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Abstract

In this paper we present a new Monte Carlo Search (MCS)
algorithm for finding the ground state energy of proteins in
the HP-model. We also compare it briefly to other MCS al-
gorithms not usually used on the HP-model and provide an
overview of the algorithms used on HP-model.
The algorithm presented in this paper does not beat state of
the art algorithms, see PERM (Hsu and Grassberger 2011),
REMC (Thachuk, Shmygelska, and Hoos 2007) or WLRE
(Wüst and Landau 2012) for better results.

Introduction
Monte Carlo search algorithm have proven to be power-
ful as game playing agents, with recent successes like Al-
phaGo(Silver et al. 2016). These algorithms have the advan-
tage of only needing an evaluation function for the final state
of the space they explore.

Protein folding is crucial to our understanding of biology
and designing drugs, however, trying our algorithms directly
on accurate models could be counterproductive. In this pa-
per, we use a new MCS algorithm to fold proteins in a sim-
plified lattice based model called the HP model.

First we will present the protein folding and the HP
model, then the different algorithms we used to explore the
problem space and finally the results of our experiments.

The problem
Protein folding
With recent developments in ARNm technology, it is now
possible to incite cells to produce a specific protein (Gros
et al. 1961), like the spike protein used in COVID-19 vac-
cines. Unfortunately, deducing the shape a protein will take
based given the amino acids sequence is not obvious nor
trivial. That is a reason protein folding is a very important
problem in molecular biology and medicine.

Proteins are chains of amino acids (primary structure),
they can fold in many different ways, the secondary struc-
ture is the shape the protein will take at a local level (a coil
for example), the tertiary structure is the global shape of the
protein with less discernible patterns, finally the quaternary
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structure is how a protein can assemble with another. Here
we are interested into predicting the ground state energy
folding (secondary and tertiary structure) from the primary
structure. Many forces drive the folding, which prevent the
creation of a very accurate simulator, the main driving force
is the hydrophobic one.

One can not approach protein folding without mentioning
DeepMind’s AlphaFold (Jumper et al. 2021). Placing first at
the Critical Assessment of Techniques for Protein Structure
Prediction in 2018 and 2020, it is the best program for pro-
tein structure prediction yet. AlphaFold uses machine learn-
ing on a large protein database to train neural networks, in
addition to physics based rules in order to predict the folding
of a protein.

AlphaFold is the greatest achievement to protein folding
prediction in decades, but the research is not over yet. Al-
phaFold accuracy can still be perfected, and by using neural
networks the explainability is low and the model may not be
able to predict structure of proteins never seen before. Our
objective here is to provide a better algorithm for Monte
Carlo physics simulation, which may be more explainable
than AlphaFold, but is currently way less accurate.

HP model
The main idea behind the creation of the HP model is that
the Hydrophobic-Polar (HP) force is the main force driving
the folding of a protein, thus it is the only one used here.

The HP model is a very simplified lattice based model for
protein folding, it exists in 2D and 3D versions.

In the HP model, proteins are represented as a chain of H
and P residues (amino acids), the chain is then folded onto
a grid, two residues can not share the same positions. The
energy of a chain is determined by the residue contacts, usu-
ally, the reward for an H-H connection is -1, and 0 for H-
P and P-P contacts in a context of minimisation (since the
ground energy state is the state with the least potential en-
ergy). Other rewards can be used to obtain different results
or guide the search.

State of the art on HP model
The HP model was introduced in 1985 by Ken Dill (Dill
1985), it has seen a number of algorithms trying to solve it.



All of the best performing algorithms on the HP model are
Monte Carlo based, policy learning using neural networks or
reinforcement learning like NRPA (Rosin 2011) led to poor
results. In these Monte Carlo algorithms we can identify two
types, the chain growth algorithms and the replica exchange
ones.

The chain growth methods add the residues one after the
other, next to the previous one, it is similar to a self avoiding
walk and it is the method we used in our own algorithm.

The replica exchange methods use pull moves, pulling
the chain at one point by rotating a residue around one of
its neighbor, symmetrically rotating a part of the chain or
pulling from one side of the chain. This means the entirety
of the chain is present on the lattice at any given state of
the research, and is in a physically possible conformation,
this method is used in simulated annealing like Monte Carlo
algorithms. To see a representation of these moves check
Chris Thchuk, Alena Shmygelska and Holger H Hoos
REMC article (Thachuk, Shmygelska, and Hoos 2007).

Here is a short review of the methods we encountered.

