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Abstract. Graph Coloring is probably one of the most studied and famous prob-
lem in graph algorithms. Exact methods fail to solve instances with more than
few hundred vertices, therefore, a large number of heuristics have been pro-
posed. Nested Monte Carlo Search (NMCS) and Nested Rollout Policy Adapta-
tion (NRPA) are Monte Carlo search algorithms for single player games. Surpris-
ingly, few work has been dedicated to evaluating Monte Carlo search algorithms
to combinatorial graph problems. In this paper we expose how to efficiently ap-
ply Monte Carlo search to Graph Coloring and compare this approach to existing
ones.

1 Introduction

Given a graphG, a proper coloration ofG consists in assigning a color to each vertex of
the graph such that no adjacent vertices receive the same color. The chromatic number
χ(G) ofG is the minimum number of colors required to have a proper coloration forG.
Determining the chromatic number of a graph is probably one of the most studied top-
ics in graph algorithms and discrete mathematics. It has many applications, including
scheduling, timetabling, or communication networks (see references in [24]). Unfor-
tunately, identifying the chromatic number is notoriously hard to solve: it is already
NP-hard even if the question is to decide if the graph can be colored with 3 colors, and
it is essentially completely not-approximable [30].

To cope with this difficulty, the research community has tried a variety of differ-
ent approaches: mathematical programming [24], exact moderately exponential algo-
rithms [1], approximation algorithms on special graph classes [8], algorithms of param-
eterized complexity for structural parameters and data reduction [22,4,25,23], heuris-
tics, meta-heuristics, etc. In practice exact methods generally fail to color graphs with
more than few hundred vertices [24], so a large number of publications on graph color-
ing algorithms focus on the design and improvement of heuristics approaches.

Early heuristics for graph coloring were often based on pure local search strategies
such as TabuSearch [19]. Nowadays, most efficient modern algorithms are still based
a local search strategy, but they combine it with sophisticated exploration techniques
to escape local minima (e.g. Variable Neighborhood Search [26] and Variable Space
Search [20]). Building on a the idea of combining local search with more exploratory
search procedures, Fleurent and Ferland have proposed to use the framework of hy-
brid algorithms which combine a local search operator with a population based algo-
rithm [16]. This idea has inspired a lot of research in the field (see for example [17]),
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and ultimately led to the state-of-the-art algorithm HEAD [27] (Hybrid Evolutionary
Algorithm in Duet).

In comparison with hybrid algorithms based on local search, very little work has
been dedicated to evaluating the performance of Monte-Carlo for graph coloring prob-
lem (except [9]). This is probably because the idea of discovering highly constrained
solutions through random sampling seems counter-intuitive at first. However, modern
Monte-Carlo based algorithm naturally combine random search (which provides explo-
ration) with a tree search driven by a stochastic policy learned during the search, (which
help improving good local solutions). These two features make modern Monte-Carlo
based algorithms good candidates for the graph coloring problem.

In this paper, we evaluate the performance of two Monte-Carlo based algorithm,
Nested Monte Carlo Search (NMCS) [5] and Nested Rollout Policy Adaptation (NRPA) [29],
for the graph coloring problem. As we will show, our modeling of the coloring problem
as a Monte-Carlo search algorithm provides good performance and can compete with
state-of-the-art hybrid algorithms which have been studied and improved over the past
30 years.

In Section 2, we review related work concerning Monte Carlo Search methods and
describe in Section 3 the two we will use in this paper. In Section 4, we discuss various
modeling choices for our approach. In Section 5 we describe the other algorithms for
graph coloring that we will compare to ours. Finally, in Section 6, we conduct thorough
experiments to demonstrate the performance of NRPA.

2 Monte Carlo Search methods and Combinatorial Problems

Monte Carlo Tree Search algorithms (MCTS) have been most successful in the area of
game artificial intelligence [3], and have obtained state-of-the-art in this field. They have
also been applied to a variety of other problems in combinatorial optimization problems,
but they remain marginally used in this area. For example, NRPA has been applied
to the Traveling Salesman with Time Windows problem [7,10], and other applications
also deal with 3D Packing with Object Orientation [12], the physical traveling salesman
problem [13], the Multiple Sequence Alignment problem [14] or Logistics [11].

