
SHPE: HTN Planning for Video Games

Alexandre Menif1, Éric Jacopin2, and Tristan Cazenave3

1 Sagem Défense et Sécurité, 100 Avenue de Paris, 91300 Massy Cedex, France
2 MACCLIA, CREC Saint Cyr, Écoles de Coëtquidan, F-56381 GUER Cedex, France

3 LAMSADE, Université Paris-Dauphine, 75016, Paris, France

Abstract. This article describes SHPE (Simple Hierarchical Planning
Engine), a hierarchical task network planning system designed to gen-
erate dynamic behaviours for real-time video games. SHPE is based
on a combination of domain compilation and procedural task applica-
tion/decomposition techniques in order to compute plans in a very short
time-frame. The planner has been able to return relevant plans in less
than three milliseconds for several problem instances of the SimpleFPS
planning domain.

1 Introduction

Automated planning is now being used in popular games to satisfy the need of
more realistic behaviours for Artificial Intelligence (AI) agents. The advantage
of automated planning is twofold for the game industry. First, planners dynam-
ically generate sequences of actions by reasoning according to goals, and thus
go beyond simple reactive behaviours. Secondly, the use of a planner improves
software maintenance, as an AI designer would only have to define sets of goals
and actions, without worrying too much about the interactions between them.
Planning has also drawbacks: it is known to require significant CPU time, while
modern game engines are already consuming most resources of common gaming
hardware. Early games implemented the STRIPS-like GOAP (Goal-Oriented
Action Planning) system developed for the AI of F.E.A.R. [9], but nowadays
several games have switched to Hierarchical Task Network (HTN) [2] planners.
The latter requires to model and maintain an additional amount of planning
knowledge, but also achieves better performance. However, the use of planning
in games is still limited.

A recent study conducted in some popular video games [4], brings an in-
teresting insight into two games implementing HTN based planning: Killzone 3

(2011) and Transformers 3: Fall of Cybertron (2012). The study reveals the cur-
rent performance of both games: (i) plan lengths hardly exceed 4 actions (longest
plans, up to 12 actions, may appear, but they are rare), (ii) the number of Non-
Playable Characters (NPCs) simultaneously handled by the planning system is
below the size of a squad (less than 12 AI entities), and (iii) approximately one
plan per second and per NPC is generated in average. As a comparison, our goal
is to simulate the tactical behaviour of an entire platoon of soldiers (nearly 30



to 40 NPCs), with plans potentially more complex than sequences of 4 actions.
To preserve playability and immersion, the planner must be able to return plans
for any agent in less than one second of real time. AI usually benefits from 10%
of the overall computation time in a game (about 100 ms), thus only 2 to 3 ms
per NPC are available in order to plan for a platoon.

This paper introduces the Simple Hierarchical Planning Engine (SHPE). This
planning system is based on the same HTN planning techniques currently im-
plemented in games, but achieves better performance thanks to an alternative
encoding of planning data. Section 2 describes the main features of the system,
some algorithmic details and how to operate the planner. Section 3 focuses on
some additional features currently under study. Finally, section 4 evaluates the
performance of the planner using the SimpleFPS domain [11], a planning domain
designed to emulate a game-world environment and test planners according to
game mechanics.

2 SHPE: Simple Hierarchical Planning Engine

2.1 Planning Data Representation

Planning data are classically represented by a first-order logical language. A state
of the world is described by a set of predicates, which represent properties holding
for some objects of the world. Possible changes are described with operators.
An operator is defined with a precondition, some effects, and may also have
a numerical cost. Preconditions and effects are logical formulas on predicates,
and they respectively represent the condition to apply the operator and the
changes occurring on a state after the application of this operator. The set of
definitions for predicates and operators is called a planning domain. Plans can be
sequences or partially ordered sets of operators, and an optimisation criterion
can be defined on the costs of these operators. A classical planner expects as
input a goal condition on the predicates as well as an initial state, and returns
a plan transforming the initial state into one satisfying the goal. A standard
planning domain language conforming to these principles is PDDL [8]. Figure 1
shows some samples of planning data expressed in this language.