1) PERM : Initially used on Self Avoiding Walks (SAW),
PERM is a chain growth algorithm and was used on the
HP model by Peter Grassberger in 1997 (Grassberger). It
stands for Pruned Enriched Rosenbluth Sampling, the idea
is to explore the possible chains uniformly with a bias on
the immediate gain, cutting (pruning) branches leading
to too few choices and poor performances, and cloning
(enriching) branches that lead to great results. PERM has
seen many new versions until 2011 (Hsu and Grassberger
2011), mainly proposed by its creator, Peter Grassberger.
It still is one of the best algorithms available but has been
outperformed by pull-moves based more recent algorithms.

2) REMC : Introduced in 2007 by Chris Thachuk, Alena
Shmygelska and Holger H Hoos (Thachuk, Shmygelska,
and Hoos 2007), the Replica Exchange Monte Carlo
algorithm uses pull moves and simulated annealing. That
algorithm keeps only a certain number of replicas (it
was determined the best number of replicas for the 3D
HP-model was 2), each with a given temperature. At each
step the algorithm mutates each replica with a Monte-Carlo
Search using the pull moves, the probabilities to keep a
mutation are decided by the score gain (energy loss) of the
mutated state and the temperature. Then, once each state
is produced trough mutation, the replicas are then again
swapped probabilisticaly, again according to their score
(energy) and temperatures.

3) Wang-Landau sampling : Introduced in 2012 on the HP
model, the Wang-Landau sampling (WLS) (Wüst and Lan-
dau 2012) method seems to be the new best algorithm for
solving the HP model. It is a replica-exchange (simulated
annealing) algorithm that uses the same pull moves as the
REMC, but also uses moves consisting in cutting and joining
of the molecule (thus reallocating all the residues according
to their position), together they are named the Monte-Carlo
trial moves. With these moves, the WLS explores the con-

formation space to estimate an histogram of the energies of
these conformations. With this histogram, the WLS can then
direct the exchange of the replicas.

Algorithm
Biased Growth
In a similar way to the PERM algorithm (Hsu and Grass-
berger 2011), we try to favor the immediate reward when
building/folding the molecule. To do this, we use biased
playouts, the chances of selecting a move m from M the
possible moves with an immediate gain G follows a softmax
distribution with b the bias factor:

exp(G[m]∗b)
sum([exp(G[i]∗b)for i in M ]) .

Mcurrent-state denotes the legal moves available from
the state current-state.
GMcurrent-state denotes the immediate gains of each legal
moves available from the state current-state.

Algorithm 1: The biased growth playout algorithm.
1: function PLAYOUT(current-state, b)
2: ply ← 0
3: seq ← {}
4: while current-state is not terminal do
5: gains← GMcurrent-state
6: move← softMaxChoice(Mcurrent-state, gains∗

b)
7: current-state← play(current-state,move)
8: seq[ply]← move
9: ply+ = 1

10: end while
11: return score(current-state), seq
12: end function

Nested Monte Carlo Search
NMCS (Cazenave 2009) is a Monte Carlo Search algorithm
that recursively calls lower level NMCS on children states of
the current state in order to decide which move to play next,
the lowest level of NMCS being a random playout, selecting
uniformly the move to execute among the possible moves.
A heuristic can be added to the playout move choices, and
it is the case here with the biased growth playouts.

Algorithm 2 gives the NMCS algorithm, l is the nesting
level and b the playout bias.

Lazy Nested Monte Carlo Search
The lazy NMCS inherits its main features from the NMCS,
but solves an obstacle encountered on this problem. Solving
the 3D HP model with the NMCS requires using a level of 4
at least, however, it requires computing many 3 level NMCS,
already very costly, one for each possible move the level 4
NMCS can make. The main idea behind the lazy NMCS is
that there are moves that lead to low potential states, to do



Algorithm 2: The NMCS algorithm.
1: function NMCS(current-state, l, b)
2: if l = 0 then return playout(current-state, b)
3: else
4: best-score← −∞
5: best-sequence← []
6: ply ← 0
7: while c-state is not terminal do
8: for each move in Mc-state do
9: n-st← play(current-state,move)

10: (score, seq)← NMCS(n-st, l − 1, b)
11: if score ≥ best-score then
12: best-score← score
13: best-sequence[ply..]← move+seq
14: end if
15: end for
16: next-move← best-sequence[ply]
17: ply ← ply + 1
18: c-state← play(c-state, next-move)
19: end while
20: return (best-score, best-sequence)
21: end if
22: end function

so, we estimate the potential of a state by launching a num-
ber of biased growth playouts and calculating the mean of
their scores, then we compare that score to a threshold (rel-
ative to the number of moves already done) calculated from
the previous estimations to decide if we want to expand the
search tree from this state, or prune it. To update the prun-
ing threshold, it is possible to use a mean, a median or a
max from the previous estimations, here we use the max as
it gave the best results on these problems.

