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Abstract. Monte Carlo Search algorithms give excellent results for some
combinatorial optimization problems and for some games. They can be
parallelized efficiently on high-end CPU servers. Nested Monte Carlo
Search is an algorithm that parallelizes well. We take advantage of this
property to obtain large speedups running it on low cost GPUs. The
combinatorial optimization problem we use for the experiments is the
Snake-in-the-Box. It is a graph theory problem for which Nested Monte
Carlo Search previously improved lower bounds. It has applications in
electrical engineering, coding theory, and computer network topologies.
Using a low cost GPU, we obtain speedups as high as 420 compared to
a single CPU.
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1 Introduction

1.1 History of Monte Carlo Search algorithms

Monte Carlo Tree Search (MCTS) has been successfully applied to many games
and problems [4]. It was used to build superhuman game playing programs such
as AlphaGo [32], AlphaZero [33] and Katago [35]. It has been recently used to
discover new fast matrix multiplication algorithms [21].

Nested Monte Carlo Search (NMCS) [6] is a Monte Carlo Search algorithm
that works well for puzzles. It biases its playouts using lower-level playouts.
Kinny broke world records at the Snake-in-the-Box applying Nested Monte Carlo
Search [22]. He used a heuristic to order moves in the playouts. The heuristic is
to favor moves that lead to a state where there is only one possible move. Other
applications of NMCS include Single Player General Game Playing [24], Coop-
erative Pathfinding [1], Software testing [28], Model-Checking [29], the Pancake
problem [2], Games [11], Cryptography [14] and the RNA inverse folding problem
[27].

Online learning of playout strategies combined with NMCS has given good re-
sults on optimization problems [30]. It has been further developed for puzzles and
optimization with Nested Rollout Policy Adaptation (NRPA) [31]. NRPA has
found new world records at Morpion Solitaire and crossword puzzles. Edelkamp,
Cazenave and co-workers have applied the NRPA algorithm to multiple prob-
lems. They have adapted the algorithm for the Traveling Salesman with Time
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Windows (TSPTW) problem [12, 16]. Other applications deal with 3D Packing
with Object Orientation [18], the physical traveling salesman problem [19], the
Multiple Sequence Alignment problem [20], Logistics [17, 9], the Snake-in-the-
Box [15], Graph Coloring [10], Molecule Design [8] and Network Traffic Engi-
neering [13]. The principle of NRPA is to adapt the playout policy to learn the
best sequence of moves found so far at each level. GNRPA [7] has much improved
the result of NRPA for RNA Design [8].

1.2 Generating playouts

Monte Carlo based algorithms for game AI generate a large number of simulated
games called playouts. The generation of a playout is presented in Algorithm 1.
The main loop of this algorithm is used to play the different moves until the end
of the game. At the beginning of each iteration, the game data is analyzed to
detect all possible moves. Then, a given policy or a random strategy selects a
move among the different possibilities. After that, the chosen move is played and
we iterate. When the game ends, the list of played moves is returned with the
score. The game AI will then analyze the results of many playouts to generate
a new bunch of playouts with better scores.

Algorithm 1: Generation of a playout

Data: Game: game object embedding rules and data
Data: Policy: function that selects a move

1 Function CreatePlayout(Game, Policy):
2 Playout = [ ] // History of played moves

3 while Game.IsNotTerminated() do
4 L = Game.GetPossibleMoves()
5 ChosenMove = Policy.ChoseMove(L)
6 Playout.append(ChosenMove)
7 Game.P lay(ChosenMove)

8 return Playout, Game.Score()

1.3 Why GPUs have not been considered?

Monte Carlo based approaches for game AI are generally performed on high-
end CPUs. Even if these algorithms have demonstrated their performance and
quality, the possibility of creating a version on GPU has not been studied. There
are many reasons for this:

– The capabilities of a CPU core, in terms of computing power or clock speed,
greatly exceed the capabilities of a GPU core.
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– Most Monte Carlo based algorithms are written using an iterative approach.
GPU processing is based on parallelism and switching from one programming
style to the other is difficult.

– On average, a GPU core has only 1 KB of memory cache. It seems difficult
to store all the game data inside. Moreover, GPU global memory has a
notoriously slow latency.

– Parallel GPU threads must access contiguous data to achieve efficiency. How-
ever, depending on the game, it is not always easy to meet this requirement.

These accumulated difficulties do not bode well for the performance. Never-
theless, this paper aims to show that implementing playout simulations on GPU
is possible with little difficulty and with performance gain.