HTN planning introduces tasks into the planning domain. There are two
types of tasks. Primitive tasks are associated with operators, while compound
ones are designed to be decomposed into a partial plan made of subtasks, called
a task network. For each compound task, alternative decompositions are de-
fined through several HTN methods. This paper adopts the formalism for meth-
ods of the Simple Hierarchical Ordered Planner (SHOP [5]) and its successor
SHOP2 [6]. Thus, our methods are defined as successive pairs of preconditions
and task networks (each pair is called a branch, and the planner only decomposes
the method for the first satisfied branch). Figure 2 presents some examples of
such methods. The purpose of an HTN planner is different from a classical one:
instead of building a plan fulfilling a goal from the initial state, an HTN planner
decomposes an initial task network down to a plan only made of primitive tasks,
and applicable to the initial state.



; a definition of an action in PDDL, here this action

; applies to a NPC that uses a gun to shoot at the player

(:action shoot-player

:parameters (?npc ?gun ?wpt1 ?wpt2)

; to perform the action, the NPC needs a loaded gun and

; a clear line of sight to the player

:precondition (and (at ?npc ?wpt1) (player-at ?wpt2)

(holding ?npc ?gun) (loaded ?gun)

(visible ?wpt1 ?wpt2))

; the player is wounded and the gun is no longer loaded

:effect (and (not (loaded ?gun)) (player-wounded)))

[...]

; a description of the initial situation

(:init (at npc0 wpt0) (player-at wpt1) (visible wpt0 wpt1)

(visible wpt1 wpt0) (gun gun0) (loaded gun0)

(holding npc0 gun0) [...])

; the goal we want to achieve

(:goal (player-wounded))

Fig. 1. An operator (action) described in the PDDL planning representation language,
along with an initial state and a goal formula. Here, (shoot-player npc0 gun0) is a valid
plan according to the initial situation and the goal.

; method for attacking the player at range

(:method (attack-player ?npc)

; a first branch, when the NPC already has

; visibility with the player

(and (at ?npc ?wpt1) (player-at ?wpt2) (visible ?wpt1 ?wpt2)

(gun ?gun) (holding ?npc ?gun))

((!shoot-player ?npc ?gun))

; a second branch that moves the NPC to a waypoint where it

; will have visibility to the player location

(and (waypoint ?wpt1) (player-at ?wpt2) (visible ?wpt1 ?wpt2)

(gun ?gun) (holding ?npc ?gun))

((move ?npc ?wpt1) (!shoot-player ?npc ?gun)))

; method for attacking the player in melee combat

(:method (attack-player ?npc)

(and (at ?npc ?wpt) (player-at ?wpt) (knife ?knife)

(holding ?npc ?knife))

((!stab-player ?npc ?knife)))

Fig. 2. Two methods that define alternative decompositions for the compound task
(attack-player ?npc). The first method provides the behaviour to attack the player with
a ranged weapon, while the second one makes the NPC use a close combat weapon. The
LISP-like syntax is the one used by SHOP for its input data, where the exclamation
mark ”!” denotes a primitive task.



From a programming viewpoint, logical formulas (preconditions, effects) in
operators and methods are generally encoded as lists of atomic propositions
evaluated by an inference engine. Pyhop [7], a SHOP-like HTN planner coded
in Python, follows another approach supposed to be more suited to games.
First, world states are represented as Python data structures containing state-
variables, an alternative representation for facts in planning, instead of sets of
predicates. Secondly, operators and methods are Python functions taking a state
as input, and respectively returning a new state and a sequence of subtasks. Fig-
ure 3 provides an insight on what such functions look like. The entire domain
is therefore written in Python, and not with a logical language as usual. For
SHPE, we decided to follow the same rules for reason of both system simplicity
and expectation of a runtime improvement. Indeed, there is no need to code an
inference engine and state-variables can be instantly accessed in a structure to
read or modify their values, while we have to find a predicate to add or delete it
from a state. But unlike Pyhop, we did not choose Python but C++ in order to
implement our planning system. First, this is a very commonly used language for
video games and we expect our choice to ease the integration of the planner in
most game engines. Secondly, being a low-level compiled language, C++ seemed
to be an appropriate option to achieve the best runtime.

def shoot_player(state, npc, gun):

if state.visible[state.at[npc]][state.player_at] and \

state.holding[npc][gun] and state.loaded[gun]:

state.loaded[gun] = False

state.player_wounded = True

return state

else: return False

Fig. 3. The same operator as defined in Figure 1, but encoded in Python this time.