In the following pseudocode in algorithm 3, p is the num-
ber of playouts used to evaluate a state and r is the ratio to
the threshold a state will be pruned on. l is the nesting level
and b is the playout bias.

From line 9 to line 14, the state is evaluated with the mean
of p playouts.

From line 13 to line 15, the threshold list is extended on
the first entry of a new molecule length, this step is not
needed if the list is initialised with the right size from the
start for problems we know the maximum number of moves
that will be played.

From line 16 to 18, the threshold is updated with the eval-
uation.

From line 19 to 23, it is decided with the evaluation, the
pruning ratio and the corresponding threshold if the search
will be costly or not.

As you can see there is only one FOR loop iterating over
the moves in this implementation of the LNMCS, it means
the evaluation is incomplete when the algorithm decides
wether to prune the first branches or not. This is a minor flaw
in this version of the algorithm and it is easily fixed by ul-
terior versions (along with other shortcomings). Nonethless,
the experiments were made with this ”prototype” version of
the algorithm.

Algorithm 3: The Lazy NMCS algorithm.
1: tr ← []
2: function LNMCS(c-st, l, b, p, r)
3: if level = 0 then return PLAYOUT(c-st, b)
4: else
5: best-score← −∞
6: best-sq ← []
7: ply ← 0
8: while c-st is not terminal do
9: for each move in Mc-state do

10: n-st← play(c-st,move)
11: for i in 0..p do
12: (playoutSc, )← playout(n-st, b)
13: es← es+ playoutSc/p
14: end for
15: if tr.length() < c-st.nbplay + 1 then
16: tr.push(0.0)
17: end if
18: if tr[c-state.nbplay] < es then
19: tr[c-state.nbplay] = es
20: end if
21: if es < ratio ∗ tr[c-st.nbplay] then
22: (sc, sq)←LNMCS(c.1, 0, b, p, r)
23: else
24: (sc, sq)←LNMCS(c.1, l−1, b, p, r)
25: end if
26: if sc ≥ best-score then
27: best-score← sc
28: best-sq[ply..]← move+ sq
29: end if
30: end for
31: next-move← best-sq[ply]
32: ply ← ply + 1
33: c-st← play(c-st, next-move)
34: end while
35: return (best-score, best-sq)
36: end if
37: end function

Results

Lazy Nested Monte Carlo Search

We conducted experiments on the 10 molecules with 48
mers from the benchmark we can find in Holger’s (Thachuk,
Shmygelska, and Hoos 2007) and Hsu’s (Hsu and Grass-
berger 2011) work.



ID molecule -E*

1 HPHHPPHHHHPHHHPPHHPPHPH
HHPHPHHPPHHPPPHPPPPPPPPHH 32

2 HHHHPHHPHHHHHPPHPPHHPPH
PPPPPPHPPHPPPHPPHHPPHHHPH 34

3 PHPHHPHHHHHHPPHPHPPHPHH
PHPHPPPHPPHHPPHHPPHPHPPHP 34

4 PHPHHPPHPHHHPPHHPHHPPPH
HHHHPPHPHHPHPHPPPPHPPHPHP 33

5 PPHPPPHPHHHHPPHHHHPHHPH
HHPPHPHPHPPHPPPPPPHHPHHPH 32

6 HHHPPPHHPHPHHPHHPHHPHPP
PPPPPHPHPPHPPPHPPHHHHHHPH 32

7 PHPPPPHPHHHPHPHHHHPHHPH
HPPPHPHPPPHHHPPHHPPHHPPPH 32

8 PHHPHHHPHHHHPPHHHPPPPPP
HPHHPPHHPHPPPHHPHPHPHHPPP 31

9 PHPHPPPPHPHPHPPHPHHHHHH
PPHHHPHPPHPHHPPHPHHHPPPPH 34

10 PHHPPPPPPHHPPPHHHPHPPHP
HHPPHPPHPPHHPPHHHHHHHPPHH 33

To obtain our results, we used the lazy NMCS with a
timeout of 150s, if the algorithm has not found a confor-
mation with the lowest known energy before the end of the
timeout then we restart the algorithm until that happens.
In our experiments, the playout biased growth gives an
immediate gain of 1 to any legal H-H connection, but also
a penalty of -0.2 to the HP connections, this was made in
order to incite the biased growth to keep a maximum of H
mers open to future connections, we did not experiment on
that variable.

Molecule 4 used a lazy NMCS with a threshold based
on the mean of the evaluation playouts with the following
parameters :

level 4
#eval playouts 10
pruning ratio 0.97
playout bias 20

The other molecules used a lazy NMCS with a threshold
based on the best average from a batch of evaluation
playouts with the following parameters :

level 5
#eval playouts 20
pruning ratio 0.9
playout bias 20

Different methods of evaluation and pruning can greatly
change the performance of the algorithm, and some methods
can be ineffective on a set of molecules while being capable
on another set.

