
Minimax Strikes Back:
Technical Appendix

1 Introduction
This document describes the details of experiments of the
paper, removed for a reason of space. In particular, we de-
scribe in this appendix: the used games (Section 2.1), the
used computational ressources (Section 2.2), the used neural
network architectures and the learning parameters of experi-
ments. Some details about results are also provided, such that
the evolution of win rate curves for Descent and Polygames,
in Section 2.4 and about the learning data analysis, in Sec-
tion 2.5. In Section 2.6, neural networks architectures and
parameters of Sections 2.7 and 2.8 are exposed. In Section
2.7, other long training processes have been carried for com-
paring Descent and Polygames, leading to results analogous
to the main article. Details about comparison against tourna-
ment Polygames networks are provided in Section 2.8. Fi-
nally, in Section 2.9, we provide answers to questions from
reviewers of previous submissions.

2 Technical Details for the Paper Experiments
2.1 Tested Games
In this section, we present the games on which we compare
the algorithms. Note that, on the one hand, these games are
recurring at the Computer Olympiad, the world multi-game
competition for board game programs. On the other hand,
these games are available in the Ludii games library [Piette et
al., 2020].

Hex
The game of Hex is a connection game, with very simple
rules. Players place one piece of their color per turn and
aim to connect the two board sides of their color. Despite
this apparent simplicity, the Hex strategies are very com-
plex, the number of states is greater than Chess (from board
size 11 × 11), and the complexity of the game is PSPACE-
complete [Bonnet et al., 2016].

Othello
The Othello game (also known as Reversi) is a territory game.
In their turn, players place a piece of their color in a cell
where they can encircle opponent’s pieces with another of
their pieces, already placed. The encircled opponent pieces
are then replaced by pieces of their color. The winner is the
one who has the most pieces of their color on the board. The
Othello is also PSPACE-complete [Iwata and Kasai, 1994].

Breakthrough
Breakthrough is a race game. It is played with the pawns of
the Chess game. The objective of the players is to be the first
to reach the opposite side with one of their pawns.

Each of these three games can be played on a varying size
board. The standard size at Othello and at Breakthrough is
8× 8. In Hex, 11× 11, 13× 13 and 19× 19 are the standard
sizes.

Surakarta
Surakarta is played on an original board of size 6 × 6. It be-
longs to the game family of international draughts. Pieces
have two types of movement: a simple movement to an adja-
cent square and a capture movement. The objective is to cap-
ture all the opposing pieces. The differences with the classic
game of draughts is that the simple movement can be carried
out towards any adjacent square (orthogonal or diagonal) and
that the capture is carried out when arriving on the opposing
piece (and not by jumping over) and must follow a specific
movement, which consists of traversing one or more times
specific movement circuits specific to the captures.

Outer-Open-Gomoku
Outer-Open-Gomoku is an alignment game. At each turn,
each player put a stone on the 15 × 15 square board. The
winner is the first which aligns 5 of their stones in any direc-
tion.

Connect6
Connect6 is analogous to Outer-Open-Gomoku except that
the board game is 19 × 19 and that players put two stones
at their turn (only one for the first player at their first turn to
mitigate their advantage) with the goal of aligning 6 stones.
Connect6 is PSPACE-complete [Hsieh and Tsai, 2007].

Havannah
Havannah is similar to Hex, i.e. it is a positional connec-
tion game. The goal is to be the first to connect 3 edges of
the board with stones of their color or 2 board corners with
stones of their color, or to create a loop on the board with
stones of their color. The board is a regular hexagonal board
with 6 corners. Havannah is PSPACE-complete [Bonnet et
al., 2013].



2.2 Computational Resources
In this section, we present the used computational resources.

For the performed training runs and the performed con-
frontations, we use the following hardware: GPU Nvidia
Tesla V100 SXM2 32 Go, 2 to 10 CPU (processors Intel Cas-
cade Lake 6248 2.5GHz) on RedHat. There is an exception,
for the performed confrontations against Polygames tourna-
ment networks, we use the following hardware: GeForce
GTX 1080 Ti, 2 to 8 CPU (Intel(R) Xeon(R) CPU E5-2603
v3 1.60GHz) on Ubuntu 18.04.5 LTS.

