
Towards Tackling MaxSAT by Combining
Nested Monte Carlo with Local Search

Hui Wang1, Abdallah Saffidine2, and Tristan Cazenave1

1 LAMSADE, University Paris Dauphine - PSL
2 The University of New South Wales

Abstract. Recent work proposed the UCTMAXSAT algorithm to ad-
dress Maximum Satisfiability Problems (MaxSAT) and shown improved
performance over pure Stochastic Local Search algorithms (SLS). UCT-
MAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of
purely random playouts. In this work, we introduce two algorithmic vari-
ations over UCTMAXSAT. We carry an empirical analysis on MaxSAT
benchmarks from recent competitions and establish that both ideas lead
to performance improvements. First, a nesting of the tree search inspired
by the Nested Monte Carlo Search algorithm is effective on most instance
types in the benchmark. Second, we observe that using a static flip limit
in SLS, the ideal budget depends heavily on the instance size and we
propose to set it dynamically. We show that it is a robust way to achieve
comparable performance on a variety of instances without requiring ad-
ditional tuning.

1 Introduction

Maximum Satisfiability (MaxSAT) problem is an extension of Boolean Satisfia-
bility (SAT) problem. For MaxSAT, the task is to find a truth value assignment
for each literal which satisfies the maximum number of clauses [12]. Stochastic
Local Search (SLS) algorithms like WalkSat [15] and Novelty [19] are well stud-
ied to solve MaxSAT problems. These methods can not find a provable optimal
solution but are usually used to search for an approximate optimal solution es-
pecially for larger problem instances. However, SLS algorithms are easy to get
stuck in a local optimal solution and it’s hard for them to escape. Thus, it’s
important to find an effective way to get rid of the local optimal solution. As a
well-known successful method to address this exploration-exploitation dilemma,
Monte Carlo Tree Search (MCTS) with UCT formula [4] is an ideal algorithm
to deal with MaxSAT problems.

MCTS has shown impressive performance on game playing (including per-
fect information games and imperfect information games) [11,8,25], probabilis-
tic single-agent planning [23], as well as most of problems which can be formed
as a sequential decision making process, also know as Markov Decision Pro-
cess (MDP) [3]. Based on the UCT formula, MCTS can address the exploration
and exploitation dilemma in a theoretically sound way because UCT provides
a state-of-the-art way to build the search tree based on the previous search



2 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

records (including the node visited count and the node estimate values of the
visit). Typically, the estimate method of the leaf node in the search tree is a
random rollout policy. However, in a lot of applications, many other rollout poli-
cies are created to improve the accuracy of the leaf node value estimation. For
MaxSAT problem, UCTMAXSAT (simply written as UCTMAX in the following
parts) employs SLS algorithms to estimate the node value [12].

However, UCTMAX only runs MCTS for the root node to build a search tree
until the time out, which may not sufficiently use the advantage of UCT reported
by the Nested Monte Carlo Tree Search (NMCTS) [2]. NMCTS runs MCTS from
root to the end or the time out. For each step, after performing the MCTS, it
chooses the best assignment value for the current step and then enters into
the next step and performs the MCTS again. In addition, UCTMAX employs
a fixed flip limit for SLS algorithms. But in a UCT-style SLS, the number of
the unassigned variables (literals below the search tree frontier are unassigned)
will decreases along with the search tree deepens. Therefore, we design a novel
computation called Dynamic SLS, see Equation 2, for Monte Carlo methods
used in this paper. The experimental results show that for most of the MaxSAT
instances 3, the Dynamic SLS way is more robust than the fixed way used for
UCTMAX to achieve comparable performance on a variety of instances without
extra tuning. Besides, the results show that the NMCTS is better than the
UCTMAX on most instances with moderate improvement.

Moreover, Nested Monte Carlo Search (NMCS) method [5] and its vari-
ants [6,7,6] have been successfully applied to master many NP-hard combinato-
rial optimization problems, like Morpion Solitaire [9], and achieve impressive per-
formance [5,27]. However, NMCS has not been investigated to deal with MaxSAT
problems. Therefore, this paper further studies the effectiveness of NMCS (also
using Dynamic SLS as the state estimate) for MaxSAT.

