributions to evaluate feature relevance and redundancy. GMM-
PACO simultaneously optimizes classification accuracy, feature subset
size, and redundancy using Pareto dominance. Extensive evaluations on
multiple UCI datasets with k-nearest neighbors (KNN) classifier demon-
strate improvements over existing methods in both subset compactness
and classification accuracy.

1 Introduction

Feature selection (FS) aims to identify the most relevant features in order to
improve model performance and reduce complexity. This study focuses on multi-
objective F'S, aiming to find feature subsets that balance three conflicting goals:
maximizing classification accuracy, minimizing redundancy, and minimizing the
number of selected features.

Ant Colony Optimization (ACO) [§] is used in this work for multi-objective FS.
Existing ACO-based F'S methods often rely on simplistic statistical assumptions
and lack robust feature modeling or clear convergence criteria, which can lead
to suboptimal subsets or unstable performance across datasets. To address these
limitations, we propose a novel multi-objective FS framework that integrates
Gaussian Mixture Models (GMMs) [3] and Pareto optimization into the ACO
search process. Our contributions include:

— A novel multi-objective ACO-based FS framework using Gaussian Mixture
Models (GMMs) to model feature distributions.

— An entropy-based stopping criterion that guides the selection process.

— A heuristic function combining mutual information (MI) and Wasserstein
distance (WD) [23] to evaluate feature relevance and redundancy.

— A pheromone update rule based on accuracy and normalized by subset size.
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The remainder of the paper is structured as follows. Section 2 reviews related
work on ACO and FS methods. Section 3 introduces our proposed method, along
with definitions and pseudocode. Section 4 presents the experiments and com-
parative results. Finally, Section 5 concludes with findings and future directions.
The code is available at: https://github.com /annkry/GMM-PACO.

2 Related Work

Feature selection (FS) is a key dimensionality reduction technique that selects
a subset of original features. Multi-objective FS typically balances competing
goals such as minimizing subset size, prediction error, computational cost, or
redundancy. Pareto-based approaches are widely used to identify a set of non-
dominated solutions, forming the Pareto front, which represents optimal trade-
offs among the objectives. These approaches have been successfully applied to
classical combinatorial problems such as the multi-objective knapsack problem
[2] and the traveling salesman problem with Time Windows [I9]. For multi-
objective FS problem, PMFS [I5] combines relevance and redundancy with
crowding distance to maintain diversity. PEFS [16] aggregates filter rankings
and applies Pareto selection, while 20MF [I2] uses a two-step approach that
combines mutual information with classifier stability.

Nature-inspired algorithms are widely applied in FS for their ability to search
large search spaces. A multi-objective Artificial Bee Colony (MOABC) algorithm
[14] explores both binary and continuous variants. ACO-based approaches such
as ACOFS [I7] select features probabilistically, with heuristic updates based on
information gain, subset size, and accuracy. FSvACO [I0] uses cosine similar-
ity for transitions, while MLACO [2I] extends ACO to multi-label FS using
feature-class similarity and Pearson correlation. UFSACO [22] applies inverse
cosine similarity and and another work [I8] proposes a multi-objective ACO us-
ing non-dominated solutions for pheromone updates and crowding for diversity
preservation. Many ACO-based FS methods rely on simple heuristic functions,
which can limit their ability to handle complex data structures and dependencies
among features. Gaussian Mixture Models (GMMs) [3] offer a way to better cap-
ture such complexity by modeling feature distributions as mixtures of Gaussian
distributions. Prior work has applied GMMs in FS outside of metaheuristics. For
example, [I] surveys F'S techniques for GMMs and Hidden Markov Models, while
[11] introduces a GMM-based F'S method using a relevance index. However, most
of these methods are single-objective and lack global search capabilities.

3 Proposed Method

In this section, we introduce our proposed method for solving the FS problem
using the ACO algorithm and describe the pseudocode.

3.1 Overview of GMM-PACO Framework
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Algorithm 1 GMM-PACO pseudocode

Input: dataset
Output: Pareto front

: Preprocessing features
: Compute pairwise Wasserstein distances between feature GMMs
: Initialize pheromone levels 7;
while max iterations not reached do
for each ant k£ do
Start at a random feature
while stopping probability far from uniform do
Ant k selects a feature with transition probability ij
end while
end for

SIS

—
=

11:  Evaluate objectives: classification accuracy, subset size, redundancy
12:  Update Pareto set and pheromone levels

13: end while

14: return final Pareto set

Algorithm [T]outlines our proposed ACO method. In preprocessing, feature values
are discretized using equal-width binning and MI is computed. For each feature,
GMM parameters are estimated via the Expectation-Maximization (EM) al-
gorithm [7] until likelihood convergence and pairwise Wasserstein-1 distances
between GMMs are approximated using the Sinkhorn algorithm [6]. Feature
pheromones are initialized using normalized maximum cosine similarity to class
labels. During optimization, each ant incrementally constructs a feature subset
until transition probabilities become nearly uniform, guided by a heuristic com-
bining mutual information and Wasserstein-based redundancy. The Pareto set
is updated each iteration: the Chebyshev score [25] selects the best solution in
the first iteration and Pareto dominance is applied thereafter. Pheromone levels
are finally updated using our accuracy-based rule normalized by subset size.