Descent programs (Descent learning, Unbounded Mini-
max, ...) are coded in Python (using tensorflow 1.15). Games
and Search in Polygames are coded in C/C++. For confronta-
tions, Polygames num actor parameter is 8 (threads doing
MCTS).

2.3 Algorithms of the Two Learning Framework
In this section, we briefly present some of the algorithms of
the two learning framework.

The learning process with the Descent framework is as fol-
lows. As long as there is time left, a new match phase is per-
formed. A match phase consists of a match against oneself,
where in each turn the move to be played is decided after car-
rying out a search with Descent. The move to be played after
the search is chosen according to an action selection method,
depending on the result of the search. In these experiments,
the action selection method used is the ordinal law [Cohen-
Solal, 2020] with the exploitation parameter ϵ′ choosing at
random uniformly between 0 and 1, each time a new action
must be decided . After each match phase, the data from
the associated partial game tree is added to the previous data
(only the data of the last 100 matches are kept) and a training
phase is carried out from a sample of this data set.Specifically,
smooth experience replay is used [Cohen-Solal, 2020]. The
main part of this algorithm is described in Algorithm 1. The
full formalization is described in [Cohen-Solal, 2020].

Function Descent main algorithm(tmax)
t0 ← time()
while time()− t0 < tmax do

s←initial game state()
S ← ∅
T ← {}
while ¬terminal(s) do

S, T ←descent(s, S, T , fθ, ft)
a←action selection(s, S, T)
s← a(s)

D ← {(s, v(s)) | s ∈ S}
update(fθ, D)

Algorithm 1: Main algorithm of the Descent framework
(see Table 1 for the definitions of symbols). In this con-
text, S is the set of states which are non-leaves or termi-
nal.

The learning process with AlphaZero [Silver et al., 2018]
is as follows. As long as there is time left, a new match phase

is performed. A phase consists of a match against oneself,
where in each turn the move to be played is decided after
carrying out a search with MCTS + PUCT. The algorithm
of MCTS is similar to Unbounded Minimax, The first main
differences is that the value of a state is not the minimax value
in the partial game tree but the average of the leaves in the
subtree starting from that state. The second main difference
is that the tree is constructed not in choosing states of higher
value, but states optimizing the value plus an exploration term
depending on the policy of the neural network and the number
of selection of actions during the research. After the match,
the match state sequence data is added to the previous data
(only the most recent data is kept). Every K matches (K is a
parameter), training is performed from a sample of this data
set. The main part of this algorithm is described in Algorithm
2.

Function AlphaZero main algorithm(tmax)
t0 ← time()
while time()− t0 < tmax do

for k ∈ {1, . . . ,K} do
s←initial game state()
S ← ∅
T ← {}
G← {s}
while ¬terminal(s) do

S, T ←mcts(s, S, T , fθ, ft)
a←action selection(s, S, T)
s← a(s)
G← G ∪ {s}

D ← {(s′, ft(s), P (s)) | s′ ∈ G}

update(fθ, D)

Algorithm 2: Main algorithm of AlphaZero (see Table 1
for the definitions of symbols ; K is the number of
matches performed between two updates, some of these
matches are executed in parallel ; G is the sequence of
states of the current match).

Note that, Descent and Unbounded Minimax are used
with completion (see [Cohen-Solal, 2020] and [Cohen-Solal,
2021]), which is a minor improvement. This improvement is
not described here.

