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Abstract. Nested Rollout Policy Adaptation (NRPA) is a Monte Carlo search
algorithm for single player games. In this paper we propose to generalize NRPA
with a temperature and a bias and to analyze theoretically the algorithms. The
generalized algorithm is named GNRPA. Experiments show it improves on NRPA
for different application domains: SameGame and the Traveling Salesman Prob-
lem with Time Windows.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and
problems [4].

Nested Monte Carlo Search (NMCS) [5] is an algorithm that works well for puz-
zles and optimization problems. It biases its playouts using lower level playouts. At
level zero NMCS adopts a uniform random playout policy. Online learning of play-
out strategies combined with NMCS has given good results on optimization problems
[22]. Other applications of NMCS include Single Player General Game Playing [16],
Cooperative Pathfinding [2], Software testing [20], heuristic Model-Checking [21], the
Pancake problem [3], Games [8] and the RNA inverse folding problem [18].

Online learning of a playout policy in the context of nested searches has been further
developed for puzzles and optimization with Nested Rollout Policy Adaptation (NRPA)
[23]. NRPA has found new world records in Morpion Solitaire and crosswords puzzles.
NRPA has been applied to multiple problems: the Traveling Salesman with Time Win-
dows (TSPTW) problem [9,11], 3D Packing with Object Orientation [13], the physical
traveling salesman problem [14], the Multiple Sequence Alignment problem [15] or
Logistics [12]. The principle of NRPA is to adapt the playout policy so as to learn the
best sequence of moves found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree Search dates back to the general
game player Cadia Player and its MAST playout policy [1].

We now give the outline of the paper. The second section describes NRPA. The
third section gives a theoretical analysis of NRPA. The fourth section describes the
generalization of NRPA. The fifth section details optimizations of GNRPA. The sixth
section gives experimental results for SameGame and TSPTW.

2 NRPA

NRPA learns a rollout policy by adapting weights on each action. Vanilla NRPA starts
with all weights set to zero. During the playout phase, action is sampled with a proba-
bility proportional to the exponential of the associated weight. The playout algorithm is
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given in Algorithm 1. The algorithm starts with initializing the sequence of moves that
it will play (line 2). Then it performs a loop until it reaches a terminal states (lines 3-6).
At each step of the playout it calculates the sum of all the exponentials of the weights
of the possible moves (lines 7-10) and chooses a move proportional to its probability
given by the softmax function (line 11). Then it plays the chosen move and adds it to
the sequence of moves (lines 12-13). Each move is associated to a code which is usually
independent of the state.

Then, the policy is adapted on the best current sequence found, by increasing the
weight of the best actions and decreasing the weights of all the moves proportionally
to their probabilities of being played. The Adapt algorithm is given in Algorithm 2.
For all the states of the sequence passed as a parameter it adds α to the weight of the
move of the sequence (lines 3-5). Then it reduces all the moves proportionally to α×
the probability of playing the move so as to keep the sum of logits unchanged (lines
6-12).

In NRPA, each nested level takes as input a policy, and returns a sequence. At each
step, the algorithm makes a recursive call to the lower level and gets a sequence as a
result. It adapts the policy to the best sequence of the level at each step. At level zero it
makes a playout.

The NRPA algorithm is given in Algorithm 3. At level zero it simply performs a
playout (lines 2-3). At greater levels it performs N iterations and for each iteration it
calls itself recursively to get a score and a sequence (lines 4-7). If it finds a new best
sequence for the level it keeps it as the best sequence (lines 8-11). Then it adapts the
policy using the best sequence found so far at the current level (line 12).

NRPA balances exploitation by adapting the probabilities of playing moves toward
the best sequence of the level, and exploration by using Gibbs sampling at the lowest
level. It is a general algorithm that has proven to work well for many optimization
problems.