1.4 Our contribution

In this paper, we carefully present the first, to our knowledge, proof of concept
showing that it is possible to obtain significant performance for playouts gen-
eration on a GPU. We study with precision the performance losses induced by
the GPU architecture relative to parallel simulations in Section 2, to computing
power in Section 3 and to memory access in Section 4. We finally choose the
game ‘Snake in the box’ to perform a series of benchmarks in Section 5. Most of
the tests we use are classical tests, however, we use them in the very particular
context of parallel simulations doing random memory accesses. The objective
of this article is to determine precisely how a GPU behaves in such a specific
situation.

2 Parallel execution

2.1 Warp

We briefly summarize NVIDIA GPUs architecture, the reader can find a more
detailed description in [3, 26]. A NVIDIA GPU contains thousands of CUDA
cores gathered in groups of 32 cores called warps. In a warp, all the cores process
the same statement at the same time. Thus, the cores belonging to the same warp
run the same source code in parallel, only their register values may differ.

When looking at Algorithm 1 used for playouts generation, three steps are
required: list the possibles moves, choose one of them and play it. Thus, if a
particular game performs the same sequence of instructions to carry out these
steps, we can efficiently simulate 32 playouts in parallel in the same warp. But
these 32 simulations will obviously differ in their number of rounds. So, when a
playout ends before the others, one of the cores becomes idle. The inactive cores
are accumulating until the longest playout ends. At this point, all cores wake up
and start a new batch of 32 simulations. As opposed to a sequential processing
where a new simulation starts as soon as the previous one has finished, some
computing resource is wasted by the idle cores waiting for the last simulation
to complete. In the following, we theoretically estimate the performance loss
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inherent to any playouts simulation performed in a warp to verify that this loss
is acceptable.

2.2 Theoretical model

Let us assume that for a given policy, the time spent to simulate a playout can
be modeled by a Gaussian distribution. So, the 32 simulations running in a warp
can be modeled as different Gaussian random variables denoted Xi = N (µ, σ)
with i = 1, . . . , 32. Now, we want to model the time spent by a warp to complete
the generation of a group of 32 simulations. For this, we define a new variable:

Z = [max
i

Xi]

To simplify the calculation, we use X ′
i = Xi − µ and Z ′ = [maxi X

′
i]. By

Jensen’s inequality, we obtain:

etE[Z
′] ≤ E[etZ

′
] = E[max

i
etX

′
i ] =

n∑
i=1

E[etX
′
i ] = net

2σ2/2

Thus, we can write:

E[Z ′] ≤ log(n)

t
+

tσ2

2

With t =
√
2 log n/σ and with n = 32, we finally obtain:

E[Z] ≤ µ+ σ
√
7

In comparison, the average time spent by the 32 simulations follows a Gaus-
sian distribution equal to Y = (

∑
i Xi)/32 = N (µ, σ/32). Using the empirical

rule, we know that 99.7% of the time, the variable Y will satisfy: Y ≥ µ−3σ/32.
Thus, we can conclude that 99.7% of the time, the ratio Z/Y satisfies :

Z

Y
=

max(Xi)

mean(Xi)
≤ µ+ σ

√
7

µ− 3σ/32
=

µ+ 2.64σ

µ− 0.09σ

The ratio Z/Y bounds the α factor describing the time increase when simu-
lations run on a warp in parallel. As an example, when the mean of the playouts
length is equal to 100 moves with a standard deviation of 15, this bound is equal
to 1.41. This bound is not tight and may be somewhat overestimated. Thus, we
numerically estimate the α factor in the following Section.

2.3 Numerical estimation

We now try to numerically estimate the α factor corresponding to the ratio
between the time spent by a warp to generate 32 playouts and the average time
used by the same 32 playouts without considering the idle time. For this, let us
assume that the length of each simulation can be modeled as Gaussian variable
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Xi = N (µ, σ). In this manner, the α factor is equal to E[max(Xi)/mean(Xi)].
Note that the α factor is invariant by scaling the Xi variables. Thus, we present
some estimations of the α factor for different Gaussian random variables Xi =
N (1, σ/µ) in Table 1. When the ratio σ/µ increases, the α factor also increases.
The known bound from the previous Section for the case σ/µ = 0.15 is equal to
1.41, but the numerical estimation is more favorable with an α factor equal to
1.31. This ratio can be considered as an acceptable overhead of 31%.