Overall, the main contribution of this paper can be summarized as follows:

1. We examine various Monte Carlo Search techniques for the domain of MaxSAT,
especially rollout policies and high-level searches. Through an extensive em-
pirical analysis, we establish that (a) Purely random or heuristic-based roll-
outs are weaker than a Stochastic Local Search policy. (b) An MCTS-based
search is weaker than Nested MCTS, especially in larger instances. NMCTS
with WalkSat is weaker than NMCS, but is stronger with Novelty.

2. We introduce Dynamic SLS, a new rollout policy that dynamically computes
the flip budget available for a stochastic local search. We demonstrate that
Monte Carlo algorithms building on Dynamic SLS achieve comparable per-
formance on standard MaxSAT benchmarks with previously existing Monte
Carlo approaches without extra tuning.

The rest of the paper is structured as follows. Before introducing preliminaries
of this work in Sec. 3, we present an overview of the most relevant literature in
Sect. 2. Then we present Dynamic SLS based Monte Carlo methods in Sect. 4.

3 The instances are from ms random benchmark:
http://www.maxsat.udl.cat/15/benchmarks/index.html

http://www.maxsat.udl.cat/15/benchmarks/index.html


MaxSAT with Nested Monte Carlo and Local Search 3

Thereafter, we illustrate the orientation experiments on a group of MaxSAT
instances to finalize the structure of our proposed methods in Sect. 5. Then the
full length experiments are presented in Sect. 6. Finally, we conclude our paper
and discuss future work.

2 Related Work

There are a lot of solvers created to master MaxSAT problems [13,18,1,14].
Generally, these solvers can be categorized into two different types, i.e. complete
solvers and incomplete solvers. Complete solvers can provide provable the best
solution for the problem. Incomplete solvers start from a random assignment and
continue to search for a better solution according to some strategies. Typically,
Stochastic Local Search algorithms like WalkSat [15] and Novelty [19] are well
studied on MaxSAT [21,16]. These incomplete solvers suffer from an exploration-
exploitation dilemma. And MCTS has shown successful performance of dealing
with this dilemma [4]. Therefore, Tompkins et al. implemented an experimenta-
tion environment for mastering SAT and MaxSAT, called UCBMAX [24]. Fur-
thermore, Goffinet et al proposed UCTMAX algorithm to enhance the perfor-
mance of SLS [12]. However, UCTMAX only performs UCT search once from
the root, which may not sufficiently use the power of MCTS comparing to run
UCT search for each step until to the terminal node or time out, which is known
as Nested Monte Carlo Tree Search [2]. In addition to MCTS and NMCTS,
NMCS [5] and its variations [7,22,6] also perform well especially for single agent
NP-hard combinatorial problems, like Morpion Solitaire [9], where they achieve
the best record which has not yet been improved even employing deep learn-
ing techniques [27,10]. Therefore, in this paper, we firstly employ NMCTS and
NMCS to master MaxSAT problems with SLS methods.

3 Preliminaries

3.1 MaxSAT

In MaxSAT, like SAT, the problem is specified by a propositional formula de-
scribed in conjunctive normal form (CNF) [20]. But unlike SAT which the
aim is to find a truth assignment to satisfy all clauses, MaxSAT is just to
find a truth assignment to satisfy the maximum number of clauses. For a set
of Boolean variables V = {v1, v2, v3, ..., vi}, a literal lj is either a variable
vj or its negation ¬vj , 1 ≤ j ≤ i. A clause is a disjunction of literals (i.e.,
ci = l1∨ l2∨, ...,∨lj ). A CNF formula F is a set of clauses as conjunctive normal
form (i.e., F = c1∧c2∧, ...,∧ci). MaxSAT instances written as CNF can be easily
found in our tested benchmark.

3.2 Heuristics

In order to test the different rollout policies for Monte Carlo Methods, here we
present 3 simple heuristics that commonly used for MaxSAT.