2.4 Parameters of Section 3.1, 3.2, and 3.3
In this section, we present neural networks and learning pa-
rameters used in the experiments of Section ”3.1 Compari-
son of Generated and Learning Data”, Section 3.2 ”Win com-
parison with Same Resources”, and Section 3.3 ”Compari-
son with Same Resources during a Long-Term Learning Pro-
cess”. These neural networks are based on convolution layer
[LeCun et al., 2015], residual block [He et al., 2016], and
ReLU [Glorot et al., 2011]. We also present additional re-
sults: detailed win rate curves for each games about perfor-
mance of Descent and Polygames.



Symbols Definition
actions (s) action set of the state s for the current player
terminal (s) true if s is an end-game state

a(s) state obtained after playing the action a in the state s

time () current time in seconds

fθ(s)
states of the partial game tree

(and keys of the transposition table T )
T transposition table (contains state labels as v or P )

P (s) target policy of state s computed from the search data
D learning data set
τ search time per action

tmax chosen total duration of the learning process
v(s) value of state s from the game search

v(s, a) value obtained after playing action a in state s

fθ(s)
adaptive evaluation function (of non-terminal game

tree leaves ; first player point of view)

ft(s)
evaluation of terminal states, e.g.

gain game (first player point of view)

action selection(s, S, T )
decides the action to play in the state s

depending on the partial game tree, i.e. on S and T

update(fθ, D)
updates the parameter θ of fθ in order

for fθ(s) is closer to v for each (s, v) ∈ D

Table 1: Index of symbols

Game Reinforcement Heuristic
Surakarta Score
Othello Score

Breakthrough Additive depth
Hex 13× 13 Additive depth

Connect6 Multiplicative depth
Outer-Open-Gomoku Multiplicative depth

Havannah 8 Multiplicative depth
Havannah 10 Multiplicative depth

Table 2: The games and their corresponding reinforcement heuris-
tics (when used).

Descent Parameters
In total, four sets of parameters are used with the Descent
framework: the search time per action during the learning is
1s or 5s and a reinforcement heuristic is used for half of the
runs and thus a reinforcement heuristic is not used for the
other half of the runs.

The reinforcement heuristic of each game is designated in
Table 2 (see [Cohen-Solal, 2020] for their descriptions).

For each learning process, the batch size of the stochas-
tic gradient descent B is 3000, smooth experiment replay is
used with the following parameters: µ = 100 and δ = 3.
The neural network architecture is the same for each game:
a R2-network (see Table 8). The number of weights in each
architecture is of the order of 5 · 106. However, this implies
that the number of filters F and number of dense neurons D
are different for each game. The corresponding numbers are
described in Table 3.

The action distribution (the action selection method) used
during the training process is the ordinal law [Cohen-Solal,

Game F D

Surakarta 132 845
Othello 132 477

Breakthrough 132c 477
Hex 13× 13 132 155

Connect6 132 65
Outer-Open-Gomoku 132 111

Havannah 8 132 111
Havannah 10 132 65

Table 3: The filter numbers in convolutional layers and the numbers
of neurons in dense layers for the R2-networks for each game used
with Descent for the 8 games experiments.

2020]. It is used with a uniform random variable between 0
and 1 as exploration parameter (the variable value changes
after each search performed for determining the next action
to play; therefore no simulated annealing is used).

Polygames Parameters
In total, five sets of parameters are used with Polygames:
three with a different neural network architecture and two oth-
ers varying learning parameters.

Thus, three neural network architectures were used in
this experiment for Polygames, each is an adaptation of the
unique architecture being used with Descent, in order to add
a policy while keeping an analogous number of weights in the
neural network.

The first adds a densely connected policy after the last
residual layer followed by two dense layers (dense policy net-
work). The second adds a densely connected policy directly
after the last residual layer (direct policy network). The third



adds a policy connected as a convolution layer directly after
the last residual layer (convolutional policy network).

With the convolutional policy network, three sets of param-
eters are used:

• default: –sync period 100 –replay capacity 1000000 –
replay warmup 10000

• more synchronization: –sync period 10 –
replay capacity 1000000 –replay warmup 10000

• more synchronization and a smaller size of memory
replay: –sync period 10 –replay capacity 100000 –
replay warmup 1000

With the two other architectures, the default set of parameters
is used.

