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Résumé
Dans les jeux à information imparfaite (par exemple, le

bridge, le skat, le poker), l’une des considérations fondamen-
tales est de déduire l’information manquante tout en évitant
de divulguer des informations privées. Ne pas tenir compte
de l’information privée révélé peut conduire à des perfor-
mances très exploitables, toutefois, une attention excessive
à cet égard conduit à des hésitations qui ne sont plus cohé-
rentes avec nos informations privées. Dans notre travail, nous
montrons que, pour améliorer les performances, il faut choi-
sir d’utiliser ou non l’information privée d’un joueur. Nous
étendons notre travail en proposant une nouvelle distribu-
tion de croyances en fonction de la quantité d’informations
privées et publiques souhaitée. Nous démontrons empiri-
quement une augmentation des performances et, montrons
qu’afin d’améliorer encore les performances, la nouvelle dis-
tribution devrait être utilisée en fonction de la position dans
le jeu. Nos expériences ont été réalisées sur plusieurs jeux à
information imparfaite et dans plusieurs algorithmes basés
sur la détermination (PIMC et IS-MCTS).

Abstract
In imperfect information games (e.g. Bridge, Skat,

Poker), one of the fundamental considerations is to infer
the missing information while at the same time avoiding
the disclosure of private information. Disregarding the is-
sue of protecting private information can lead to a highly
exploitable performance, yet, excessive attention to it leads
to hesitations that are no longer consistent with our private
information. In our work, we show that, for improving per-
formance, one must choose whether to use a player’s private
information. We extend our work by proposing a new be-
lief distribution depending on the amount of private and
public information desired. We empirically demonstrate an
increase in performance and with the aim of further im-
proving performance, the new distribution should be used
according to the position in the game. Our experiments

have been done on multiple benchmarks and in multiple
determinization-based algorithms (PIMC and IS-MCTS).

1 Introduction

Search in artificial intelligence has been constantly evol-
ving over the last few decades, and game-based research
has always been a cornerstone of this success. Chess, Go
[13], Poker [2], Skat, Contract Bridge or Starcraft [20] are
among the most famous one.

Perfect information games (Chess, Go) — where all in-
formation is available for each player — have been the most
studied, and many algorithms have been able to achieve a
level far beyond the level of a human professional player. On
the other hand, Imperfect Information Games (IIG) (Poker,
Skat, Bridge) — where some information is hidden — have
been less studied, and only a few algorithms are capable of
beating professional human player [19, 2].

In IIG, the complexity is heightened by the missing in-
formation, as one must try to infer the missing information
of the opponents and at the same time, must be wary to not
reveal private hidden information to opponents. Among the
methods used in IIG, determinization-based algorithms —
where the hidden information is fixed according to a belief
distribution — such as Perfect Information Monte Carlo
(PIMC) [11], Recursive PIMC [7], Information Set MCTS
[5] or AlphaMu [4] achieve state-of-the-art performance in
many trick-taking card games (Contract-Bridge, Skat).

In the work cited above, the determinization operates by
sampling the hidden information according to the private
information of a given player i.e., what has happened since
the beginning, from the point of view of a given agent. Ho-
wever, by doing so, one can indirectly reveal private infor-



mation to opponents, which can lead to a highly exploitable
performance.

Recently, the concept of public knowledge [9] — where
a distinction is made between observations accessible to
everyone and those accessible individually — has emerged
in the IIG problems. This concept has resulted in many
breakthroughs thanks to the decomposition, which made
the calculations feasible [12, 1].

Despite this large benefit, there are limitations to its use,
especially, in the context of belief distribution. By doing
so, we completely remove the knowledge observed by the
player acting, and one might wonder whether not using the
private information was useful.

In this work, we analyze the impact of using one method
rather than another. We also present a new belief distribu-
tion, which is a mixture of both public and private belief
distribution. We extend the study by analyzing different
mixtures, depending on the position within the game. Our
experiments are carried out on determinization-based algo-
rithms, which use the belief distribution to fix the incerti-
tude.

The paper is organized as follows : the second section
presents notation and current determinization-based algo-
rithms, section three explains the different belief distribu-
tions used with their advantages and drawbacks, and pre-
sents our new belief distribution, and section four empiri-
cally shows that using the new belief distribution allows us
to improve past performance and the last section summa-
rizes our work and future work.

2 Notation and Background

2.1 Notation

We use the notation based on factored-observation sto-
chastic games (FOSGs [9]). This formalism distinguishes
between private and public observations.