4 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

1. H1 is the heuristic which assigns the value from the first variable to the last
variable and H1 sets 0 for a variable that its positive value occurs more times
than its negative value in all clauses.

2. H2 is the heuristic which, for each step, assigns the variable first which occurs
the most times and H2 sets 0 for a variable that its positive value occurs
more times than its negative value in all clauses.

3. H3 is the heuristic which, for each step, assigns the literal first which occurs
the most times and H3 sets 0 for a variable that its positive value occurs
more times than its negative value in all clauses.

3.3 Stochastic Local Search

Based on [12], in this paper, we also investigate two well-studied Stochastic Local
Search (SLS) algorithms to deal with MaxSAT problem, namely WalkSat and
Novelty.

Algorithm 1 Walksat

1: function WalkSat(s)
2: assignment←InitAssignment()
3: while fliptimes < f do
4: if random() < ϵ1 then
5: v ← random variable
6: else
7: v ← best unassigned variable

8: assignment←flip(v)
return assignment

WalkSat As it can be seen in Algorithm 1, the idea of WalkSat is to initialize a
random assignment (basic version) or according to the current found best solu-
tion (enhanced version) for each variable. Then an unsatisfied clause is selected.
Further step is to select a variable to flip which has the highest bonus after flip-
ping in the selected unsatisfied clause. The bonus is the change of the number
of satisfied clauses after flipping the variable.

Novelty Novelty is similar to WalkSat. The first step is also to initialize a
random assignment (basic version) or according to the current found best so-
lution (enhanced version). But differently, for each variable in all unsatisfied
clauses, its bonus is computed. Then in order to avoid flipping in a dead loop, a
variable which has the highest bonus but not selected in the most recent flipping
is selected to flip. Simply, after line 7 in Algorithm 1, we add If v = vf and
random() < 1− ϵ2 then v ← vs. vf is the most recent flipped variable and vs
is the second best unassigned variable.



MaxSAT with Nested Monte Carlo and Local Search 5

3.4 Monte Carlo Tree Search

Algorithm 2 Monte Carlo Tree Search

1: function MCTS(s)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: if s is a terminal state then
7: v ← vend

8: return v
9: if s is not in the Tree then
10: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
11: Run rollout policy and get the solution score vrollout
12: v ← vrollout
13: return v
14: else
15: Select an action a with highest UCT value
16: s′ ←getNextState(s, a)
17: v ←Search(s′)
18: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

19: N(s, a)← N(s, a) + 1

20: return v

According to [26,28,29], a recursive MCTS pseudo code is given in Algo-
rithm 2. For each search, the rollout value is returned (or the game termination
score). For each visit of a non-leaf node, the action with the highest UCT value
is selected to investigate next [4]. After each search, the average win rate value
Q(s, a) and visit count N(s, a) for each node in the visited trajectory is updated
correspondingly. The UCT formula is as follows:

U(s, a) = Q(s, a) + c

√
ln(N(s, ·))
N(s, a) + 1

(1)

The Nested Monte Carlo Tree Search (Due to the high computation, we only
investigate level 1 for NMCTS in this paper) calls MCTS for each step of the
assignment process.

3.5 Nested Monte Carlo Search

According to [5], the Nested Monte Carlo Search algorithm employs nested calls
with rollouts and the record of the best sequence of moves with different levels.
The basic level only performs random moves. Since a nested search may obtain
worse results than a previous lower level search, recording the currently found



6 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

Algorithm 3 Nested Monte Carlo Search

1: function NMC(s, level)
2: chosenSeq←[], bestScore← −∞, bestSeq←[]
3: while s is not terminal do
4: for each m in legalMoves(s) do
5: s′ ← PerformMove(s, m)
6: if level = 1 then
7: (score, seq) ← run rollout policy
8: else
9: (score, seq) ← NMC(s′, level-1)

10: highScore ← highest score of the moves from s
11: if highScore > bestScore then
12: bestScore ← highScore
13: chosenMove ← m associated with highScore
14: bestSeq ← seq associated with highScore
15: else
16: chosenMove ← first move in bestSeq
17: bestSeq ← remove first move from bestSeq