2.2 Algorithm

SHOP, Pyhop and SHPE use the same algorithmic principle. They conduct
a depth-first, backtracking search in the space of partially decomposed task
networks, combined with a forward state-space search. When the planner selects
the next task to process, it always picks one that has no predecessor in the task
network. Doing so results in constructing the plan in the same order as it will be
executed. The planner always has a full description of the current state of the
world at its disposal, thus logical expressions in operators and methods can be
written with very expressive logical formulas. For instance, the domain modeling
language of SHOP2 allows for existential and universal quantifiers, disjunction,
implication and even more specific expressions [6]. Not only does this type of
search provide the domain modeler with a powerful way to encode good strategies



for decomposing task networks, but it also justifies why operators and methods
can be encoded as functions in Pyhop.

However, the implementation of SHPE differs from Pyhop in several ways.
We do not actually define operators and methods, and associate them with
tasks. As primitive tasks are in one-to-one correspondence with operators, we
simply blend both of them together into a single primitive task definition. We
do not define each method separately either. Instead, they are all gathered in
the body of a single function named decompose. This function is defined for all
compound task types, and it returns a list of all the decompositions for each
method. Besides, an operator/primitive task is not considered as being a single
function, but is split into three parts:

1. The function applicable returns the evaluation of the precondition (a boolean
value).

2. The function apply returns the new value of the state after the application
of all effects.

3. The function cost returns the cost of the operator/task.

Another difference is the iterative structure of the algorithm implementation. It
provides the ability to interrupt and resume the planner, which is a nice feature
to have with some game engines in order to time-slice planning through multiple
frames. The last addition is the ”branch-and-bound” optimization technique
implemented for SHOP2 [6] in order to search for a least-cost plan, along with
the standard procedure returning the first plan found. The optimal version,
combined with the ability to interrupt the planner, can work more or less as
an ”anytime-like” algorithm [1]: when a first solution is found, possibly not
optimal, it keeps running in order to find a better plan as long as it has not been
interrupted. The procedure executed at each iteration of the planner is described
in Algorithm 1. Algorithms 2 and 3 are respectively the standard and optimal
procedures to run the planner (without interrupting it).

2.3 Operating the planner

SHPE is implemented as a C++ template library. The planner is provided in
a template Planner<MyState> class, and the template parameter must be spe-
cialized with the C++ structure type defined for the state. The implementation
of the planner provides the necessary member functions to be run in different
ways: run, and run best are used to operate the planner directly in the standard
and optimize mode, while the function next is publicly visible to enable the in-
tegration of the planner according to one’s requirements. For example, it can be
used to run the planner for a limited amount of iterations or time.

All primitive and compound tasks must be implemented by inheriting the
provided Task<MyState> virtual class and overloading its virtual member func-
tions: either applicable, apply and cost if this is a primitive task, or decompose

if it is a compound one. Also, a task is supposed to be implemented with all
its parameters as class member attributes. Due to the use of polymorphism,



Algorithm 1 next(stack, best plan, best cost)

(plan, cost, state, task network) ← top(stack)
pop stack

if cost ≥ best cost then

return

end if

if task network is empty then

best plan← plan

best cost← cost

return

end if

tasks← all tasks in task network without predecessor
for all t ∈ tasks do

if t is a primitive task then

if t.applicable(state) then
plan← append t to plan

cost← cost+ t.cost(state)
remove t from task network

push (plan, cost, t.apply(state), task network) on stack

end if

end if

if t is a compound task then

for all tn ∈ t.decompose(state) do
replace t in task network with tn

push (plan, cost, state, task network) on stack

end for

end if

end for

Algorithm 2 find first plan(state, task network)

stack ← []
best plan← []
best cost←∞

push ([], 0, state, task network) on stack

while best cost =∞ and stack is not empty do

next(stack, best plan, best cost)
end while

Algorithm 3 find best plan(state, task network)

stack ← []
best plan← []
best cost←∞

push ([], 0, state, task network) on stack

while stack is not empty do

next(stack, best plan, best cost)
end while



an instance of the Planner<MyState> class only deals with references to tasks,
therefore the actual task objects need to be stored in a global memory space.
For this purpose, and also to limit dynamic heap allocation, a caching system
registers all allocated instances of a type of task. But if a task class only has
few different instances, they can also be stored in static attributes of this class.
Figure 4 provides a practical example of how a task can be implemented for
SHPE.