3.2 Gaussian Mixture Models for Features Modeling

We define GMM associated with each feature f; within a dataset as

M
pj(l‘) = El Tim N(x | I‘ij7gj2m)’
m=

where 7}, are the mixture weights, > m;m, =1, M is the number of mix-
tures, and

Y
N | ,0%) = g exp (555

is the Gaussian probability density function. Real-world datasets often con-
tain features that have complex and multimodal patterns, making simplistic
single-distribution assumptions inadequate [20]. The GMM allows capturing
these intricate structures by representing the distribution of each feature through
a weighted sum of several Gaussian components.
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3.3 Heuristic Function

The heuristic function we define aims at guiding ants towards promising feature
selections by balancing two critical aspects: relevance and diversity. Formally,
we express it as follows

. MI(f;,Y)
maxy MI(f,Y)

WWD(/;, S(t))
max; WWD(f;, S(t))’

1 (t) = +(1=2)-
where A balances the importance of mutual information, that is, feature rele-
vancy, with feature redundancy, that is, the Wasserstein distance between fea-
ture GMM distributions. The heuristic combines two components. The first
component assesses the relevance of a feature f; to the target class label ran-
dom variables Y by measuring the mutual information (MI) and is defined as

MI(X,Y) = >3 p(z,y)log ( p(z.y) ) , where p(z,y) is the joint probability of
Ty

p(z)p(y)

observing X = z and Y = y, and p(z) and p(y) are the marginal probabilities of
X and Y, respectively. High MI values indicate strong relationships between the
feature and the class labels. To ensure numerical stability and fair comparison,
MI is normalized by the highest MI observed across all features.

The second component encourages feature diversity within the currently built
solution S(t), ensuring that newly selected features are distinct from those al-

ready chosen. This diversity is measured using a weighted Wasserstein distance
ISl
(WWD), defined as WWD(f;,S(t)) = > wr - WD(ps,,pj),
k=1
where WD(py, , p;) is the entropic-regularized Wasserstein-1 distance between

the GMM of previously selected feature f;, and the candidate feature f;. The
weighting scheme Wy exponentially decays, giving more importance to recently

selected features
e — P15 - K)
1Sl
> exp (=7 ([S®)] - 5))

s=1

with v, > 0 controlling the decay rate. A higher ,, gives greater weight to
recent selections, dynamically adapting feature diversity.

3.4 Pheromone Update

Another component of the ACO algorithm is the pheromone levels. Initially, we
compute for each feature a similarity score

Ty () n
Xy Dim1 Tij Oyic
§j = max ! = max st

o Ixjllzlly@llz e Y >
> ie1 Tyj /e

where x;; is the value of feature j in sample ¢, 6y, . = 1 if y; = ¢, and n. is
the number of samples in class ¢. These scores are then linearly normalized to
initialize the pheromones. In each iteration of the ACO algorithm, we update
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the pheromone levels and apart from the typical p-declined part, we define it to
be an accuracy deposit normalized by a number of selected features. Formally,
the pheromone update rule is defined as

Tj < (1 - p) Ty + 1{fcaturcj € solg} %7

where 174; = 1 if A is true, and 174, = 0 otherwise, p is the evaporation
rate (0 < p < 1), soly, is the set of selected features of k-th ant that had the
highest accuracy in a given iteration, |solg| is the number of selected features
and accy, is the accuracy of a classifier using only the selected features for k-th
ant.

3.5 Feature Selection Stopping Criteria

In every iteration, an ant chooses a subset of features until the selection probabil-
ities are close to becoming uniform. The motivation is that when all the features
have the same probability of being selected, they would not introduce any new
information to the currently chosen feature subset, since no feature is signifi-
cantly different from the remaining features. To monitor this, we measure the
entropy of the transition probabilities and define a probabilistic stopping condi-
tion based on the level of uniformity. First, we define the normalized entropy for
the k-th ant as

- jezl%t PF(t)log Py (t)

log | Ry 7

U =

where R; is the set of remaining candidate features at a given time ¢, and

T T, B . . .
Pf (t) = Zzez[v ;((i)gn ([g’]((f.)[% @ s the probability of the k-th ant selecting feature

j, where N¥(¢) is the set of features not yet selected at time ¢ and the parameters
(c, B) control the influence for pheromone and heuristic information. Now, the
probabilistic stopping probability is as follows

1
1+ exp (f’y(Utk - 9)) ’

Pliop(t)

where 6 € [0,1] denotes the entropy threshold controlling when the stopping
probability becomes significant and v > 0 is a scaling parameter that controls
the steepness of the stopping probability function. An ant would stop adding
new features when a random variable r sampled from a uniform distribution
U(0,1) is smaller than the stopping probability Pk (t).

3.6 Pareto Optimization

In multi-objective feature selection, we consider three objectives: minimizing
1—accuracy after classification with a given feature subset, minimizing the num-
ber of selected features, and minimizing redundancy. Redundancy is computed
for a subset S = {fi,, ftay---» ft., },m = |S|, as the negative average pairwise
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Table 1. Comparison of the average best f-score values of the KNN model on different
datasets before and after feature selection using our proposed approach.