In Table 4, the number of filters in convolutional interme-
diate layers and neurons in dense intermediate layers for each
used neural network architecture and for each game are de-
scribed.

For the evaluations versus the basic MCTS based on UCT
with 160 rollouts, 400 games were performed for each learn-
ing process (i.e. each learned neural network). Thus, the
95%-confidence radius is max 5%.

Performance variation due to variation in Polygames archi-
tectures and settings is small and game-dependent.

Detailed Results
The performances against a 160-rollouts MCTS (with UCT
and without any knowledge nor learned policy) of the De-
scent framework and respectively of Polygames are described
in Table 5. The associated average win percentage and the
stratified bootstrap confidence interval over all games are de-
scribed in Table 6.

Win rate curves of Descent and Polygames against MCTS
with UCT, corresponding to the experiment 3.2 are detailed
for each game in Figure 1 and Figure 2. For the curve of
the paper and these additional curves, there is an evaluation
each day of the 15 days and an evaluation halfway through the
first day (at 12 noon). An evaluation consists of 200 matches
against MCTS as the first player and another 200 matches
against MCTS as the second player.

2.5 Detailed Learning Data Analysis
In the main paper, we have analyzed the number of learned
states. Here, we are interested in what we call learned num-
bers, which is an alternative measure. Then, we give a de-
tailed conclusion, notably comparing the two measurements.

Thus, we compare learned numbers, which are the num-
bers evaluating the states. For Descent, the number of learned
numbers is the number of learned states (i.e. the number of
their values), but this is not the case for Polygames where a
value and a policy are learned for each learned state. Recall
that a policy is a set of probabilities, one for each action in
that state. Thus, for Polygames, the number of learned num-
bers is the number of learned probabilities plus the number of
learned values (i.e. the sum of the sizes of the learned policies
plus the number of learned states).

In other words, contrary to the number of learned states
which is the number of states s such that the adaptative eval-
uation fθ has been updated to fit y = fθ(s), the number of Figure 1: Evolution of win percentage of Descent with reinforce-

ment heuristic (+R.H), Descent without reinforcement heuristic (-
R.H), and Polygames against MCTS (with UCT) along the 15 days
of training and their confidence intervals for the first 4 games.



policy network dense direct convolutional
layer type conv. dense conv. dense conv. dense c

Surakarta 83c 83 42c 42 88c 88 2
Othello 78c 78 74c 74 85c 85 2

Breakthrough 78c 78 69c 69 85c 85 2
Hex 13× 13 60c 74 46c 74 74c 74 2

Connect6 10c 28 2c 160 11c 42 13
Outer-Open-Gomoku 38c 62 24c 46 50c 52 3

Havannah 8 43c 46 25c 25 50c 52 3
Havannah 10 38c 38 12c 12 46c 46 3

Table 4: Number of filters in each intermediate convolutional layers and number of neurons in intermediate dense layers for each used neural
network architecture and for each game used with Polygames in the 8 games experiments ; c is a Polygames game constant.

Mean Connect6 Havannah 10 Havannah 8 Gomoku Hex 13 Surakarta Othello Breakthrough

D
win 0.0 ± 0.0 24.8 ± 48.7 51.0 ± 54.1 100 ± 0.0 58.1 ± 42.3 67 ± 10.0 73.4 ± 42.6 100 ± 0.0

loss 100 ± 0.0 75.1 ± 48.7 49.0 ± 54.1 0.0 ± 0.0 41.8 ± 42.3 0 ± 0.0 26.1 ± 42.2 0.0 ± 0.0

DRH

win 60.5 ± 43.2 74.0 ± 48.4 88.6 ± 19.7 99.2 ± 0.5 99.5 ± 0.8 98 ± 0.9 95.1 ± 3.0 75 ± 48.9

loss 39.4 ± 43.2 25.9 ± 48.4 11.3 ± 19.7 0.7 ± 0.5 0.4 ± 0.8 0 ± 0.0 4.8 ± 3.1 25 ± 48.9