So, in order to get plans from SHPE, one needs to execute the following steps:

1. Define a C++ structure for the state (MyState). Some variables of the do-
main are never modified and can be easily identified as they do not appear in
any effects; thus a good practice is to define a constant state structure, and
make all constant variables from a state pointing to the constant structure.
This technique significantly reduces memory usage and runtime as states are
copied many times in the planner’s stack.

2. Define all primitive and compound tasks of the domain as C++ classes
inheriting from Task<MyState>.

3. Include the C++ files for your domain and the ones from SHPE within a
project, and write some code to instantiate and use the specialized instance
of the Planner<MyState> class.

4. Compile and run this domain-specific planning program.

3 Planning Domain Design and Pre-compilation

3.1 High Level Modeling Language

When it comes to modeling a planning domain, C++ is anything but an ap-
propriate language. Being a low-level programming language, it is already quite
verbose. Besides, our way to implement tasks does not help either. On several
occasions, a domain written with a few hundred lines of LISP code was expanded
into a few thousand of C++ lines. Thus, a much more convenient high-level plan-
ning domain modeling language is needed. Neither PDDL nor the LISP syntax
of SHOP were appropriate as this language should support state-variable rep-
resentation and HTN decompositions. By contrast, the ANML language [10],
currently under development at NASA, provides these elements. Therefore, we
have started to design a language based on ANML as a tool for domain modeling.

However, ANML is quite a comprehensive language for planning and already
supports many features. As some of these features are out of scope for SHPE,
they were simply discarded. The removal of temporal qualifications on precon-
ditions is probably the most noticeable change (indeed SHPE does not support
temporal networks, but this may be a further improvement). Some minor changes
on the syntax were also included in order to conform the language to the task-
based HTN formalism of SHOP. Figure 5 provides an insight on some elements
of a planning domain expressed with this language.

The language was also expanded with sort-by and first preconditions, two
features available in SHOP and SHOP2. sort-by preconditions allow to sort the



class ShootPlayer : public Task<MyState> {

public:

// the class constructor

ShootPlayer(const Npc& npc, const Gun& gun) : primitive(true),

npc(npc),

gun(gun)

{

}

// evaluate the precondition according to the current state

bool applicable(const MyState& state) const

{

return state.visible[state.at[npc]][state.player_at] and

state.holding[npc][gun] and state.loaded[gun];

}

// apply the effects of this task on the current state

void apply(MyState& state) const

{

state.loaded[gun] = false;

state.player_wounded = true;

}

protected:

// print this task for debugging purpose

std::ostream& print(std::ostream& out) const

{

return out << "ShootPlayer(" << npc << ", " << gun << ")";

}

private:

Npc npc;

Gun gun;

};

Fig. 4. An example of a C++ definition for the primitive task ShootPlayer(npc, gun).
The cost function is not overloaded here. In this case, the default implementation of
this function, inherited from Task<MyState>, returns 1. It is a primitive task, so the
virtual function decompose is not overloaded either and a call to this function will
return an empty set of decompositions.



task ShootPlayer(Npc npc, Gun gun) {

cost := 1;

{

visible(at(npc), player_at);

holding(npc, gun);

loaded(gun) == true :-> false;

player_wounded := true;

}

}

task AttackPlayer(Npc npc) {

// method for attacking the player at range

method {

// a first branch, when the NPC already has

// visibility with the player

branch {

exists (Gun gun) {

visible(at(npc), player_at);

holding(npc, gun);

ordered(ShootPlayer(npc, gun));

}

}

// a second branch that moves the NPC to a waypoint

// where it will have visibility to the player location

branch {

exists (Waypoint wpt, Gun gun) {

visible(wpt, player_at);

holding(npc, gun);

ordered(Move(npc, wpt), ShootPlayer(npc, gun));

}

}

}

// method for attacking the player in melee combat

method {

exists (Knife knife) {

at(npc) == player_at;

holding(npc, knife);

ordered(StabPlayer(npc, knife));

}

}

}

Fig. 5. Primitive and compound tasks defined with a high-level modeling language, in
a state-variable based representation.



variable bindings satisfying the precondition according to the value of a numer-
ical expression and first preconditions allow to consider only the first binding
(Figure 6). The ability to insert calls to external user-defined functions is also
under study.

task RestoreHealth(Npc npc) {

method {

// a first branch, when the NPC already has a medikit

branch {

first (Medikit medikit) {

holding(npc, medikit);

ordered(UseMedikit(npc, medikit));

}

}

// a second branch when the NPC needs to

// find a medikit

branch {

sort-by (Medikit medikit; distance(at(npc),

at(medikit)); <) {

ordered(Move(npc, at(medikit)),

UseMedikit(npc, medikit));

}

}

}

}

Fig. 6. A method using both sort-by and first expressions. In the first branch, it would
be pointless to generate a decomposition for each medikit the NPC holds as the choice
of the medikit would not alter the quality of the plan, so it makes sense to consider
the first satisfier only. In the second one, a medikit in the neighborhood is more likely
to be the best option in order to find one in fewer steps, so exploring this option first
is a good heuristic.