A game 𝐺 is composed with N = {1, 2, ..., 𝑁} agents
(𝑁 ∈ N). The state of the game is called a world state
𝑤 ∈ W and in each world state, the acting player 𝑖 chooses
an action 𝑎 ∈ A(𝑤) where A(𝑤) denotes the legal actions
at 𝑤. After an action 𝑎 is chosen, we reach the next world
state 𝑤′ from the probability distribution of playing 𝑎 in 𝑤.

During the transition from 𝑤 to 𝑤′ by playing 𝑎, two
observations are received : a public observation and a
private observation. Public observation is the observa-
tion visible by every player noted 𝑜𝑝𝑢𝑏 ∈ O𝑝𝑢𝑏 (𝑤, 𝑎, 𝑤′)
where O𝑝𝑢𝑏 (𝑤, 𝑎, 𝑤′) refers to all the public observations
possible. Private observation is the observation visible by a
precise player 𝑖, noted 𝑜𝑖 ∈ O𝑖 (𝑤, 𝑎, 𝑤′)whereO𝑖 (𝑤, 𝑎, 𝑤′)
refers to all the private observations possible.

A history is a finite sequence of legal actions and world
states, denoted ℎ𝑡 = (𝑤0, 𝑎0, 𝑤1, 𝑎1, ..., 𝑤𝑡 ). For describing
the point of view of an agent 𝑖 of a history ℎ, we introduce

an infostate 𝑠𝑖 (ℎ). An infostate for agent 𝑖 is a sequence of
an agent’s observations and actions 𝑠𝑡
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Determinization refers to the fact that we sample one
world state according to a belief distribution of the different
world states possible. Determining the belief distribution is
not new and similar concept exists in other formalism such
as belief state in POMDPs problems [16], occupancy-state
in Dec-POMDPs problems [6].

2.2 Determinization-based algorithms

Each determinization-based algorithm has its own cha-
racteristics, nevertheless, they share some common features
such as (i) sampling a world state according to a belief dis-
tribution over the world states possible (ii) using a perfect
information algorithm for estimating the value of the world
state sampled.

The algorithms are simple and in practice, they achieve
great results, mainly due to the use of perfect infor-
mation algorithms that are fast and efficient. Among
the most famous perfect information algorithms, there
are AlphaBeta [8], MCTS [3] or Value Network [13, 14, 15].

In the following, we present two determinization-
based algorithms that are benchmarks and will, at a later
stage, be used in our experiments.

2.2.1 PIMC

Perfect Information Monte Carlo (PIMC) is the state-
of-the-art of many IIG problems such as Contract-Bridge,
Skat, and many others.

The algorithm is defined in Algorithm 1 and works as
follows (i) samples a world state by using the player’s private
information (ii) plays an action of the world state sampled
(iii) estimate the world state by using algorithm available
in perfect information setting (iv) repeats until the budget
is over (v) selects the action that produces the best result
in average. In practice, PIMC often uses AlphaBeta as the
perfect information evaluator.

2.2.2 IS-MCTS

Information Set Monte Carlo Tree Search (IS-MCTS) [5]
uses Monte Carlo Tree Search (MCTS) [3] according to a
world state sampled.

MCTS is a tree search algorithm and state-of-the-art in
perfect information games. It works as follows (i) selection
— selects a path of node based on the exploitation policy
(ii) expansion — expands the tree by adding a new child
node (iii) playout — estimates the child node by using an
exploration policy (iv) backpropagation — backpropagate



Algorithm 1: PIMC
Function PIMC(s) :

for m ∈ Moves (s) do
score[m]← 0;

end
while budget do

w← InfoSampling(s);
for m ∈ Moves (w) do

score [m]← score[m] + PerfectAlgo (w,
m);

end
end
return Best action on average

the result obtained from the playout through the nodes cho-
sen during the selection phase. In practice, MCTS often
uses random playout as the perfect information evaluator
and UCB1 in the selection phase.

IS-MCTS works by using MCTS according to a world
state sampled i.e., the selection and playout are done on the
world state sampled.

Algorithm 2: IS-MCTS
Function IS-MCTS(s):

while budget do
w← InfoSampling(s);
MCTS conditioning to w.;

end
return Normalise visit count for each action

Function MCTS(w):
u← Selection(w);
u← Expansion (u,w);
u← Simulation (u,w);
Backpropagation(u);

3 Belief Distributions

To present the different belief distributions, with their
advantages and drawbacks, we use the following example
throughout the section to facilitate understanding.