Algorithm 1 The playout algorithm
1: playout (state, policy)
2: sequence← []
3: while true do
4: if state is terminal then
5: return (score (state), sequence)
6: end if
7: z← 0.0
8: for m ∈ possible moves for state do
9: z← z + exp (policy [code(m)])

10: end for
11: choose a move with probability exp(policy[code(move)])

z

12: state← play (state, move)
13: sequence← sequence + move
14: end while



Generalized Nested Rollout Policy Adaptation 3

Algorithm 2 The Adapt algorithm
1: Adapt (policy, sequence)
2: polp← policy
3: state← root
4: for move ∈ sequence do
5: polp [code(move)]← polp [code(move)] + α
6: z← 0.0
7: for m ∈ possible moves for state do
8: z← z + exp (policy [code(m)])
9: end for

10: for m ∈ possible moves for state do
11: polp [code(m)]← polp [code(m)] - α ∗ exp(policy[code(m)])

z

12: end for
13: state← play (state, move)
14: end for
15: policy← polp

Algorithm 3 The NRPA algorithm.
1: NRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: (result,new)← NRPA(level − 1, policy)
8: if result ≥ bestScore then
9: bestScore← result

10: seq← new
11: end if
12: policy← Adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if
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3 Theoretical Analysis of NRPA

In NRPA each move is associated to a weight. The goal of the algorithm is to learn these
weights so as to produce a playout policy that generates good sequences of moves. At
each level of the algorithm the best sequence found so far is memorized. Let s1, ..., sm
be the sequence of states of the best sequence. Let ni be the number of possible moves
in a state si. Let mi1, ...,mini be the possible moves in state si and mib be the move of
the best sequence in state si. The goal is to learn to play the move mib in state si.

The playouts use Gibbs sampling. Each move mik is associated to a weight wik.
The probability pik of choosing the move mik in a playout is the softmax function:

pik =
ewik

Σjewij

The cross-entropy loss for learning to play move mib is Ci = −log(pib). In order
to apply the gradient we calculate the partial derivative of the loss: δCi

δpib
= − 1

pib
. We

then calculate the partial derivative of the softmax with respect to the weights:

δpib
δwij

= pib(δbj − pij)

Where δbj = 1 if b = j and 0 otherwise. Thus the gradient is:

∇wij =
δCi
δpib

δpib
δwij

= − 1

pib
pib(δbj − pij) = pij − δbj

If we use α as a learning rate we update the weights with:

wij = wij − α(pij − δbj)

This is the formula used in the NRPA algorithm to adapt weights.

4 Generalization of NRPA

We propose to generalize the NRPA algorithm by generalizing the way the probability
is calculated using a temperature τ and a bias βij :

pik =
e
wik
τ

+βik

Σje
wij
τ

+βij
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4.1 Theoretical Analysis

The formula for the derivative of f(x) = g(x)
h(x) is:

f ′(x) =
g′(x)h(x)− h′(x)g(x)

h2(x)

So the derivative of pib relative to wib is:

δpib
δwib

=
1
τ e

wib
τ +βibΣje

wij
τ +βij − 1

τ e
wib
τ +βibe

wib
τ +βib

(Σje
wij
τ +βij )2

δpib
δwib

=
1

τ

e
wib
τ +βib

Σje
wij
τ +βij

Σje
wij
τ +βij − e

wib
τ +βib

Σje
wij
τ +βij

δpib
δwib

=
1

τ
pib(1− pib)

The derivative of pib relative to wij with j 6= b is:

δpib
δwij

= −1

τ

e
wij
τ +βije

wib
τ +βib

(Σje
wij
τ +βij )2

δpib
δwij

= −1

τ
pijpib

We then derive the cross-entropy loss and the softmax to calculate the gradient:

∇wij =
δCi
δpib

δpib
δwij

= −1

τ

1

pib
pib(δbj − pij) =

pij − δbj
τ

If we use α as a learning rate we update the weights with:

wij = wij − α
pij − δbj

τ

This is a generalization of NRPA since when we set τ = 1 and βij = 0 we get
NRPA.