Table 1. Estimations of the α factor for Gaussian random variables Xi = N (µ, σ)

σ/µ 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40

α 1.1 1.2 1.31 1.41 1.51 1.62 1.72 1.82

3 Expected performance

We compare the performance of a NVIDA GTX 3080 GPU and an AMD Ryzen
9 3900X CPU. Comparisons between CPU and GPU performance can be found
in the literature, but usually in a specific context such as linear algebra [23]
or neural networks [5]. To our knowledge, no study has been published relative
to our specific context of random memory access. Thus, we first benchmark
the computing power of these two devices and then, we evaluate their memory
latency. All this information allows us to determine what performance gain we
may expect, for what problem size and in what way.

3.1 Computing power

We want to compare the computing power of a GPU core against a CPU core.
For this purpose, we set up a function that computes the sums of all possible
subsets of {k ∈ N : k ≤ n} without performing any memory access. In this way,
we test the performance of two common operations in puzzle games: additions
and logical tests. Our two test platforms are a NVIDIA GTX 3080 GPU and
an AMD Ryzen 9 3900X CPU. In our test scenario, each CPU or GPU thread
performs the same calculations. We perform different tests with 1 or 2 threads
per core and with integer or float values. We present the time spent to complete
all the threads in Table 2. We choose as reference time the scenario with 1 thread
per CPU core and with integer numbers. We notice that using 2 threads per core
instead of one seems to be more efficient for both GPUs and CPUs. Finally, we
can conclude that GPU execution is about 4 to 5 times longer compared to CPU.

3.2 CPU and GPU memory cache size

A memory cache is used to reduce the average time to access data in memory.
The logic behind memory cache is simple: when a core requests data in RAM,
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Table 2. Relative duration of the performance benchmark.

1 Thread / Core 2 Threads / Core

Integer Float Integer Float
CPU vs GPU 1 vs 3.9 1.3 vs 5.6 1.3 vs 6.3 2.0 vs 10.1

it first checks whether a copy exists in the L1 cache and in case of success, this
process saves memory access time. For the AMD Ryzen 9, the AMD EPYC and
the Intel Xeon Platinum family, the L1 cache size is 64KB per core. For the
NVIDIA GTX family, the L1 data cache size is 128KB but it is shared among
128 CUDA cores. Thus, on average each CUDA core has 1 KB of L1 data cache
which is far less than a CPU L1 cache of 64KB. So if we want a GPU to be able
to compete with a CPU, we should process problems with small data size.

3.3 Estimating memory latency

After having compared CPU and GPU cache size, we now focus on their response
time also called latency. For this, we use the P-Chase method presented in [25, 34]
which continuously performs the read statement i = A[i] as shown in Algorithm
2. To simulate random memory accesses, we initialize the values in A to perform
a random walk of this array as in the example A[ ] = {6, 5, 7, 2, 0, 4, 3, 1}. We set
up a second test scenario to analyze the latency of Read+Write operations. For
this, we still conduct a random walk, but this time each memory read is followed
by a memory write at the same location. This behavior simulates a game which
is updating the data of its gameboard.

Algorithm 2: Random memory read latency estimation

Data: A: array of Integer, m: number of reads to perform, p: random start
1 Function P-ChaseReadOnly(A,m, p):
2 for m/3 do
3 p = A[p]; p = A[p]; p = A[p]; // 3 reads

4 Function P-ChaseReadWrite(A,m, p):
5 for m/3 do
6 p2 = A[p]; p3 = A[p2]; p4 = A[p3]; // 3 reads

7 A[p] = p3; A[p2] = p4; A[p3] = p2; // +3 writes

8 p = p4

3.4 Random access and CPU L1 cache latency

The L1 memory cache on modern CPUs is very efficient. Thus, playout gener-
ation can take full advantage of the acceleration provided by the L1 cache. We
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present the average latency estimated using the P-Chase method in Table 3. We
consider different scenarios with 1 or 2 threads per core and with read only or
read and write. The estimation we obtain are very stable as long as data resides
entirely in the L1 cache. We notice that with 1 or 2 threads per core, perform-
ing 1 read or 1 read + 1 write access, the memory latency is very similar. This
confirms that Ryzen 9 CPU family is able to handle read and write in parallel,
with 2 threads per core and with random access without loss of performance.

Table 3. L1 cache CPU latency for random access.