The example is based on the famous game ‘Liar’s Dice’
(an explanation of the game is given in subsection 4.1.2).
In our case, two players play with 1 die of 2 faces each.
We denoted {𝑃1 : 𝑋; 𝑃2 : 𝑌 } for player 1 has 𝑋 and player
2 has 𝑌 . There are four world states possible (𝑤1 = {𝑃1 :
1; 𝑃2 : 1}, 𝑤2 = {𝑃1 : 1; 𝑃2 : 2} ; 𝑤3 = {𝑃1 : 2; 𝑃2 : 2},
𝑤4 = {𝑃1 : 2; 𝑃2 : 1}).

For each player, there are two infostates possible and one
public infostate 𝑠𝑝𝑢𝑏 = {𝑜1 = ∅, 𝑜2 = ∅} (no observation).
For the player 1 we have 𝑠1 = {𝑜1 = 1, 𝑜2 = ∅} or 𝑠′1 = {𝑜1 =

Figure 1 – Multiple belief distributions for the game liar’s
dice with 1 dice of 2 faces each. Four world states possible
𝑤1 = {𝑃1 : 1; 𝑃2 : 1}, 𝑤2 = {𝑃1 : 1; 𝑃2 : 2}, 𝑤3 = {𝑃1 :
2; 𝑃2 : 2} and 𝑤4 = {𝑃1 : 2; 𝑃2 : 1}. The Public-Private
belief use the mixture distribution with 𝜆 = 0.5.

2, 𝑜2 = ∅} (i.e., the player 1 observes the die it receives but
not the die received by the other player), and for the player
2, we have 𝑠2 = {𝑜1 = ∅, 𝑜2 = 1} or 𝑠′2 = {𝑜1 = ∅, 𝑜2 = 2}
(i.e., the player 2 observes the die it receives but not the die
received by the other player).

In the following, we suppose that the world state of this
example is 𝑤2. Therefore, for the player 1, the infostate is
𝑠1 with two world states possible ({𝑤1, 𝑤2}) and for the
player 2, the infostate is 𝑠′2 with two world states possible
({𝑤2;𝑤3}).

Figure 1 represents the different belief distributions pre-
sented throughout the section.

3.1 Private Distribution

As previously introduced, current determinization-based
algorithms work by sampling world states according to
the player’s private information distribution i.e., knowing a
player’s private and public observation, we sample a world
state.

Let 𝑆 𝑗 (𝑠𝑖) be the set of possible information states for
player 𝑗 conditioning to the infostate 𝑠𝑖 of the player 𝑖.

In our example, the infostate possible for the player 2
when the player 1 has 𝑠11 is 𝑆2 (𝑠1) = {𝑠2; 𝑠′2}. In other
world, having the die 1 for the player 1 does not exclude
the player 2 to have a 1 or a 2. Yet, depending on the game,
this can be restrictive e.g., in trick-taking card games, if the
player 𝑖 has the card ‘Queen of Hearts’, no opponent can
have it.

Definition 1 (Private Belief State) Let 𝑆 𝑗 (𝑠𝑖) be the set of
possible information states for player 𝑗 conditioning to the
infostate 𝑠𝑖 . LetΔ𝑆 𝑗 (𝑠𝑖) denotes the distribution probability
over the elements of 𝑆 𝑗 (𝑠𝑖). We define the private belief



state as Δ𝑖 (𝑠𝑖) = (Δ𝑆1 (𝑠𝑖), . . . ,Δ𝑆𝑖 (𝑠𝑖), . . . ,Δ𝑆𝑁 (𝑠𝑖)) =
(Δ𝑆1 (𝑠𝑖), . . . , 𝑠𝑖 , . . . ,Δ𝑆𝑁 (𝑠𝑖)) .

In Figure 1, using the private belief state from the point
of view of the player 1 provides us the following belief
distribution Δ1 (𝑠1) = ({𝑠1 : 100%}, {𝑠2 : 50%; 𝑠′2 : 50%},
which result in two equiprobable world states (𝑤1, 𝑤2).

When using this distribution for determinization, the
algorithm samples a world state (𝑤1 or 𝑤2) consistent with
the current player’s information (𝑠1), and as the state-of-
the-art in trick-taking game shows, great performance is
obtained. Yet, by doing so, 3 problems arise.