18: s← perform chosenMove to s
19: chosenSeq ← append chosenMove to chosenSeq

20: return (bestScore, chosenSeq);

best sequence and following it when the searches result in worse results than the
best sequence is important. Therefore, we present the pseudo code for the basic
Monte Carlo Search algorithm as Algorithm 3. In order to estimate the leaf nodes
from themselves instead of their children, we further test a variant of NMCS,
named ZNMCS (Zero Nested Monte Carlo Search), where in Algorithm 3, line 4
is changed to for i = 0, i < t, i++ do, in our experiments, t = 10. In addition,
line 5 has been removed. And line 9 is changed to (score, seq)← ZNMCS(s,
level-1).

4 Dynamic SLS Based Monte Carlo Methods

This section proposes the Dynamic SLS method with MCTS and NMCS. Since
the number of the unassigned variables decreases as the search tree deepens,
we propose a Dynamic SLS to avoid redundant flips and enlarge search tree to
improve the performance within a fixed time budget. The flip limit (written as
f) is simply computed according to the following Equation:

f = w × u (2)

w is a weight number, u is the number of the unassigned variables which can
be flipped. Considering MCTS, in the search tree, the variables, upon the leaf
nodes, have already been assigned to a value, so they can not be flipped anymore.
We also tested several exponent values powered by u and finally found exponent
equals 1 is the best.



MaxSAT with Nested Monte Carlo and Local Search 7

In this work, we insert Dynamic SLS to replace rollout policy for MCTS (line 11
in Algorithm 2) and NMCS (line 7 in Algorithm 3, same to ZNMCS). In addition,
according to [12], it is reported that using square number of the score is the best
for UCTMAX, so in this work, for MCTS, we also replace the value calculation
in line 7 and line 12 in Algorithm 2 to v = pow(vend, 2) and v = pow(vdsls, 2).

5 Orientation Experiments

5.1 Trial with Different Rollout

There are several ways to estimate the state value for Monte Carlo methods. One
typical way is to simply run random simulations to get approximate values. In
addition, for MaxSAT, there are many well designed heuristics to assign the truth
values, based on the assignment, a proper value can be obtained. Besides, there
are also several well studied SLS algorithms which can be applied to estimate
the state value. Therefore, in order to determine which way is the best for the
state estimate function, we use different ways to work together with NMCTS
and NMCS to process our test setting (50 different instances, 70 variables each).
The NMCTS simulation is set as 100. Time cost for each run is 50 seconds.
each setting runs 10 repetitions. The results are shown in Table 1. We see that
the heuristics all outperform random rollout, H3 is better than H2 and H2 is
better than H1. Importantly, SLS methods perform significantly the best. So we
adopt WalkSat and Novelty as the rollout policies for the further experiments. In
addition, WalkSat for NMCS is better than NMCTS, but NMCTS with Novelty
is the best.

Table 1: Results for Max3Sat Instances (70 variables) Using Different Rollout
Policies for MCTS, NMCS. Results are average number of unsatisfied clauses on
tested group instances, same to the following results.

Method NMCTS NMCS

Level - playout level 1 level 2

Random 81.4 125.2 80.8 80.5
H1 56.1 70.0 54.4 53.7
H2 55.1 69.5 54.6 53.8
H3 53.2 64.4 52.2 52.2
WalkSat 47.9 52.0 47.4 47.7
Novelty 47.7 51.9 48.8 49.0

5.2 UCTMAX vs NMCTS

Since [12] only investigated the UCTMAX with one time MCTS from the root
until the time out. However, it does not perform an action to enter next state and



8 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

run UCT again like game playing. To this end, the NMCTS [2] method should
be further investigated. We let the MCTS simulation as a fixed value (set as 100)
so that each step will stop and get a search tree. Based on this search tree, a best
action can be found and performed to enter to next state. Then it runs another
UCT process until the time out or the termination. The results show that the
NMCTS performs clearly better than the UCTMAX way. In order to enlarge
the result difference for different settings, we use larger instances (50 instances,
each has 140 variables. [12] also used 140 as the test instance size, but they only
tested on one instance, we test on 50 different instances with this size to reduce
the noise.) for this experiment and the following orientation experiments.