Threads per core 1 2

Latency in ns - Read Only 1.46 1.53

Latency in ns - Read+Write 1.54 1.60

3.5 Random access and GPU latency

The NVIDIA GTX 3080, has 68 Streaming Multiprocessors (SM). Each of these
SMs has an internal memory of 128KB that can be partitioned into L1 cache
and shared memory. The SM L1 cache behaves like a CPU L1 cache. Shared
memory can be seen as a user-managed memory space that all threads of the
same SM have access to. Its size is limited to 100KB on the 3080 GPU. We
know that our parallel playouts simulations will generate mainly random access
in memory. In our benchmark, each thread performs its own P-Chase using its
own array. In this manner, each thread behaves as if it was performing its own
game simulation in a private memory space. So we use the P-Chase algorithm
to precisely estimate the memory latency in such a scenario, this information
being not documented by NVIDIA. Thus, we have two test scenarios: one where
data mainly resides in the L1 cache and another one where data are allocated in
shared memory. In the first scenario, we can exceed the size of the L1 cache and
use global memory. So, we test arrays up to a size of 2K which requires 16-bit
indexing. In the second scenario, data must totally reside in the shared memory
space, so we limit arrays to 256 bytes in order to use only 8-bits indexing. We
also test the two variants of the P-Chase algorithm: read only or read+write.
We present all estimated latency in Table 4.

What are our observations ? When using the L1 cache, latency of read only
access is stable until the L1 occupancy remains below 100%. When occupancy
is beyond 100%, latency increases rapidly to over 1000ns. When running many
threads on the same core, a mechanism called latency hiding is triggered by the
GPUs to improve performance. This way, when the active thread is put on hold
due to a memory access, a waiting thread can rapidly take its place avoiding a
core being idle. Thus with 2 threads per core, we see that the latency reduces
by half. Nevertheless, using 2 threads per core divides the memory available for
each thread by a factor 2 which increases the strain on the available memory
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space for each thread. When we perform the Read+Write test, we notice that
the performance becomes very bad with a latency nearly 10 times longer. It is
not easy to explain this behavior but in any case it seriously harms playouts
simulation. When data relies in shared memory, the latency in the read only
scenario is better and stable with about 18 ns. But most importantly, the latency
during Read + Write tests remained very good with 25ns.

Table 4. GPU latency in nanoseconds for random memory access.

L1 cache + RAM - 16 bits value - X means > 1000

Buffer size 8 16 32 64 128 256 512 1K 2K

Occupancy 2% 4% 8% 16% 33% 66% 131% 262% 524%

1T/Core Read 26 27 28 30 31 32 524 895 X

1T/Core R+W 79 144 258 296 287 294 X X X

Occupancy 4% 8% 16% 33% 66% 131% 262% 524% 1048%

2T/Core Read 13 13 14 17 21 310 868 X X

2T/Core R+W 46 144 248 297 309 X X X X

SHARED - 8 bits value - X means > 1000

Buffer size 8 16 32 64 128 256

Occupancy 1% 2% 4% 8% 16% 33%

1T/Core Read 17 18 18 19 19 19

1T/Core R+W 23 24 24 25 25 25

3.6 Synthesis

We can conclude that the use of shared memory is a wise choice because it
provides an optimal latency for random memory accesses, even when reads and
writes are performed at the same time. Using shared memory, we must respect
the constraint of 100KB maximum for 128 cores. This will force us to greatly
reduce the storage of game data in memory. When looking for performance, we
should focus on problems with less than 1 KB of data per simulation.

In terms of computing power, we can conclude that a CPU core is five times
faster than a GPU core. When data resides in shared memory, GPU latency
(25ns) is 16 times slower compared to CPU latency (1.5ns). Thus memory la-
tency, even when using shared memory, remains the main bottleneck when we
speak about performance. We recall that the NVIDIA GTX 3080 has 8704 CUDA
cores, thus, when a game performs mainly memory accesses, its computing power
will be equivalent to 8704/16/1.3 = 420 times a single CPU core, the ratio 1.3
being the Warp performance loss factor we present in Chapter 2. This estimation
is an approximation, but it gives the level of performance we can expect.
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4 Snake in the box

4.1 Performance Benchmark

We have chosen the game ‘Snake in the box’ game for several reasons:

– The game rules are intuitive and quickly understandable.
– The source code is easily readable and can be used as a pedagogical example.
– This game generates mainly memory access and finally very few compu-

tations in comparison. So, this game allows us to test our scenario where
memory latency is the main performance bottleneck.