3.2 Domain Pre-compilation

Having a convenient language for domain modeling is one thing, but currently
the domain still requires to be translated by hand into C++ code. Depending on
the size of the domain, this task quickly becomes tedious and error-prone, and
completely goes against the requirement for a system simple enough to be used
by a non-programmer (for example by a game designer). Therefore, an additional
piece of software is required to parse the domain from the high-level modeling
language and generate a C++ domain definition automatically. At the end of the
process, the generated C++ classes containing the domain elements as well as
the specialized planner would be integrated in a game project or even compiled



as an independent dynamic link library to achieve modularity. Nevertheless, this
tool has not been implemented yet.

4 Performance Evaluations

4.1 The SimpleFPS Planning Domain

The SimpleFPS domain [11] has been designed specially to produce planning
problems that could serve as benchmarks to evaluate planners according to FPS
(First-Person Shooter) game mechanics. SimpleFPS problems stage a NPC and
a player in a game level made of several areas connected to each other, and each
area includes various types of points of interest (items such as weapons, medikits
or keys, doors between areas, cover-points...). A comprehensive description of the
domain can be found in the original paper.

As this domain is provided in a PDDL format, it was necessary to convert the
predicate based representation into a state-variable one. It was also necessary to
add tasks and methods in order to operate the domain with an HTN planner, as
SimpleFPS has only been designed to evaluate goal-oriented classical planning
techniques. The hierarchical structure of the domain makes use of the tools pro-
vided by SHOP2 to encode heuristics in methods (sort-by expressions...) in order
to make the planner more likely to find near-optimal solutions. To achieve this,
we added a distance predicate/state-variable to encode the distances between
all areas (this distance is used as the criterion to sort the areas and the point of
interest in the methods). In an actual game environment, this information could
be computed with the euclidean distance between points of interest.

4.2 Experiments

For the first set of experiments, we wanted to compare the performance of
SHPE with a similar planner. We selected JSHOP2 [3], a java implementation
of SHOP2 [6]. JSHOP2 is a problem specific planner: a specialized instance of
the planner is compiled for each domain and problem. This feature provides
JSHOP2 with an advantage over SHPE, which can only be optimized for the
planning domain. Besides, JSHOP2 already compared favorably to other more
academic implementations (it has been shown to run by a polynomial order of
magnitude faster than SHOP2). So it revealed itself to be an appropriate can-
didate to compete with SHPE in our benchmark. Several problems with various
numbers of points of interest were randomly generated (the number of areas is
set to 10).

The computer used for all experiments is equipped with an Intel core i5 CPU
(2.66 GHz), 4 GB of RAM, and it runs a 64 bits version of Debian 7.0. This
configuration is equivalent to an average Steam Box, a new PC-based gaming
concept currently developed by Valve. The running-time results for SHPE and
JSHOP2 are presented in Figure 7: each measure is the average running time
for a collection of one hundred samples of the same size. The results indicate a



clear advantage on the side of SHPE, which solves each set of problems 10 to 15
times faster than JSHOP2. Moreover, the running times are short enough (less
than 3 ms for each instance) to assume that SHPE should be able to plan for
several squads of NPCs in a game or a simulator.

100 150 200 250 300 350
number of points of interests

0

5

10

15

20

25

30

35

40

ru
nn

in
g 
tim

e 
(m

s)

Comparison of running times between SHPE and JSHOP2

SHPE
JSHOP2

Fig. 7. SHPE and JSHOP2 performance comparison on different instances of problems
from the SimpleFPS domain. The instances were generated with ten areas and a varying
amount of points of interest. For these scenarios, SHPE outperforms JSHOP2 by at
least a factor of 10.