100 300 500 700
197

198

199

200

201

202

203

204

205

Time Budget (second)

N
u
m
b
er

o
f
U
n
sa
ti
sfi
ed

C
la
u
se
s

UCTMAX

NMCTS

Fig. 1: Comparison of UCTMAX with NMCTS. NMCTS outperforms UCTMAX
on 50 instances which has 140 variables each. For both UCTMAX and NMCTS,
the f is set as 2000 which is reported as the best.

5.3 Current Global Best Solution

Based on [12] and [5], we know that it is the key to keep the global best solu-
tion (the best of the local solutions from all steps) found so far and initialize the
SLS algorithms with this global best solution. We still do not know whether it
is also important in our Nested Monte Carlo Methods with SLS. Therefore, we
design different combinations to show the importance.

The results are shown in Table 2, we see that with a small time budget (100
seconds), for NMCTS, keeping the global best records has shown the advantage,
and initializing based on the global best records is also better than not but
with small improvements. For NMCS, with 100 seconds, although we still find



MaxSAT with Nested Monte Carlo and Local Search 9

Table 2: Impact of Random variable initialization and of keeping the global
best solution on the performance of NMCTS and NMCS. Fixed number of flips
(2000), 50 instances, 140 variables each.

Keep Global No Yes

Initialization Rand Best Rand Local Best

Time Budget 100s

NMCTS 221.2 220.8 204.8 205.1 204.6
NMCS 198.8 199.1 199.3 198.8 198.7

Time Budget 300s

NMCTS 219.9 219.8 202.9 202.9 202.6
NMCS 195.3 195.6 195.3 195.6 193.1

that keeping the global best records and initializing with them is the best, but
it’s not very significant. However, we see a clear improvement with larger time
budget (300 seconds). The reason that different initialization does not differ
too much might be that the flip limit is set too big so even if it is initialized
from random, it can also reach a global record level after flipping. From this
experiment, we can conclude that keeping the global best records and initializing
based on them for SLS (in this case, it is WalkSat) are both important to the
nested search. NMCS works better than NMCTS with WalkSat on 140 variables
instances.

5.4 Probabilistic SLS Initialization

In order to further investigate the contribution of initializing WalkSat based
on the global best solution found so far, we adopt the simplest but commonly
used way to balance the exploration and exploitation, ϵ-greedy, to initialize the
assignment.

From Fig 2, we see that ϵ=0.1 performs best, which further shows the best
initialization way is to set literal assignment based on the best solution found
so far but with a small randomness to initialize randomly. Thus, our following
experiments are done with the ϵ as 0.1.

5.5 Fixed Flip Limits vs Dynamic Flip Limits

Goffinet et al. [12] used the fixed flip limits, which we found can be implemented
in a dynamical way. Therefore, in this section, we test different w values (from 0.5
to 25, but finally we only present results of w ∈ {1, 2, 4} as they are better) for
dynamic flip limits calculation equation (see Equation 2). And we found generally
for both NMCTS and NMCS with different budget, w=2 is the best (only the
result of 300 second is weaker for NMCTS). In addition, we test fixed flip limit
with 2000 (which is reported the best for UCTMAX tuned on a single instance)



10 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

100 300 500 700
197

198

199

200

201

202

203

204

205

Time Budget (second)

N
u
m
b
er

o
f
U
n
sa
ti
sfi
ed

C
la
u
se
s

ϵ=0
ϵ=0.1
ϵ=0.2
ϵ=0.5
ϵ=0.8
ϵ=0.9
ϵ=1

Fig. 2: Initializing Walksat Based on ϵ-greedy for NMCTS on 50 instances with
140 variables each, ϵ=0 means initializing WalkSat totally based on the global
best solution. ϵ=0.1 means there is 10% probability to take a random initializa-
tion for the literal, and so on. The ϵ equals 0.1 is the best.

and 140 (same as the average flip limit for each step with w=2). We found
that with a fixed flip limit as 2000 is the worst and smaller limits increase the
performance which shows that for Nested Monte Carlo methods, allocating time
cost for relatively more steps contributes more.