(i) It is not consistent with the other player’s belief e.g., if
we use it with the first player, the algorithm samples 𝑤1 or
𝑤2 but never 𝑤3 which is nevertheless, a world state from
the point of view of the player 2.

(ii) It is not able to mislead others. e.g., in our example,
two actions are possible for the first player, ‘I have a one’
and ‘I have a two’. The action ‘I have a two’ is a lie, however,
one may want to play this action with the aim of deceiving
the opponent. However, in our case only 𝑤1 or 𝑤2 can be
sampled and, in each world, the action ‘I have a two’ results
in a defeat because the second player will say ‘It is a lie’.
Therefore, lying is never an option, as it never succeeds.

(iii) It, indirectly, allows the opponents to infer our private
information e.g., after playing multiple matches, the second
player understands that, if the first player plays ‘I have a
two’, it is because he really has a two as it can not lie, and
therefore, play to counter it.

Trying to infer the missing information, is one of the key
components of IIG, and using the private belief distribu-
tion could result in a highly exploitable performance. To
remove this problem, one can use public belief distribution,
as presented in the next section.

3.2 Public Distribution

Recently in IIG, many algorithms [12, 1] have been using
the concept of public observation. This concept has resul-
ted in many breakthroughs thanks to decomposition, which
made the calculations feasible. One application of public
observation is the creation of a public belief distribution
over the world states possible according to the public ob-
servations observed so far.

Definition 2 (Public Belief State [1]) Let 𝑆 𝑗 (𝑠𝑝𝑢𝑏) be the
set of possible information states for player 𝑗 condi-
tioning to the public infostate 𝑠𝑝𝑢𝑏. Let Δ𝑆 𝑗 (𝑠𝑝𝑢𝑏) de-
note the probability distribution over the elements of
𝑆 𝑗 (𝑠𝑝𝑢𝑏). We define the public belief state as Δ𝑝𝑢𝑏 (𝑠𝑝𝑢𝑏) =
(Δ𝑆1 (𝑠𝑝𝑢𝑏), ...,Δ𝑆𝑁 (𝑠𝑝𝑢𝑏)).

In our example, when using the public belief
state from the point of view of the player 1 or

player 2 would result in the same belief distribution
Δ𝑝𝑢𝑏 = ({𝑠1 : 50%; 𝑠′1 : 50%}, {𝑠2 : 50%; 𝑠′2 : 50%}. In-
deed, the public infostate does not contain any information,
therefore every world state is possible and equiprobable.

Using a public belief distribution instead of a private
belief distribution removes the problem defined in 3.1.

(i) It is consistent with the other player’s doubts e.g., it
samples the world 𝑤3 which is a world state possible of the
second player.

(ii) It is capable of misleading others e.g., when sampling
𝑤3 or 𝑤4 the action ‘It is a two’ does not result in a defeat
for the first player, therefore, allows the first player to play
the action ‘I have a two’.

(iii) It no longer reveals private information i.e., as the
reasoning is no longer biased toward the private informa-
tion, it can not be used against it.

Nevertheless, using public distribution has a significant
drawback. It does not consider a player’s private informa-
tion, and one might wonder whether it is useful to not use
private information. In Figure 1, when using the public dis-
tribution, every world has the same probability, and this, for
each player.

It is straightforward to consider that the extent to which
private information should be kept hidden depends on the
game being played, and in certain games, it is not necessary
to keep the information concealed.

In addition, by using public distribution, one must be
aware as there are more world states possible (e.g., by using
private distribution, we have two world states possible and
by using public distribution, we have four world states pos-
sible), which can be intractable in large games.

3.3 Mixture between public and private distribution

To solve both of the problems defined in Section 3.1 and
in Section 3.2, we propose to use a mixture of private and
public distribution.

Definition 3 (Public-Private Belief State (PPBS)) Let
𝑠𝑝𝑢𝑏 be the public infostate associated with the info-
state 𝑠𝑖 . We define the public-private belief state as
Δ𝜆 (𝑠𝑖) = (1 − 𝜆)Δ𝑖 (𝑠𝑖) + 𝜆Δ𝑝𝑢𝑏 (𝑠𝑝𝑢𝑏)

When 𝜆 = 0, we obtain the private belief distribution,
and when 𝜆 = 1, we obtain the public belief distribution.

Using PPBS allows us to be consistent with the problem
encountered. When care must be taken not to reveal infor-
mation, one can increase the 𝜆. In contrast, when it is not
appropriate to withhold information, one can decrease the𝜆.