Before feature selection|After feature selection

Dataset # of features f-score |# of features f-score

WDBC 30 0.907 5.6 0.949 (1)
Dermatology 34 0.694 7.8 0.923 (+)
Ionosphere 34 0.747 4.8 0.933 (+)
Arrhythmia 279 0.122 6.2 0.302 (+)
Wine 13 0.742 4.4 1.000 (+)
Hepatitis 19 0.395 7 0.859 (+)
Spambase 57 0.411 7 0.459 (+)
Madelon 500 0.664 11.6 0.899 (+)

WD between feature GMMs:

1
subset redundancy(S) = ——— Z WD(p:,, pt,)-

(7;) 1<a<b<m

Our goal is to find a Pareto set of feature subsets. In the first iteration, when
the Pareto set is empty, the Chebyshev score [25] is computed as

fa,i—2]

ma‘X’i Z{ladizf +e b
i i

where f, ; is the value of objective ¢ for solution a, z; and
278 are the ideal and nadir values, and & ensures numerical stability. The solu-
tion with the smallest Chebyshev score is added to the Pareto set. In subsequent
iterations, ant solutions are evaluated individually using Pareto domination: a
solution is added if it is non-dominated with respect to the current set and any
dominated solutions are removed. Consequently, multiple non-dominated solu-

tions may be added in one iteration, while dominated ones are pruned.

4 Experiments

This section presents numerical results and comparisons with existing methods.

4.1 Experimental Setup

We use high-dimensional datasets from the Physics and Chemistry, and Health
and Medicine domains of the UCI Machine Learning Repository [9]. Experiments
ran for 1000 ACO iterations with 25 ants and parameters a = 1.0, § = 4.0
and p = 0.01 chosen via a small grid search, while remaining parameters were
set through preliminary experiments. Feature subsets were evaluated using a
k-nearest neighbors (KNN) classifier [5] with & = 5 to compute classification
accuracy.

F-score Evaluation We evaluate the average best f-scores of GMM-PACO
with KNN before and after feature selection, using a 2/3 training and 1/3 test-
ing split with 5 runs per dataset, as the low variance across runs indicates stable



GMM-PACO 7

Table 2. Comparison of GMM-PACO using the KNN model. Each cell reports accuracy
followed by the average number of selected features, separated by a semicolon, except
for the first column. The second column shows KNN accuracy using all features.

Dataset 5-NN acc ABC-ER ABC-Fit2;¢c LFS GSBS GMM-PACO
Tonosphere  83.02 92.12; 12 91.74; 12 90.48; 6 89.52; 29 94.15; 3
Madelon 64.67  72.91; 252 72.20; 248 71.03; 7 74.88; 250 87.17; 11
Musk 1 76.22  83.11; 83 82.32; 81 80.71; 12 82.86; 124  79.09; 11
Musk 2 96.11 81.52; 82 81.54; 81  82.87; 8 80.24; 122 94.44; 9
Opt Digits  98.70 98.10; 41 98.22; 37  97.86; 32 98.75; 38  93.03; 15
Hill-Valley  54.52 54.13; 48 54.92; 45  55.49; 9 54.40; 95 56.45; 6

performance. Table[I]reports the average best achieved f-scores, with the highest
values in bold. GMM-PACO consistently selects significantly smaller feature sub-
sets. Wilcoxon signed-rank tests [24] were applied at two levels: (1) per dataset,
comparing best f-scores across runs before and after feature selection (with +
indicating significance at p < 0.05) and (2) across datasets using average best
f-scores. GMM-PACO improved f-scores, with a statistically significant cross-
dataset result (p = 0.008 < 0.05).

Comparison with Other Methods (Cross-Validation) In Table we com-
pare GMM-PACO with ABC-ER and ABC-Fit2;¢ [14], LFS [13], and GSBS [4].
They were chosen to represent diverse single-objective feature selection meth-
ods, covering both metaheuristic and greedy strategies. The experiments con-
sisted of 30 runs following a 70/30 train-test split, where feature subsets were
selected based on the average 10-fold cross-validation accuracy on the training
set and test accuracy was reported afterward. GMM-PACO achieves comparable
or higher accuracy, while selecting significantly fewer features. These results can
be attributed to GMM-PACQO’s ability to better capture feature redundancy
via distributional similarity, which allows the selection of compact yet highly
discriminative feature subsets.

5 Conclusion

We proposed GMM-PACO, a feature selection method combining a probabilis-
tic stopping rule, a mutual information— and Wasserstein-based heuristic and a
pheromone update favoring high-performing subsets. It was evaluated on mul-
tiple UCI datasets using a KNN classifier with hold-out and cross-validation,
achieving competitive or superior accuracy with fewer features and statistically
significant improvements by Wilcoxon tests. Future work includes exploring
other classifiers, refining the heuristic and analyzing dataset conditions where
the method performs best or is outperformed.

Disclosure of Interests The authors have no competing interests to declare.
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