P
win 1.3 ± 1.9 28.6 ± 23 23.7 ± 12.6 38.1 ± 13.8 0.1 ± 0.1 91.2 ± 4.7 0.9 ± 0.8 18.5 ± 13.3

loss 98.7 ± 1.9 71.3 ± 23 76.3 ± 12.6 61.8 ± 13.8 99.8 ± 0.1 5.1 ± 2.4 98.8 ± 0.9 81.4 ± 13.3

Gain of D −1.3% −3.8% 27.3% 61.85% 58% −9.55% 72.6% 81.45%

Gain of DRH 59.25% 45, 4% 64.95% 61.1% 99.4% 5.95% 94.1% 56.4%

Table 5: Results in percentage of UBFMs (resp. Polygames) using the learned neural nets from the Descent framework (resp. Polygames)
with 15 days of training against MCTS with UCT (no provided nor learned knowledge for the MCTS) and gain of using Descent rather than
Polygames (see Def. ??). The 95%-confidence radius is indicated by ±.

Polygames Descent
without R.H. with R.H.

mean S.B.C.I mean S.B.C.I mean S.B.C.I
win 25.3% [22.2%; 28.3%] 59.2% [50.5%; 68%] 86.2% [78.3%; 93.6%]

loss 74.1% [71.2%; 77.2%] 36.4% [27.8%; 45%] 13.5% [6.2%; 21.5%]

Table 6: Average results over the 8 games and the associated stratified bootstrap confidence interval (abbreviated S.B.C.I) of UBFMs (resp.
Polygames) using the learned neural nets from the Descent framework (resp. Polygames) during 15 days against MCTS with UCT (no
provided nor learned knowledge for the MCTS). Descent results are detailed in function of the use of a reinforcement heuristic (abbreviated
R.H.)

learned numbers is the number of learning states times the
dimension of outputs y (i.e. for Polygames the number of
learned probabilities of actions plus the number of learned
states ; for Descent it is just the number of learned states).

During the experiment in the article measuring the learned
states, we also measured the learned numbers. The conclu-
sion for learned numbers is not the same as for learned states.
The value ratio for each game has been notified in the Table
7 (which also recalls the data results of the experiment of the
main article). Descent is from 63 times better to 5 times worse
depending on the game. This is obviously on games with a
large branching factor that Descent has less good results. In
Havannah 8 and Outer-Gomoku, the results are slightly lower
(they should however be at least slightly higher by changing
the programming language). On the other hand, it is possible
that on Connect6 and Havannah 10, even by changing the pro-
gramming language, the numbers are better with Polygames.
Parallelizing Descent might fix this again. Even so, a proba-
bility of playing the action leading to a child state is not equal

to a state value. In summary, on the majority of games, De-
scent is more data efficient than Polygames. But on games
with high branching factor Polygames is more efficient only
compared to learned numbers.

In conclusion, the cost of generating the learned numbers
is only significantly higher for 4 of the 8 games, and signifi-
cantly lower for 3 of the 8 games. Nevertheless, the question
arises as to whether the numbers of Polygames contain the
same level of information as the numbers of Descent.

Note that, there is a correlation in the game tree data.
Therefore, the measures of learning data cannot be used to
conclude on the superiority of one algorithm over another.
The study of these values shows us that there is a real leap
in terms of the number of learned data (in particular about
learned states) between the two methods, which only rein-
forces the difficulty of comparing the two methods, other than
by studying the win percentage. However, despite the redun-
dancy, the level of gained information, although not quantifi-
able, is most likely very significant, given the huge difference



Figure 2: Evolution of win percentage of Descent with reinforce-
ment heuristic (+R.H), Descent without reinforcement heuristic (-
R.H), and Polygames against MCTS (with UCT) along the 15 days
of training and their confidence intervals for the last 4 games.

in generated data between the two methods.