In our example, when using PPBS with 𝜆 = 0.5 for
the player 1, we obtain the following belief distribution
Δ0.5 (𝑠1) = ({𝑠1 : 75%; 𝑠′1 : 25%}, {𝑠2 : 50%; 𝑠′2 : 50%}
that𝑤1 and𝑤2 are more probable (37.5% each) than𝑤3 and



𝑤4 (12.5% each), nevertheless, their probabilities are not
zero, which make it consistent with the other player’s belief.

It is possible to expand this concept by considering
that the 𝜆 is depending on the progress of the game. As an
example, in trick-taking card games, it may be important
to keep the private information hidden at the beginning
of the game (as not to reveal information), but as the
game progresses, the focus shifts to accumulating points
before the end, where the importance of concealing this
information may decrease.

With the aim of using public and the mixture distribution,
one must take care to adapt the algorithm. In particular, if an
algorithm starts at an infostate 𝑠𝑖 , it must be adapted to start
at the 𝑠𝑝𝑢𝑏 where 𝑠𝑝𝑢𝑏 is the public infostate associated
with the infostate 𝑠𝑖 . Adaptations of PIMC and IS-MCTS
are given in the appendix.

4 Experimentation

4.1 Benchmarks

For our experiments, the following benchmarks tested are
tested ‘Liar’s Dice’ (LD) and ‘Leduc Poker’ (LP). Each of
them is described below.

4.1.1 Trick-Taking card game

For the purpose of the experimentation, we use a smaller
version of classic trick-taking card games. The game is
played with two players with N cards divided into four suits
(Diamond, Spade, Club, Heart).

The playing phase is decomposed into tricks, the player
starting the trick is the one who won the previous trick. The
starting player of a trick can play any card in his hand, but
the other players must follow the suit of the first player. If
they can not, they can play any card they want but, without
the possibility of winning the trick. The winner of the trick
is the one with the highest ranking card.

At the end of the game, the points of each player are
counted. The count is defined by the number of tricks won
(plain version of trick-taking card game). A player wins if
it has at least half of the points.

4.1.2 Liar’s Dice

Liar’s dice is a dice game played with two or more players,
where each player possesses 𝑁 dice of 𝐾 faces in which a
player must deceive and be able to detect an opponent’s
deception.

In the beginning, each player rolls his dice and observes
the values. After that, players take turns guessing the num-
ber of dice of a particular type held by everyone. The game
continues until a player accuses another of lying. If the
player who made the assumption is right, he wins the game,

on the opposite, if the challenged player did not lie, the
challenged player wins. During the game, a player can not
bid less than previously i.e., he must at least bid more dice
than the previous player’s bid, or the same number of dice
but with a higher face. Lastly, the highest face is a wild card
i.e., the value can be used to count for any other face.

4.1.3 Leduc Poker

Leduc Poker, as described in the work [18], is a variation
of poker that uses a deck with only two suits, each containing
three cards.

The game consists of two rounds. In the first round, each
player is dealt a single private card. In the second round,
a single board card is revealed. The maximum number of
bets allowed is two, with the first round allowing raises of
2 and the second round allowing raises of 4. Both players
begin the first round with 1 already in the pot.

4.2 Experimentation

In our experiments, our objective is (i) to observe the
extent to which an algorithm X reveals information accor-
ding to mixture belief distribution (ii) to analyze how the
mixture belief distribution impact the performance against
an opponent that uses the information revealed (iii) to ana-
lyze how the mixture belief distribution impact the perfor-
mance against an opponent that does not use the information
revealed.

Our code is based on the code of OpenSpiel [10]. It is
a collection of environments and algorithms for research
in general reinforcement learning and search/planning in
games.

PIMC and IS-MCTS are used with their basic version
i.e., PIMC uses AlphaBeta and IS-MCTS uses random rol-
lout as the perfect information evaluator. For IS-MCTS, the
exploration constant is fixed at 0.7. For both, we sample
1000 world state.

To achieve a stable policy (as PIMC and IS-MCTS are
online algorithms), we repeat the calculation for every in-
fostate several times until we obtain a policy with less than
1% of variation.

The experiments were done according to the player’s
playing position (each position can reveal more or less infor-
mation). In the following part, the experiments are carried
out for the first player and in the appendix for the second
player.