The corresponding algorithms are given in Algorithms 4 and 5.

4.2 Equivalence of Algorithms

Let the weights and probabilities of playing moves be indexed by the iteration of the
GNRPA level. Let wnij be the weight wij at iteration n, pnij be the probability of
playing move j at step i at iteration n, δnbj the δbj at iteration n.

We have:
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p0ij =
e

1
τ w0ij+βij

Σke
1
τ w0ik+βik

w1ij = w0ij −
α

τ
(p0ij − δ0bj)

p1ij =
e

1
τ w1ij+βij

Σke
1
τ w1ik+βik

=
e

1
τ w0ij− α

τ2
(p0ij−δ0bj)+βij

Σke
1
τ w1ik+βik

w2ij = w1ij −
α

τ
(p1ij − δ1bj) = w0ij −

α

τ
(p0ij − δ0bj + p1ij − δ1bj)

By recurrence we get:

pnij =
e

1
τ wnij+βij

Σke
1
τ wnik+βik

=
e
w0ij
τ −

α
τ2

(Σkpkij−δkbj)+βij

Σke
1
τ wnik+βik

From this equation we can deduce the equivalence between different algorithms.
For example GNRPA1 with α1 = ( τ1τ2 )

2α2 and τ1 is equivalent to GNRPA2 with α2

and τ2 provided we set w0ij in GNRPA1 to τ1
τ2
w0ij . It means we can always use τ = 1

provided we correspondingly set α and w0ij .
Another deduction we can make is we can set βij = 0 provided we set w0ij =

w0ij + τ × βij . We can also set w0ij = 0 and use only βij which is easier.
The equivalences mean that GNRPA is equivalent to NRPA with the appropriate α

and w0ij . However, it can be more convenient to use βij than to initialize the weights
w0ij as we will see for SameGame.

Algorithm 4 The generalized playout algorithm
1: playout (state, policy)
2: sequence← []
3: while true do
4: if state is terminal then
5: return (score (state), sequence)
6: end if
7: z← 0
8: for m ∈ possible moves for state do
9: o[m]← e

policy[code(m)]
τ

+β(m)

10: z ← z + o[m]
11: end for
12: choose a move with probability o[move]

z

13: state← play(state,move)
14: sequence← sequence+move
15: end while
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Algorithm 5 The generalized adapt algorithm
1: Adapt (policy, sequence)
2: polp← policy
3: state← root
4: for b ∈ sequence do
5: z ← 0
6: for m ∈ possible moves for state do
7: o[m]← e

policy[code(m)]
τ

+β(m)

8: z ← z + o[m]
9: end for

10: for m ∈ possible moves for state do
11: polp[code(m)]← polp[code(m)]− α

τ
( o[m]

z
− δbm)

12: end for
13: state← play(state, b)
14: end for
15: policy ← polp

5 Optimizations of GNRPA

5.1 Avoid Calculating Again the Possible Moves

In problems such as SameGame the computation of the possible moves is costly. It is
important in this case to avoid to compute again the possible moves for the best play-
out in the Adapt function. The possible moves have already been calculated during the
playout that found the best sequence. The optimized playout algorithm memorizes in
a matrix code the codes of the possible moves during a playout. The cell code[i][m]
contains the code of the possible move of index m at the state number i of the best
sequence. The state number 0 is the initial state of the problem. The index array mem-
orizes the index of the code of the best move for each state number, len(index) is the
length of the best sequence and index[i] is the index of the best move for state number
i.

5.2 Avoid the Copy of the Policy

Tha Adapt algorithm of NRPA and GNRPA considers the states of the sequence to
learn as a batch. The sum of the gradients is calculated for the entire sequence and then
applied. The way it is done in NRPA is by copying the policy to a temporary policy,
modifying the temporary policy computing the gradient with the unmodified policy, and
then copying the modified temporary policy to the policy.