4.2 Game rules

A d dimensional hypercube is an analogue of a cube in dimension d with 2d

nodes, each node having d neighbors. The Snake in the box problem consists in
searching a longer path among the edges of a hypercube. There are two additional
constraints : we cannot turn back and we can not select a new node which is
adjacent to a previously visited node (connectivity constraint). The score of a
playout corresponds to its number of edges in the path.

4.3 Data Structure

We can code each node of a d-dimensional hypercube by an integer value of d
bits. The code of two connected corners only differ by one bit. This way, the
neighbors of the node 0010b are 1010b, 0110b, 0000b, and 0011b. We associate
with each node a 1 bit value named Usable[i] indicating whether that node
can be visited. As GPU programming requires optimization of data in the L1
cache/shared memory, we use a bitfield of 2d bits to store the array Usable.
In the same way, as there are at most d possible moves at each turn, we can
store the sequence of moves using only 4 bits per move when d < 16. As the
NVIDIA GTX 3080 has a maximum of 100KB of shared memory, we can test
our approach for a value of d ranging from 8 to 11 as shown in Table 5.

Table 5. L1 cache occupancy relative to the dimension.

Dimension of the Snake in the box 8 9 10 11 12

Number of nodes 256 512 1024 2048 4096
Longuest known path 98 190 370 707 1302

Bitfield size in bytes 32 64 128 256 512
Sequence size in bytes 49 95 175 354 651
Data size in KB - 128 playouts 10 20 39 76 145

Shared memory occupancy - 100KB 10% 20% 40% 78% 149%
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5 Nested Monte-Carlo Search

NRPA algorithm uses a lot of memory and it does not suit our constraints. Thus
we focus on the NMCS algorithm which is memory efficient and provides very
good results for the Snake In the Box problem.

5.1 Algorithm

A Nested Monte-Carlo Search, NMCS, returns a sequence of moves used to
finish a game. The NMCS algorithm takes two arguments: an integer indicating
its recursion level and a game G where n moves have already been played. To
complete the game, the NMCS algorithm iteratively plays moves. To choose the
next move, the algorithm analyzes all the possible moves. For each move, it
creates a copy G′ of the current game G, plays the candidate move and performs
a recursive call toNMCS(level−1, G′). If the sequence returned by the recursive
call is associated with a better score, the best known sequence is replaced. After
all possible moves have been tested, the algorithm plays the n+1 -th moves of
the current best known sequence and iterates. We point out that at level 0, the
NMCS performs only a random playout to build a sequence of moves.

Algorithm 3: NMCS algorithm

1 Function NMCS(level, Game G):
2 Input: G game in progress (partially started or nearly finished)
3 Output: B game completed
4 B = G.copy() // Current best game

5 if level == 0 then
6 B.playout() // At level 0, NMCS performs a playout

7 else
8 n = G.Sequence.size // n turns have been performed

9 while not G.Terminated() do
10 for move in G.GetPossiblesMoves() do
11 G’ = G.copy() // Create a subgame

12 G’.play(move) // Test this move

13 NMCS(level-1,G’) // Evaluation from level-1

14 if G′.score() > B.score() then
15 B = G’

16 G.play(B.sequence[n]) // n-th move of best known sequence

17 n += 1

18 return B
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5.2 NMCS with Parallel Leaf

To run multiple NMCS algorithms in parallel, we are faced with several difficul-
ties. First, a level-4 NMCS algorithm requires storing 5 games in memory which
means the L1 memory will quickly saturate. Second, the NMCS algorithm has
been designed as an incremental and also recursive algorithm which makes it
almost impossible to migrate to a parallel version. However, we can set up a
parallel leaf version. For this, instead of building only one playout at level 0,
we generate 32 playouts in parallel and select the best one. Other levels of the
NMCS algorithm remains in single thread mode. The NMCS with Parallel Leaf
remains effective because most of the computation time is spent at level 0.

We recall that the NVIDA GTX 3080 contains 68 Streaming Multiprocessors
containing 4 warps of 32 cores. We can run one parallel leaf NMCS per warp to
obtain 68 × 4 = 272 NMCS running in parallel on this GPU. Each thread in a
warp generates a playout. Then when the 32 playouts are over, a single thread,
named the the master thread, analyzes their results and select the best sequence
to be returned to the upper level. As specified in the NVIDIA specification,
threads within a warp that wish to communicate via memory must execute the
dedicated CUDA function syncwarp (). In our case, this function has to be
called by the master thread to correctly analyze the playouts.