Intuitively, even if a fine tuned fixed flip limit is found for a type of instances,
it is not really applicable to set as the best for other instances. However, it is ob-
viously that along with the increasing of sizes, the flip limit should also be larger.
In order to test this assumption, we proposed the dynamic SLS and showed it
works well for the category 140. Therefore, in order to show the adaptation of
our Dynamic SLS method, after tuning the w for Dynamic SLS, we further test
the the best value we get for other larger instances which have 180 and 200 vari-
ables respectively, and compare the results with the fixed flip limit way (the best
value is 140 for instances which have 140 variables). The results are presented in
Fig 4. We see that 2u achieves better performance for both 180 and 200 variables
categories, showing that our Dynamic SLS is more adaptive to other instances.
Therefore, no redundant extra tuning cost is needed.

6 Experiments on Benchmark

In this section, we will show the experimental results on tested benchmark in-
stances with aforementioned SLS based different Monte Carlo methods. The
benchmark consists of 383 instances categorized by different numbers of vari-



MaxSAT with Nested Monte Carlo and Local Search 11

100 300 500 700
189

191

193

195

197

199

201

203

205

207

Time Budget (second)

N
u
m
b
er

o
f
U
n
sa
ti
sfi
ed

C
la
u
se
s

f = 2000

f = 140

f = 4u

f = 2u

f = u

(a) NMCTS

100 300 500 700
189

191

193

195

197

199

201

203

205

207

Time Budget (second)

N
u
m
b
er

o
f
U
n
sa
ti
sfi
ed

C
la
u
se
s

f = 2000

f = 140

f = 4u

f = 2u

f = u

(b) NMCS

Fig. 3: Comparison of Fixed SLS with Dynamic SLS for NMCTS and NMCS. In
order to keep the w consistent for all runs, considering the overall results, we
decide setting the weight w for Dynamic SLS flip limits as 2 is the best.

100 300 500 700
180

192

204

216

228

240

252

264

276

Time Budget (second)

N
u
m
b
er

o
f
U
n
sa
ti
sfi
ed

C
la
u
se
s

180, f = 2u

180, f = 140

200, f = 2u

200, f = 140

Fig. 4: Examples: Comparison of 2u and 140 flips for instances which have 180
and 200 variables respectively. NMCTS with Dynamic SLS is better than fixed
flip limit on both 180 and 200 variables type, showing that our Dynamic SLS is
more adaptive to other instances with different variable numbers.

ables. And for each category, there are a bunch of instances with different num-
bers of clauses.



12 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

Table 3: Results of MaxSat Instances Using WalkSat based UCTMAX, NM-
CTS, ZNMCS and NMCS respectively, with 300 seconds budget each run, 10
repetitions each.

Benchmark Max Walksat Known
Optimal

SolutionVars Instances UCTMAX NMCTS ZNMCS NMCS

m = 100 round=5, round=1, round=5, round=1,
level 1 level 2 level 1 level 2

70 50 47.7 47.8 47.1 47.2 47.1 47.7 46.8
80 50 27.3 27.4 27.1 27.1 27.1 27.5 26.9
120 50 223.3 219.1 219.2 218.7 219.0 221.0 196.1
140 50 201.8 199.2 194.0 193.1 195.3 195.9 184.8
160 42 257.7 256.4 246.1 243.1 243.1 246.6 227.6
180 44 248.2 247.4 237.7 235.9 235.4 238.5 220.6
200 49 195.7 195.2 186.2 184.5 184.9 187.6 171.0
250 24 7.7 7.7 8.2 8.6 8.5 8.7 5.5
300 24 9.3 9.1 9.8 10.2 10.1 10.5 6.3

Table 4: Results of MaxSat Instances Using Novelty based UCTMAX, NMCTS,
ZNMCS and NMCS respectively, with 300 seconds budget each run, 10 repeti-
tions each.