When the number of possible codes is large copying the policy can be costly. We
propose to change the Adapt algorithm to avoid to copy twice the policy at each Adapt
call. We also use the memorized codes and index so as to avoid calculating again the
possible moves of the best sequence.

The way to avoid copying the policy is to make a first loop to compute the proba-
bilities of each move of the best sequence, lines 2-8 of Algorithm 6. The matrix o[i][m]
contains the probability for move index m in state number i, the array z[i] contains
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the sum of the probabilities of state number i. The second step is to apply the gradient
directly to the policy for each state number i and each code, see lines 9-14.

Algorithm 6 The optimized generalized adapt algorithm
1: Adapt (policy, code, index)
2: for i ∈ [0, len(index)[ do
3: z[i]← 0
4: for m ∈ [0, len(code[i])[ do
5: o[i][m]← e

policy[code[i][m]]
τ

+β(m)

6: z[i]← z[i] + o[i][m]
7: end for
8: end for
9: for i ∈ [0, len(index)[ do

10: b← index[i]
11: for m ∈ [0, len(code[i])[ do
12: policy[code[i][m]]← policy[code[i][m]]− α

τ
( o[i][m]

z|i] − δbm)
13: end for
14: end for

6 Experimental Results

We now give experimental results for SameGame and TSPTW.

6.1 SameGame

The first algorithm we test is the standard NRPA algorithm with codes of the moves
using a Zobrist hashing [24] of the cells of the moves [17,10,6]. The selective policy
used is to avoid the moves of the dominant color except for moves of size two after
move number ten. The codes of the possible moves of the best playout are recorded
so as to avoid computing again the possible moves in the Adapt function. It is called
NRPA.

Using Zobrist hashing of the moves and biasing the policy with β is better than
initializing the weights at SameGame since there are too many possible moves and
weights. We tried to reduce the possible codes for the moves but it gave worse results.
The second algorithm we test is to use Zobrist hashing and the selective policy asso-
ciated to the bias. It is GNRPA with τ = 1 and βij = min(n − 2 − tabu, 8), with
tabu = 1 if the move is of size 2 and of the tabu color and tabu = 0 otherwise. The
variable n being the number of cells of the move. The algorithm is called GNRPA.beta.

The third algorithm we test is to use Zobrist hashing, the selective policy, β and the
optimized Adapt function. The algorithm is called GNRPA.beta.opt.

All algorithms are run 200 times for 655.36 seconds and average scores are recorded
each time the search time is doubled.
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The evolution of the average score of the algorithms is given in figure 1. We can see
that GNRPA.beta is better than NRPA but that for scores close to the current record of
the problem the difference is small. GNRPA.beta.opt is the best algorithm as it searches
more than GNRPA.beta for the same time.

Fig. 1: Evolution of the average scores of the three algorithms at SameGame.

Table 1 gives the average scores for the three algorithms associated to the 95%
confidence interval in parenthesis (2× σ√

n
).

Table 1: Results for the first SameGame problem of the standard test suite.
Time NRPA GNRPA.beta GNRPA.beta.opt

40.96 2435.12 (49.26) 2513.35 (53.57) 2591.46 (52.50)
81.92 2676.39 (47.16) 2749.33 (47.82) 2777.83 (48.05)
163.84 2838.99 (41.82) 2887.78 (39.50) 2907.23 (38.45)
327.68 2997.74 (21.39) 3024.68 (18.27) 3057.78 (13.52)
655.36 3081.25 (10.66) 3091.44 (10.96) 3116.54 ( 7.42)
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6.2 TSPTW

The Traveling Salesman with Time Windows problem (TSPTW) is a practical problem
that has everyday applications. NRPA can be used to efficiently solve practical logistics
problems faced by large companies such as EDF [7].