The results show that SHPE runs quite fast, but what about the quality of
the plans? There is actually no reason to evaluate SHPE on this aspect against
JSHOP2. Indeed plan quality is related to the designed decomposition hierar-
chy, and both planners share the same. Our hierarchy generally performs well: it
provides a satisfactory near-optimal plan in most cases, and sometimes it even
returns an optimal one. However there are situations when it does not: for in-
stance, a sequence of 70 actions is returned when the optimal plan only contains
30 of them. In this case, will the ”branch-and-bound” optimization technique
be of any help? In order to get an idea about it, we ran the planner until it
had returned an optimal solution for two scenarios. In the first one, the planner
first returned a plan far from being optimal; thus it was interesting to measure
how long the game would have to wait for a satisfactory solution. In the second
scenario, the returned plan was already satisfactory, but could still be improved.
The answer is shown in Figure 8. In both cases, the optimal solution is out of
reach: it requires several seconds in the already near optimal case, and several



minutes in the other case. When the initial solution is far from being optimal,
it also requires several minutes to get an acceptable one. So this optimization
option does not seem very useful and the ability to obtain a good solution from
the planner mainly relies on the designed decomposition methods.

10-1 100 101 102 103 104 105 106 107

running time (ms)

20

30

40

50

60

70

le
ng

th
 o

f t
he

 p
la

n

SHPE: evolution of plan size as time passes for two different cases

Fig. 8. SHPE using the ”branch-and-bound” optimization techniques to search for the
best solution in two scenarios. One when the first plan found is far from being optimal
(the uppermost graph, starting with 70 actions), and another case with a first plan
almost optimal, but still improvable (the lower graph, starting with 31 actions).

5 Conclusion

The ideas introduced with Pyhop [7] were put into application in SHPE in order
to provide fast planning capabilities to video games. The system has reached
the targeted performance: it has been evaluated against various problems with
properties similar to FPS games, and was able to solve them in a few milliseconds.
In addition, a high-level modeling language can be used to design the planning
knowledge required to operate the planner efficiently. To bridge the gap between
this high-level language and the C++ encoding expected by the planner, a pre-
compiler should be implemented. This component would enable AI designers to
modify the behaviour of game characters, without any skills in low-level C++
programming.

But even if this system achieves its initial goal in terms of performance and
maintenance, it does not address issues like real-time re-planning in dynamic



environments such as games. Besides, even if plans containing more than twenty
actions can be computed in a few milliseconds, this time is still partially a
waste, as it is likely that most of the plan will no longer be relevant to the
evolution of the situation. Thus, our future plan for this system is to study and
incorporate partial and delayed decomposition. A hierarchical planner including
these features could decompose a plan into primitive tasks for imminent acting
only, keep the more distant tasks at a more abstract level and eventually expand
them at the appropriate time.

References

1. Thomas L. Dean and Mark S. Boddy: An Analysis of Time-Dependent Planning.
In AAAI. vol. 88, p. 49–54 (1988)

2. Malik Ghallab, Dana Nau, and Paolo Traverso: Automated Planning: Theory and
Practice. Morgan Kaufmann (2004)

3. Okhtay Ilghami and Dana S. Nau: A General Approach to Synthesize Problem-
Specic Planners. Technical Report CS-TR-4597 and UMIACS-TR-2004-40, Univer-
sity of Maryland (2003)

4. Éric Jacopin: Game AI Planning Analytics: Evaluation and Comparison of the AI
Planning in three First-Person Shooters. To be published in AIIDE (2014)

5. Dana Nau et al.: SHOP: Simple Hierarchical Ordered Planner. In IJCAI-99, p.
968–975 (1999)

6. Dana Nau et al.: SHOP2: An HTN Planning System. In Journal of Articial Intelli-
gence Research (JAIR). vol. 20, p. 379-404 (2003)

7. Dana Nau: Game Applications of HTN Planning with State Variables. In ICAPS
Workshop on Planning in Games. Invited talk (2013)

8. Drew McDermott et al.: PDDL - The Planning Domain Definition Language (1998)
9. Jeff Orkin: Three States and a Plan: The AI of F.E.A.R. In Game Developer’s

Conference (GDC) (2006)
10. David E.Smith, Jeremy Frank and William Cushing: The ANML Language. In

ICAPS-08 (2008)
11. Stavros Vassos and Michail Papakonstantinou: The SimpleFPS Planning Domain:

A PDDL Benchmark for Proactive NPCs. In AIIDE Workshop: Intelligent Narrative
Technologies (2011)