Benchmark Max Novelty Known
Optimal

SolutionVars Instances UCTMAX NMCTS ZNMCS NMCS

m=100 round=5, round=1, round=5, round=1,
level 1 level 2 level 1 level 2

70 50 47.1 47.4 48.6 48.0 47.9 47.9 46.8
80 50 27.4 27.8 28.9 28.4 28.2 28.2 26.9
120 50 212.7 212.8 213.6 213.2 213.1 213.2 196.1
140 50 185.7 185.7 186.6 186.0 186.1 186.1 184.8
160 45 228.9 228.8 229.8 229.2 229.1 229.3 227.6
180 44 222.4 222.2 223.2 222.4 222.5 222.6 220.6
200 49 173.2 173.2 173.8 173.1 173.1 173.3 171.0
250 24 11.6 11.2 12.3 13.0 12.7 13.1 5.5
300 24 14.4 14.0 14.7 15.3 15.0 15.4 6.3

From Table 3, we can see that with WalkSAT, Nested Monte Carlo methods
perform better than UCTMAX. For smaller instances like 70 and 80 variables
categories, ZNMCS and NMCS level 1 perform the best, and ZNMCS level 2
achieves similar scores. Interestingly, for categories from 120 to 200, the best
performance is achieved by ZNMCS level 2. And for largest instances, NMCTS
is the best. These results confirm that the high level nesting of Monte Carlo
methods may lead to worse performance.

From Table 4, we still see that for Novelty, NMCTS performs the best for
larger instances. But differently, for the small instances, UCTMAX achieves
best scores. Only for type 200, ZNMCS achieves the best and the scores do not
vary too much. Importantly, it is clear that for most instances, Comparing with



MaxSAT with Nested Monte Carlo and Local Search 13

WalkSat, Novelty achieves better scores which are much more close to the known
optimal solutions, which also shows that a better SLS estimate method achieves
better performance together with Nested Monte Carlo. This also leads to that
the improvements of NMCTS for Novelty are smaller than that for WalkSat, but
we still see a possibility of increasing improvements along with the increasing of
the instances sizes, which we should further investigate in future work.

In addition, the type 250 and 300 variables instances are different from others
since their clauses are much more easy to be satisfied. In these cases, we find
that the NMCTS performs much stably the best.

Therefore, for both WalkSat and Novelty, we can conclude that the nesting
search improves the performance of Monte Carlo methods, especially for nesting
the MCTS while dealing with larger instances and employing the better SLS
method.

7 Conclusion and Future Work

In this paper, we first investigated different rollout policies (random, heuristics,
SLS) for different Nested Monte Carlo methods, including NMCTS and NMCS to
deal with MaxSAT problem. We found that heuristics are better than random,
but SLS is the best rollout policy to work with Monte Carlo methods in the
domain of MaxSAT. In addition, we confirmed that also for Nested Monte Carlo
methods, SLS methods should also record the global best records and initialize
assignment based on the found current best record. In order to further balance
the exploration and exploitation, we employed ϵ-greedy and found a proper ϵ
value as 0.1 to randomly initialize the assignment for SLS, which improves the
way that [12] initialized assignment fully based on the best record. The full
benchmark experimental results show that for both WalkSat and Novelty based
Monte Carlo methods, the nested tree search outperforms UCTMAX (Novelty
in particularly performs better on larger instances), and NMCS with WalkSat
also outperforms UCTMAX and even NMCTS. Therefore, we can conclude that
nested search is important to deal with MaxSAT problems, especially for tree
search on larger instances.

In the future, one way is to apply more powerful SLS algorithms together with
Nested Monte Carlo methods like CCLS [17]. Besides, further investigation to
find a light computation way for employing high level nested search is promising,
especially for larger MaxSAT instances.