4.2.1 How much information is revealed according 𝜆

We analyze the impact of the information revealed ac-
cording to the distribution used (public versus private dis-
tribution). We use the formula called True State Sampling
Ratio (TSSR) [17] which measures how much more likely
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(d) Card Game with 10 cards

Figure 2 – Average TSSR according to the 𝜆 of the
mixture distribution when playing at the first position.

it is for the opponent to guess the current world state when
using an algorithm X than using a uniform function.

The formula is 𝑇𝑆𝑆𝑅(𝑤) = 𝜂(𝑤 | 𝑠𝑖) · |𝑆𝑖 (𝑠𝑖) | where
𝑠𝑖 is the infostate corresponding to 𝑤, 𝜂(𝑤 | 𝑠𝑖) is
the probability that the true state is guessed given the
information set 𝑠𝑖 . The closer the result is to 1, the less
likely it is to know the real-world state. Figure 2 presents
the TSSR value obtain according to the 𝜆 of the mixture
distribution.

As expected, playing closer to the public belief dis-
tribution greatly reduces the probability of knowing the
real-world state. In ‘Liar’s Dice’ with 2 dices with PIMC,
we observe up to 10 fold more likely to guess the real world
state when using the private belief distribution instead of
the public belief distribution.

‘Liar’s Dice’ reveals more information than ‘Leduc Po-
ker’. With ‘Liar’s Dice’, the algorithm reveals up to 10 more
than random, whereas in ‘Leduc Poker’, it is up to 2 more
than random.

In addition, we observe that PIMC reveals more infor-
mation than IS-MCTS in every experiment. In ‘Liar’s Dice’
with 2 dice, it’s up to 10 times more likely to deduce the
true state with PIMC at 𝜆 = 0.0 whereas, with IS-MCTS, it
is ‘only’ 1.5 times more likely to deduce the true state.

4.2.2 How does the mixture impact the performance
against the best response

To measure how the mixture impacts the performance, we
compute the expected utility against the best responder. The

best responder is the worst enemy possible of all algorithms
i.e., it knows exactly the policy our algorithm will do, and
therefore, can infer about the infostate and plays the best
action possible against it.

The experiments are available in Table 1 where the
values represent the expected utility of the best responder
and must be minimized. The results obtained are exact
utility (without variation), as the best responder computes
the best strategy knowing all the distribution in every
infostate of the game.

We observe that the private belief distribution tends
to perform better than the public belief distribution i.e., for
all benchmarks and algorithms (better results are obtained
when 𝜆 = 0.0 than when 𝜆 = 1.0).

In ‘Liar’s Dice’ with PIMC, the best performances are
obtained when 𝜆 is close to 0.5 (with 2 dices, we obtain the
best value when 𝜆 = 0.6). These results were expected, as
PIMC reveals a lot of information with liar’s dice, especially
when 𝜆 < 0.5 which is then exploited by the best responder.

On the other hand, when the algorithm reveals less in-
formation (as observed in ‘Leduc Poker’ or IS-MCTS), it
is preferable to use the private belief distribution or very
close, as it is not sufficient for the best responder to exploit
the information revealed.

4.2.3 Can the use of multiple mixture belief distribu-
tion throughout the game improve performance

We analyze the use of multiple mixtures throughout the
game in order to improve the performance. For this purpose,
we compute the expected utility against the best responder
with multiple 𝜆.

Figure 3 represents several heatmaps for ‘Leduc Poker’
and ‘Liar’s Dice’ according to the position throughout the
game when using PIMC (resp. IS-MCTS). For both games,
we have a 𝜆 for the first action and another 𝜆 for the second
action.

In all figures, we observe that using multiple 𝜆 throughout
the game has an impact on the performance. In ‘Leduc
Poker’ for both algorithms, not using our private belief
distribution is more punished in the second round than in
the first round (e.g., {0.0, 1.0} has a value of 1.17 whereas
{1.0, 0.0} has a value of 1.88 for IS-MCTS).

For ‘Liar’s Dice’, we observe that the first round is the
most important one (changing the value of 𝜆 in the second
round does not have a significant effect on the value obtai-
ned).

Furthermore, playing multiple 𝜆 can improve perfor-
mance. In ‘Liar’s Dice’, the best value for IS MCTS is
obtained when we have {0.0, 0.6} and for PIMC when we
have {0.0, 0.6}.