2.6 Common Neural Networks and Parameters for
the Second Longer Run and the Tournament
Polygames Experiment

We present the common neural networks and parameters used
in the next sections.

We use two sets of learning parameters for the Descent
framework in the experiments of the main article and those of
document. The set of parameters, that we call A-parameters,
is: search time per action τ = 1s, batch size B = 3000,
the number of states in the learning memory size is 2 · 106,
sampling rate σ = 5% (for more details on these parameters,
see Section 3 of [Cohen-Solal, 2020]). The set of parameters,
that we call B-parameters, is τ = 2s, B = 3000, the states
in the learning memory are those of the 250 last matches,
and σ = 2%. Moreover, B-parameters includes the use of
the data augmentation from the symmetry of the board and
the color board sides encoding (see Section 7.2.1 of [Cohen-
Solal, 2020]).

When the depth heuristic is used with Hex 11 × 11, the
corresponding neural networks are in [−121; 121] (by using
the depth heuristic, terminal states are evaluated based on the
duration of games, which lasts, in the case of Hex 11, at most
121 turns).

Moreover, we respectively use one neural network from
the Descent framework, training during 30 days, for each of
the following games: Breakthrough, Othello with board size
8 × 8, and Othello with board size 10 × 10. The learning
parameters are the A-parameters. At Othello 8 and 10 the
scoring heuristic is used, at Breakthrough the depth heuristic
is used. The values of the Breakthrough (resp. Othello 8
; resp. Othello 10) neural network is in [−481; 481] (resp.
[−64; 64] ; resp. [−100; 100]). All Descent networks are pre-
initialized by the values of random terminal states (around
107, i.e. a supervised learning is performed for terminal states
from random games. The neural network architectures used
in this article are described in Table 9.

2.7 Another Comparison with Same Resources
during a Long-Term Learning Process

In this section, we compare again the learning performances
of the Descent framework with the learning performances of
Polygames with respect to the win percentages, on a rather
long training (30 days), only at Hex 11, and against Mo-
hex 2.0 [Huang et al., 2013], champion program at Hex from
2013 to 2017 at the Computer Olympiads, the strongest hex
program that is freely available.

Several training runs have been carried out on the game
Hex (size 11). Two training using Descent have been per-
formed with respectively the depth heuristic and the classic
gain of a game (−1 / +1) as terminal evaluation (i.e. with
reinforcement heuristic and without reinforcement heuristic).
Unlike these two Descent training runs, the Polygames train-
ing runs does not use the data augmentation from the symme-
try of the board and the color board sides encoding (see Sec-
tion 7.2.1 of [Cohen-Solal, 2020] ; note that these two tech-
niques have not been used in the previous sections). For this
reason, a third learning run using the Descent framework was



Connect6 Havannah 10 Havannah 8 Gomoku Hex 13 Surakarta Othello Breakthrough

Learned states 55 64 111 115 359 442 529 693

Neural evaluation 0,02 0,03 0,05 0,04 0,10 0,11 0,12 0,16

States evaluation 0,37 0,30 0,37 0,49 0,65 0,40 0,10 0,49

Learned numbers 0,17 0,26 0,78 0,58 2,8 20 63 27

Table 7: Ratio of Descent data over Polygames data for the same learning time for different games and 5 runs for Polygames et 4 runs for
Descent (data of a run varies by a maximum of ±60% for Polygames and ±20% for Descent). For example, in Connect6, Descent learns 55
times more states, makes 50 times less neural evaluations, makes 3 times less state evaluations, and learns around 5 times less numbers.

layer # C-network R1-network R2-network
1 conv. + ReLU convolution convolution
· · · conv. + ReLU 2 res. blocks 8 res. blocks

N − 2 conv. + ReLU 1× 1 conv. dense + ReLU
N − 1 dense + ReLU dense + ReLU dense + ReLU
N dense layer dense layer dense layer