References

1. Ansótegui, C., Gabas, J.: WPM3: an (in) complete algorithm for weighted partial
MaxSAT. Artificial Intelligence 250, 37–57 (2017)

2. Baier, H., Winands, M.H.: Nested Monte Carlo Tree Search for online planning in
large mdps. In: ECAI. vol. 242, pp. 109–114 (2012)

3. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic MDP-behavior planning for
cars. In: 2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC). pp. 1537–1542. IEEE (2011)



14 Hui Wang, Abdallah Saffidine, and Tristan Cazenave

4. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo
Tree Search methods. IEEE Transactions on Computational Intelligence and AI
in games 4(1), 1–43 (2012)

5. Cazenave, T.: Nested monte-carlo search. In: Twenty-First International Joint Con-
ference on Artificial Intelligence (2009)

6. Cazenave, T.: Generalized nested rollout policy adaptation. In: Monte Carlo Search
International Workshop. pp. 71–83. Springer (2020)

7. Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In: International
Conference on Learning and Intelligent Optimization. pp. 42–54. Springer (2012)

8. Cowling, P.I., Ward, C.D., Powley, E.J.: Ensemble determinization in Monte Carlo
Tree Search for the imperfect information card game magic: The gathering. IEEE
Transactions on Computational Intelligence and AI in Games 4(4), 241–257 (2012)

9. Demaine, E.D., Demaine, M.L., Langerman, A., Langerman, S.: Morpion Solitaire.
Theory of Computing Systems 39(3), 439–453 (2006)

10. Doux, B., Negrevergne, B., Cazenave, T.: Deep reinforcement learning for Morpion
Solitaire. In: Advances in Computer Games (2021)

11. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Pro-
ceedings of the 24th international conference on Machine learning. pp. 273–280
(2007)

12. Goffinet, J., Ramanujan, R.: Monte-carlo tree search for the maximum satisfiability
problem. In: International Conference on Principles and Practice of Constraint
Programming. pp. 251–267. Springer (2016)

13. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient weighted MaxSAT
solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)

14. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver.
Journal on Satisfiability, Boolean Modeling and Computation 11(1), 53–64 (2019)

15. Kautz, H., Selman, B., McAllester, D.: Walksat in the 2004 SAT Competition.
In: Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing (2004)

16. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local
search paradigms: A new strategy for MaxSAT. In: Twenty-First International
Joint Conference on Artificial Intelligence (2009)

17. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search al-
gorithm for weighted maximum satisfiability. IEEE Transactions on Computers
64(7), 1830–1843 (2014)

18. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A modular MaxSAT solver.
In: International Conference on Theory and Applications of Satisfiability Testing.
pp. 438–445. Springer (2014)

19. Menai, M.E.b., Batouche, M.: Efficient initial solution to extremal optimization
algorithm for weighted MAXSAT problem. In: International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent Systems. pp.
592–603. Springer (2003)

20. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534
(2013)

21. Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves ising spin glasses and
MAXSAT. In: Genetic and Evolutionary Computation Conference. pp. 1271–1282.
Springer (2003)



MaxSAT with Nested Monte Carlo and Local Search 15

22. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

23. Seify, A., Buro, M.: Single-agent optimization through policy iteration using Monte
Carlo Tree Search. arXiv preprint arXiv:2005.11335 (2020)

24. Tompkins, D.A., Hoos, H.H.: UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAXSAT. In: International con-
ference on theory and applications of satisfiability testing. pp. 306–320. Springer
(2004)

25. Wang, H., Emmerich, M., Plaat, A.: Assessing the potential of classical Q-learning
in General Game Playing. In: Benelux Conference on Artificial Intelligence. pp.
138–150. Springer (2018)

26. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Analysis of hyper-parameters for
small games: Iterations or epochs in self-play? arXiv preprint arXiv:2003.05988
(2020)

27. Wang, H., Preuss, M., Emmerich, M., Plaat, A.: Tackling Morpion Solitaire
with AlphaZero-like ranked reward reinforcement learning. In: 2020 22nd Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). pp. 149–152. IEEE (2020)

28. Wang, H., Preuss, M., Plaat, A.: Warm-Start AlphaZero self-play search enhance-
ments. In: Proceedings of the Parallel Problem Solving from Nature – PPSN XVI.
pp. 528–542 (2020)

29. Wang, H., Preuss, M., Plaat, A.: Adaptive warm-start MCTS in AlphaZero-like
deep reinforcement learning. In: Pacific Rim International Conference on Artificial
Intelligence. pp. 60–71. Springer (2021)


	Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search