Algo Game 𝜆

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PIMC
LD 2D 0.300 0.298 0.297 0.292 0.294 0.288 0.281 0.290 0.336 0.382 0.382
LD 3D 0.313 0.276 0.265 0.269 0.235 0.283 0.324 0.356 0.359 0.393 0.458

LP 0.622 0.616 0.660 0.767 0.797 1.481 1.626 1.480 1.532 1.599 1.611

IS-MCTS LD 2D 0.513 0.512 0.517 0.528 0.539 0.547 0.552 0.554 0.555 0.562 0.562
LP 0.797 0.890 0.966 0.959 1.158 1.226 1.402 1.673 1.786 2.083 2.326

Table 1 – Expected utility against best responder when playing at the first player position.

(a) Leduc Poker with PIMC (b) Liar’s Dice 2 dices with
PIMC

(c) Leduc Poker with IS
MCTS

(d) Liar’s Dice 2 dices with IS
MCTS

Figure 3 – Heatmap of the best response when playing at the first position. Y-axis refers to the 𝜆 value used when playing
the first action, and the X-axis refers to the 𝜆 used when playing the second action.

4.2.4 How does the mixture impact the winning rate

As observed in the previous experiments, when using
a 𝜆 closer to the public belief distribution, we obtain a
distribution of action less relevant but with the advantage of
disclosing less information. Therefore, against an opponent
that does not use our private information revealed, it is
expected to lose the utility of using 𝜆 closer to the public
belief distribution.

Nevertheless, using a 𝜆 closer to the public belief distri-
bution not only reveals less information but allows it to be
more consistent with the hesitation of the other players.

To measure the impact of being more consistent with
the other player’s hesitation, we evaluate the performance
against an algorithm that does not try to infer our private
information. To do this, we compute the winning rate
against ‘PIMC’ over 1000 games which results in 3.1%
variation (95% of confidence interval). The scores are
available in Table 2.

As before, we observe that it is preferable to use the
private belief distribution instead of the public belief
distribution. For example, in ‘Liar’s Dice’ with 3 dices
with PIMC, we observe a drop of 20.8 in the winning rate.

In addition, we observe that in every benchmarks tested
and for both algorithms, using a 𝜆 between 0.0 to 0.5 does
not produce a drop in performance, but provides equivalent
results. These results are surprising, as we could have ex-
pected a drop in performance as the actions is less relevant
to the current infostate (as we are sampled less often the

true infostate). This implies that being more consistent with
the hesitation of the other players compensate for the lost
in the player’s private information.

5 Conclusion

In this paper, we study the strengths and weaknesses of
probability distributions (private and public) in which par-
ticular attention has been paid to the information revealed
and the impact of this revealed information on performance.

We complete the study by proposing a new probability
distribution, a mixture of the two previous ones, which
solves problems encountered by other distributions.

We show that using the mixture is beneficial to reduce
the information revealed and improve performance. We also
show that using multiple mixtures throughout the game im-
proves performance. In addition, we observed that using
the mixture against an opponent that does not use our pri-
vate information revealed can also be used to improve per-
formance, as we are being more consistent with the other
player’s doubt.

An avenue for improvement would be to extend the uti-
lization of using multiple 𝜆, especially by using a 𝜆 at each
public infostate.

Another area for improvement would be to extend the
study of algorithms that do not use determinization or even,
without probability distributions but bearing in mind that
one should not always use one’s private information at the
risk of revealing information and, on the contrary, that one



Our Game 𝜆

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PIMC
LD 3D 48.6 50.4 47.9 47.4 44.6 42.6 39.9 37.5 36.1 28.9 27.8
LD 5D 43.1 43.4 42.2 43.4 42.5 41.4 39.8 36.3 37.1 29.8 23.6
CG 10C 48.2 47.9 47.7 47.7 47.6 47.4 46.7 46. 45.5 39.8 31.6
CG 20C 53.7 53.8 54.2 54.5 53.9 53.2 52.8 52. 47.4 36.3 23.5

IS MCTS
LD 3D 23.7 23.7 24.7 27. 23.1 23.1 21.7 20. 19.3 15.4 16.4
LD 5D 22. 20.9 21.9 22.2 21.9 20.8 21.6 21. 16.9 15.5 13.4
CG 10C 45.3 46.3 45.4 45.1 43.8 45.1 45. 43.1 42.7 37.6 30.
CG 20C 36.5 38.5 38.2 36.2 36.4 36.6 35.5 34.9 33.3 33.1 20.8

Table 2 – Winning rate when the opponent uses ‘PIMC’ according to the 𝜆 of the mixture belief distribution when
playing at the first player position.

should not always use one’s public information in order to
be more consistent to one’s private knowledge.