Table 8: Description of 3 neural architectures of value networks,
called C-network, R1-network, and R2-network. Each residual
block is composed of a ReLU followed by a convolution followed
by a ReLU followed by a convolution followed by a ReLU. Output
contains one neuron. Other parameters are: kernel is 3 × 3, filter
number is F , neuron number in dense layers is D, with padding for
Ri-network and without padding for C-network.

network architecture F D

Breakthrough C-network 166 751
Othello 8 R2-network 59 213

Othello 10 R2-network 59 128

Table 9: Description of the used value neural network architectures
in the experiments about Polygames tournament networks of the pa-
per (F and D are parameters of the architecture ; see Table 8).

performed without using these two techniques. The depth
heuristic is also not used. Another analogous learning run
with Descent has also been performed using only the sym-
metry augmentation (i.e. sides encoding and depth heuristic
are not used). Two training runs have been performed with
Polygames, each using a different neural architecture.

The evolution of the win percentages against Mohex 2.0 for
each program during the learning process is shown in Figure
3. For this experiment, learning with Descent is widely better
than with Polygames. The performance gain is more marked
at the start of learning: Descent reaches a high level from the
beginning of the training run.

Technical Details
The Descent learning processes have used 2 CPU per run and
one GPU for all runs (4 training runs were launched in paral-
lel on the same GPU for Descent, resulting in a performance
loss between 10% and 20%). For Polygames, 10 CPU and
one GPU were used per run. The first Polygames network
uses a similar network architectures than those for Descent,
adapted to provide a policy while having the same number of
weights. The second Polygames network uses an AlphaZero-
like architecture with a similar number of weights. The
search time for each program is 2 seconds. The search algo-

rithm used to evaluate the Descent networks is UBFMs. The
Polygames program is used to make the trained Polygames
networks play (i.e. MCTS with PUCT). Note that, in the con-
text of these experiments, the Polygames program has per-
formed 3 times more state evaluations than the Descent pro-
gram (thanks to its parallelization of games and its C/C++
implementation).

The Descent framework was used to train a first neural net-
work, by using the B-parameters, the depth heuristic, and the
C-network architecture.

The first Polygames network has 40 filters, 50 dense neu-
rons, and its policy is densely connected to the last interme-
diate layer.

The second Polygames network (that with the AlphaZero
architecture) has 8 residual blocks with 64 filters and 256 neu-
rons in the dense layers.

The parameters of Polygames training runs are the
default parameters except that num game=121 and
act batchsize=121 (they are increased to improve the
parallelism ; num game is the number of games performed
in parallel and act batchsize is the number of evaluations
batched together).

The third and the four learning processes based on the De-
scent framework use the A-parameters.

2.8 Polygames Tournament Neural Networks
In the experiments of Section 3.4 of the article, we use par-
ticular Polygames neural networks which have participated in
the TCGA tournament of 2020 (in Taiwan): the Breakthrough
network won the tournament, the Othello size 8 network fin-
ished second, and the Othello size 10 network won the tour-
nament. Their training runs required the use of 100 to 300
GPU and 80 CPU during a week.

Parameters for Breakthrough and Othello
In this subsection, we describe the details of the Descent
training for Othello (size 8 and 10) and Breakthrough.

The training run using the Descent framework on Othello 8
and Breakthrough is the one described in Section 2.6 (the first
6 days of the 30 days of training). Note: neither symmetry nor
sides coding is used.

Detailed Results
Finally, we present details about the results of Section 3.4.