ID mean time interquartile
1 5.5 5
2 12.5 15.5
3 10 14
4 20 25
5 10 10
6 +- 180 -
7 +- 60 -
8 13.5 12
9 +- 120 -

10 7 9

These results are displayed in minutes and were obtained on
a 3.50GHz Intel core i5-6600K CPU.

Our LNMCS performed very poorly on molecule 6 and
7, we were not able to gather enough data to compute the
statistics. This was unexpected since only molecules 4 and 9
are difficult for PERM (the state of the art chain growth algo-
rithm) to solve according to Grassberger and Hsu’s latest pa-
per (Hsu and Grassberger 2011), and molecule 4 posed less
problems. However, the lazy NMCS could attain the second
best energy level very reliably in less than 150s in half of the
launches with both molecules.

LNMCS was also able to easily reach the second best
level of energy on molecule 9 but could only reach the
optimal state every 2 hours approximately, that result was
expected since PERM encounters difficulties with that
molecule too.

Other MCS algorithms
We tried to solve The HP model with a variety of different
Monte Carlo algorithms. We only applied these algorithms
to the first molecule from the benchmark (referred as
”the molecule” in this section), the results presented in
this section are only to give an idea of these algorithms
performances and do not necessarily reflect their potentials
on the HP model.

Nested Monte Carlo Search The good performances of
the NMCS (Cazenave 2009) compared to the other algo-
rithms presented in this section is what decided us to try
to improve it for this problem into the LNMCS: the NMCS
was able to find the optimal value on the molecule in less
than 10mn.

In Figure 2 and Figure 1 we compare performances of the
level 5 NMCS and the level 5 LNMCS with a ratio of 0.9
on molecule 1, with both a playout bias of 20 over 20 runs
with a 150s timeout.

As you can see on these figures, the LNMCS provides a
substantial performance gain over the NMCS on this prob-
lem. Lowest energy conformations are way sparser than the
second lowest energy conformations (about an order of mag-
nitude or two), being able to reach them 4 times as often is a
great improvement.

Nested Rollout Policy Adaptation The NRPA (Rosin
2011) is similar to the NMCS, the main difference is that
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Figure 1: Energy distribution with the Lazy NMCS

−32 −31 −30 −290

5

10

15

Energy

N

Figure 2: Energy distribution with the NMCS

the NRPA learns a policy to decide which move play
during playouts, that policy discovery is interesting for
many problems which are too complex to implement a
man made policy (like we did here). On many problems
the NRPA outperforms the NMCS, however in our case
it was not able to do. The performance of the NRPA and
GNRPA (Cazenave 2020) are widely dependent on the
move representations, here it is the number corresponding
to the amount of residues already placed and its direction
and NRPA and GNRPA with a bias of 20 were not able
to reach the optimal energies (-28 or -29 for the GNRPA
when -32 is the best known). Other moves representations
were tried, using the last few previous moves instead of the
number of residues already placed for example, but none
were able to provide better performances. Our inability
to obtain good results with NRPA does not mean it is
impossible to solve this problem with it.

Greedy Best First Search with playouts The Greedy
BFS (Doran and Michie 1966) is a simple search algorithm
that uses a ranked list of the nodes to open according to
their scores given by an evaluation function. Iteratively,
the Greedy BFS opens the best node from the list and
launches the evaluation function on every children of this
node to insert them in the ranked list. Here we evaluate the
children with their results with one or multiple playouts.
This method converges rapidly to a ”good enough” solution
(a local minimum), -29 when the best known is -32 on
molecule 1, but then improves very little, it is due to a large
number of good scoring states that do not lead to an optimal
solution, making the search too exhaustive. Pruning the
search tree could improve the results of this method.

Upper Confidence bounds applied to Trees UCT (Koc-
sis and Szepesvári 2006) is used on game playing and usu-
ally provides good results. It iteratively starts from the ini-
tial state and launches playouts, based on the results of each
playout, the value used to determine which moves should be
taken is updated. UCT does not work well on the HP-model
without biased growth (achieving about the same scores as a
single biased playout, -18), with biased growth it achieves
scores around -28/-29 on molecule 1, like the other non
NMCS algorithms discussed here.

Conclusion
While the Lazy NMCS algorithm likely does not outperform
the state of the art algorithms, it has the advantage to be eas-
ier to implement and may be applicable to more problems. It
is also shown to be an improvement on the NMCS algorithm
on this specific problem. In future works we aim to apply it
to other problem and find ways to improve its performances.
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