Lastly, it would be interesting to extend the results at a
larger scale, either by using more games or by using larger
games, especially for the calculation of the best responder.

A Appendix

A.1 Adaptation of algorithms

PIMC and IS-MCTS have been created with private be-
lief distribution in mind. Therefore, care must be taken to
adjust the algorithms to utilize the public belief distribution
or the public-private belief distribution.

To do so, one must use a probability distribution over the
infostates possible 𝑆𝑖 (𝑠𝑝𝑢𝑏) before using the algorithm.

A.1.1 PIMC

PIMC requires a distinct algorithm to be applied for each
possible infostate, and the final result is obtained by ag-
gregating the scores using the distribution of possible info-
states.

A single algorithm is not feasible as the score is calculated
based on the actions that are possible for a specific infostate,
and not all actions are possible in different infostates.

In the example described in the main article (in Section
3), for the first player, two infostates are possible (𝑠1 and
𝑠′1). If 𝑤2 is sampled, the algorithm used is the one defined
in the infostate corresponding (𝑠1). In the end, if 𝑠1 has been
visited 75% (corresponding to the mixture belief distribu-
tion with 𝜆 = 0.5), the action chosen in 𝑠1 will have more
impact than the action chosen in 𝑠′1.

A.1.2 IS-MCTS

With IS-MCTS, a singular algorithm is feasible as, IS-
MCTS creates a tree where the nodes represent infostates,

𝑠1 𝑠′1

𝑠2 𝑠′2 𝑠′′2 𝑠′′′2

Figure 4 – Example of the MCTS tree constructed by IS-
MCTS with public belief distribution, when playing the
example described in the main article (Section 3). The first
player is acting in the red square, the second player is acting
in the green diamond and the blue circle refers to the chance
node.

and an infostate for player 𝑗 may come from several info-
states of player 𝑖

An example is provided in Figure 4. In the example, two
infostates are possible for the first player (𝑠1 and 𝑠′1) and
four infostates are possible for the second player after the
first player’s action (𝑠2 = {𝑜1 = ∅, 𝑜2 = 1, 𝑜3 = 𝑎1}, 𝑠′2 =

{𝑜1 = ∅, 𝑜2 = 1, 𝑜3 = 𝑎2}, 𝑠′′2 = {𝑜1 = ∅, 𝑜2 = 2, 𝑜3 = 𝑎1}
or 𝑠′′′2 = {𝑜1 = ∅, 𝑜2 = 2, 𝑜3 = 𝑎2}). For the second player,
all infostates are achievable through any infostate of the
first player, for example, 𝑠2 is achievable when sampling 𝑤1
(from 𝑠1) or when sampling 𝑤2 (from 𝑠′1) and playing the
action 𝑎1.

A.2 Complementary experiments

The following experiments are identical to those in the
primary paper, with the exception that they are conducted
for the second player position.



Algo Game 𝜆

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PIMC LD 2D 0.678 0.695 0.703 0.707 0.716 0.718 0.711 0.741 0.779 0.836 0.836
LP 0.398 0.400 0.459 0.612 0.796 1.461 1.450 1.509 1.593 1.615 1.632

IS-MCTS LD 2D 0.697 0.687 0.697 0.716 0.727 0.732 0.740 0.751 0.759 0.768 0.787
LP 0.784 0.784 0.898 0.800 1.017 1.078 1.186 1.324 1.561 1.728 2.002

Table 3 – Expected utility for best responder against our algorithm being the second player.

Our Game 𝜆

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PIMC LD 3D 51.9 53. 51.3 49.8 49.7 51.3 48.7 48.6 46.9 46.1 42.7
LD 5D 56.7 55.5 56. 56.2 54.8 56.1 55.3 53. 51.9 44.7 42.3

IS MCTS LD 3D 48.4 51.3 49.9 49. 50.1 51. 47.4 44. 39.7 36.9 33.3
LD 5D 48.4 47.1 48. 46.7 47.8 45. 46.5 40.7 34.4 23.2 14.7

Table 4 – Winning rate when the opponent uses ‘PIMC’ according to the 𝜆 of the mixture belief distribution when
playing at the second player position.
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Figure 5 – Average TSSR for IS-MCTS and PIMC on
multiple benchmarks according to the 𝜆 value of the

mixture distribution.
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