The results of the confrontation of the 5-day Descent net-
works against Polygames networks are described in Table 10
(This table presents the results of 200 matches as first player
and 200 other matches as second player of the Descent net-
works of Section 2.6 with 5 days of learning, using UBFMs



Figure 3: Evolution of winning percentages of Descent with classic gain, symmetry augmentation and sides encoding (red line), Descent
with depth heuristic, symmetry augmentation and sides encoding (green line), Descent with classic gain and symmetry augmentation (or-
ange line), Descent with classic gain (blue line), Polygames using the corresponding Descent network architecture (purple dotted line), and
Polygames using an AlphaZero neural architecture (brown dotted line) against Mohex 2.0, during a 30 days learning process (approximately
one evaluation every two days ; each evaluation consists of 300 matches in first player and 300 other matches in second player). The x axis is
in days.

time Breakthrough Othello 8 Othello 10
days 5 30 5 30 5 30

win 1.5s 56% 85% 65% 97% 67% 98%
draw 1.5s 1% 2% 1% 1%
loss 1.5s 44% 15% 31% 1% 32% 1%

win 5s 58% 55% 81% 94% 61% 79%
draw 5s 3% 4% 3% 2%
loss 5s 42% 45% 16% 2% 36% 19%

Table 10: Results of 400 matches of Descent networks (5 days of
learning and 30 days of learning) with UBFMs at Breakthrough
and Othello 8 and 10 against tournaments Polygames networks (see
Technical Appendix). Confidence radius: max 5%.

as search algorithm at Breakthrough and Othello (size 8 and
10) against tournaments Polygames networks). Although
learning with Descent used 100 times less GPU (1 GPU vs.
100 GPU) and lasted slightly less time (5 days vs. a week),
the Descent framework has a much better result for all three
games.

The results of the confrontation of the 30-day Descent net-
works against the same Polygames networks are described in
Table 10 (This table presents the results of 200 matches as
first player and 200 other matches as second player of the
Descent networks of Section 2.6 with 30 days of learning, us-
ing UBFMs as search algorithm at Breakthrough and Othello
(size 8 and 10) against tournaments Polygames networks).
This new experience shows that the Descent networks con-
tinue to improve.

2.9 Questions of Reviewers
In this section, we provide answers to questions from review-
ers of previous submissions.

• How would one quantify the complexity of the MCTS-
based algorithm and the Minimax-based method, for in-
stance?

MCTS algorithms and Minimax algorithms are heuristic
algorithms that usually do not give any guarantee. When used

in the endgame they can solve the subgame but this is not the
general case. Even for solving the subgame the worst case
complexity is that they explore the whole subtree since they
are not guaranteed to have a good move ordering. Qualify-
ing the complexity in the case of MCTS and Minimax is ill-
defined since the result of running the algorithms is a move
that is supposed to be good but not a perfect answer to a well
defined problem. In order to compare MCTS and Minimax
the most meaningful comparison is to make them play against
the same adversary and see the difference in winning rate. A
possible measure of complexity is the number of states vis-
ited for a given time. Both MCTS and Unbounded Minimax
perform an iteration to expand the most interesting leaf. How-
ever in the case of Unbounded Minimax all the children of the
most promising leaf are expanded while in the case of MCTS
only one child is expanded. In the worst case in order to solve
a game MCTS would visit much more states than Unbounded
Minimax since MCTS expands one state per iteration whereas
Unbounded Minimax expands all the possible moves of the
leaf per iteration. Therefore the number of iterations in the
worst case to solve a game in the case of Unbounded Mini-
max is much less than the number of iterations of MCTS in
the worst case to solve a game.

Note also that a complete analysis that integrates learn-
ing in addition to search is extremely complicated, especially
since the two algorithms have incomparable characteristics
(different learning target values, use / non-use of policy, .. .).

• How applicable is the Decent algorithm? What are its
limitations? How can you improve it?

Descent can be applied to any two-player game with perfect
information (and no chance). In this case, with enough time
and memory, it finds a winning strategy [1]. It can be applied
to games with imperfect information (in particular stochastic
games) and to multi-player games but it will not have, in gen-
eral, an optimal behavior. Thus, we can improve it so that it
has a theoretically optimal behavior with multiplayer games
and imperfect information games.

Its practical limitations are an open question. It gives good
to excellent results on more than fifteen games. It’s only in



Chinese checkers where the results are disappointing (at least
for now), which is surprising since the results are very good
on classic Checkers.

References
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