5.3 NMCS on GPU

While it may seem easy to set up 32 threads running in parallel, there remains
a little challenge to address when programming the NMCS algorithm on GPU.
In fact, inside a warp, a GPU can easily reduces the number of running threads
due to an if statement. But, for the NMCS algorithm, we operate in reverse.
Indeed, the higher levels of the NMCS algorithm use only one master thread,
and after some recursive calls, playouts generation requests the use of 32 threads
in parallel. It is not the usual way a GPU works.

For this, we use a specific trick: when a processing must be performed by the
master thread of the algorithm, we precede it with a filter test that verifies that
the current thread corresponds to the master thread. But, we must keep the 32
threads active until the level 0 of the NMCS algorithm. For this, all threads in
the warp must execute recursive calls and their enclosing loops. Threads outside
the master thread should do nothing. As the filter test prevents them from
performing any processing, they remain active and follow the master thread
without performing any processing until level 0.

5.4 Performance comparison

We compare the performance of a NVDIA GTX 3080 GPU relative to one core
of a Ryzen 9 3900X CPU. We validate our GPU implementation by comparing
the mean score obtained by the CPU and the GPU versions. Any important de-
viation is associated to an implementation problem. We set up our GPU version
using shared memory in order to obtain better performance.
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We show performance gains in Table 6 for the Snake In The Box problem in
dimension 8, 9 and 10 using level 1 and 2 of the NMCS algorithm. For level 1,
the GPU was able to achieve performance gains by a factor ×390 which is of the
same magnitude as the ratio ×420 we estimate in Section 3. In a surprising way,
we notice that in level 2 of the NMCS algorithm, performance increases reaching
×480. This behavior remains unexplained because the time spent by the higher
level is normally negligible. We need to conduct more sophisticated experiments
to analyze this phenomenon.

Table 6. Performance gain for the 3080 GPU relative to one CPU core.

Dimension 8 9 10

ÑMCS Level 1 ×380 ×387 ×382

ÑMCS Level 2 ×471 ×498 ×521

5.5 Implementation

To set up our GPU implementation, on the first try, we choose not to optimize
data structures for GPU architecture. We thought this task not very useful
because the performance bottleneck mainly comes from random memory access.
So we import our CPU/C++ source code into our CUDA program. We embed
game data and game functions into a C++ class called SnakeInTheBox to improve
the structure of the code and its readability. We also use a C++ structure called
Info to gather input and output information of each thread. This first version
reaches interesting performance but half the efficiency we show in Table 6.

In a second version, we update our code to use shared memory. We also cre-
ate an implementation of the list of possible moves specific to GPU. This imple-
mentation uses memory coalescing, a technique where parallel threads accessing
consecutive memory locations combine their requests into only one memory re-
quest. Considering all these improvements, we were able to achieve performance
ratios shown in Table 6.

The data structures, P-Chase and NMCS algorithms, CUDA source codes
and project files for Visual Studio 2022 are available for download at the URL
http://anonymousdl.online/LION17/.

6 Conclusion

We have proven that running 32 simulations in parallel on a GPU warp loses an
acceptable percentage of performance. Although random memory accesses are
known to be extremely costly for a GPU, we were able to show that using shared
memory could achieve a memory latencies 16 times slower than CPU memory
latency, but with its 8704 cores, the NVIDIA GTX 3080 may achieve a speed of
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×420 compared to one Ryzen 9 3900X CPU core. All these observations allowed
us to set up the first implementation of the NMCS algorithm on GPU. We test
performance gain for the Snake In The Box problem in dimension 8,9 and 10.
The performance we obtain corresponds to the order of magnitude that we had
previously estimated, which in itself is a great success.

Using shared memory, we must respect the constraint of 100KB maximum
for 128 cores which represents a very important constraint. This forces to greatly
reduce game data in memory and to focus on problems with less than 1 KB of
data per simulation. But on the other hand, the NVIDIA GTX-4090 card already
offers twice as many CUDA cores compared to the 3080 and the next generation
with the NVIDIA GTX-5090 will also double performance. We are probably at
a technological tipping point where, for some games, it will be more efficient
to generate playouts on a GPU than on a CPU. Indeed, the frantic race for
performance that GPU founders are waging makes the power/price ratio more
and more interesting compared to high-end CPUs.
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