In NRPA paths with violated constraints can be generated. As presented in [22] , a
new score Tcost(p) of a path p can be defined as follow:

Tcost(p) = cost(p) + 106 ∗Ω(p),

with, cost(p) the sum of the distances of the path p and Ω(p) the number of violated
constraints. 106 is a constant chosen high enough so that the algorithm first optimizes
the constraints.

The problem we use to experiment with the TSPTW problem is the most difficult
problem from the set of [19].

In order to initialize βij we normalize the distances and multiply the result by ten.
So βij = 10 × dij−min

max−min , where min is the smallest possible distance and max the
greatest possible one.

All algorithms are run 200 times for 655.36 seconds and average scores are recorded
each time the search time is doubled.

Figure 2 gives the curves for the three GNRPA algorithms we haves tested with a
logarithmic time scale for the x axis.

Fig. 2: Evolution of the average scores of the three algorithms for TSPTW.
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We could not represent the curve for NRPA in figure 2 since the average values are
too low. They are given in table 2. It is possible to improve much on standard NRPA by
initializing the weights with the distances between cities [11,7]. However this solution
is not practical for all problems as we have seen with SameGame and using a bias β
is more convenient and general. We also tried initializing the weights with β instead of
using β and we got similar results to the use of β.

We can see in figure 2 that using a temperature of 1.4 improves on a temperature of
1.0. Using the optimized Adapt function does not improve GNRPA for TSPTW since
in the TSPTW problem the policy array and the number of possible moves is very small
and copying the policy is fast.

The curve of the best algorithm is asymptotic toward the best value found by all
algorithms. It reaches better scores faster.

Table 2 gives the average values for NRPA and the three GNRPA algorithms we
have tested. As there is a penalty of 1 million for each constraint violation, NRPA has
very low scores compared to GNRPA. This is why NRPA is not depicted in figure
2. For a search time of 655.36 seconds and not taking into account the constraints,
NRPA usually reaches tour scores between -900 and -930. Much worse than GNRPA.
We can observe that using a temparature is beneficial until we use 655.36 seconds and
approach the asymptotic score when both algorithms have similar scores. The numbers
in parenthesis in the table are the 95% confidence interval (2× σ√

n
).

Table 2: Results for the TSPTW rc204.1 problem
Time NRPA GNRPA.beta GNRPA.beta.t.1.4 GNRPA.beta.t.1.4.opt

40.96 -3745986.46 (245766.53 ) -897.60 (1.32 ) -892.89 (0.96 ) -892.17 (1.04 )
81.92 -1750959.11 (243210.68 ) -891.04 (1.05 ) -886.97 (0.87 ) -886.52 (0.83 )

163.84 -1030946.86 (212092.35 ) -888.44 (0.98 ) -883.87 (0.71 ) -884.07 (0.70 )
327.68 -285933.63 (108975.99 ) -883.61 (0.63 ) -880.76 (0.40 ) -880.83 (0.32 )
655.36 -45918.97 (38203.97 ) -880.42 (0.30 ) -879.35 (0.16 ) -879.45 (0.17 )

7 Conclusion

We presented a theoretical analysis and a generalization of NRPA named GNRPA. It
uses a temperature τ and a bias β.

We have theoretically shown that using a bias is equivalent to initializing the weights.
For SameGame initializing the weights can be difficult if we initialize all the weights
at the start of the program since there are too many possible weights, whereas using a
bias β is easier and improves search at SameGame. A lazy initialization of the weights
would also be possible in this case and would solve the weight initialization problem
for SameGame. For some other problems the bias could be more specific than the code
of the move, i.e. a move could be associated to different bias depending on the state. In
this case different bias could be used in different states for the same move which would
not be possible with weight initialization.
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We have also theoretically shown that the learning rate and the temperature can
replace each other. Tuning the temperature and using a bias has been very beneficial for
the TSPTW.

The remaining work is to apply the algorithm to other domains and to improve the
way to design formulas for the bias β.
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