In 2017, Edelkamp and co-workers have applied Monte Carlo Search to graph col-
oring [9]. They compare various Monte-Carlo search algorithms such as NMCS, NRPA
as well as a SAT-based approach. In their experiments they report that the best results
were obtained with NMCS which contrast with our results in this paper. We propose to
optimize further the modelling of the problem using node ordering, refined scoring and
a different Adapt function. Our optimizations improve much the search time compare
to the alternative modellings.

3 Nested Monte Carlo Search

In this section we describe the two Monte Carlo search algorithms that we have consid-
ered in the rest of this paper: Nested Monte Carlo Search (NMCS) and Nested Rollout
Policy Adaptation (NRPA).
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As most Monte-Carlo based algorithms, NMCS and NRPA produce a good solu-
tion by generating a large number of random sequences of branching decisions (a.k.a
moves). The best sequence according to some objective function is then returned as a
final solution to the problem. Since the quality of final sequence directly depends on the
quality of the random sequences generated during the search, NMCS and NRPA com-
bine a variety of techniques to improve the quality of the random sequence generator
such as tree search, policy adaptation or nested algorithms.

At the lowest recursive level, the generation of random sequences is driven by a
stochastic policy (a probability distribution over the moves). Random sequences are
generated based on this policy by sampling moves from the policy using Gibbs sam-
pling, as described in Algorithm 1. If we have access to background knowledge, it can
be encoded as a non-uniform distribution over the moves in the policy. Otherwise, the
initial stochastic policy assigns equal probability to each move.

Algorithm 1 The playout algorithm
playout (state, policy)
sequence← []
while true do

if state is terminal then
return (score (state), sequence)

end if
z← 0.0
for m in possible moves for state do
z← z + exp (policy [m])

end for
choose a move m with probability exp(policy[m])

z

state← play (state, m)
sequence← sequence + m

end while

In NMCS, the policy remains the same throughout the execution of the algorithm.
However, the policy is combined with a tree search to improve the quality over a simple
random sequence generator. At each step, each possible move is evaluated by com-
pleting the partial solution into a complete one using moves sampled from the policy.
Whichever intermediate move has led to the best completed sequence, is selected and
added to the current sequence. (See Algorithm 2.) The same procedure is repeated to
choose the following move, until the sequence has reached a terminal state.

A major difference between NMCS and NRPA, is the fact that NRPA uses a stochas-
tic policy that is learned during the search. At the beginning of the algorithm, the policy
is initialized uniformly and later improved using gradient descent steps based the best
sequence discovered so far (See. Algorithm 3). The procedure used to update the pol-
icy from a given sequence is given in Algorithm 4. Note that this difference is crucial
because unlike NMCS, NRPA is able to acquire background knowledge about the prob-
lem being solved, and does not require the user to specify it. Ultimately, this knowledge
will contribute to speed up the discovery of a good solution.
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Algorithm 2 The NMCS algorithm.
NMCS (state, level)
if level == 0 then

return playout (state, uniform)
end if
BestSequenceOfLevel← ∅
while state is not terminal do

for m in possible moves for state do
s← play (state, m)
NMCS (s, level − 1)
update BestSequenceOfLevel

end for
bestMove← move of the BestSequenceOfLevel
state← play (state, bestMove)

end while

Finally, both algorithms are nested, meaning that at the lowest recursive level, weak
random policies are used to sample a large number of low quality sequences, and pro-
duce a search policy of intermediate quality. At the recursive level above, this policy is
used to produce sequence of high quality. This procedure is applied recursively, in gen-
eral 4 or 5 times. In both algorithm the recursive level (denoted l) is a crucial parameter.
Increasing l increases the quality of the final solution at the cost of more CPU time. In
practice it is generally set to 4 or 5 recursive levels depending on the time budget and
the computational resources available.

Algorithm 3 The NRPA algorithm.
NRPA (level, policy)
if level == 0 then

return playout (root, policy)
end if
bestScore←−∞
for N iterations do

(result,new)← NRPA(level − 1, policy)
if result ≥ bestScore then

bestScore← result
seq← new

end if
policy← Adapt (policy, seq)

end for
return (bestScore, seq)
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Algorithm 4 The Adapt algorithm
Adapt (policy, sequence)
polp← policy
state← root
for move in sequence do
polp [move]← polp [move] + α
z← 0.0
for m in possible moves for state do
z← z + exp (policy [m])

end for
for m in possible moves for state do
polp [m]← polp [m] - α ∗ exp(policy[m])

z

end for
state← play (state, move)

end for
policy← polp

4 Graph Coloring as a Monte Carlo Search Problem

In this section we discuss several alternative models to capture the Graph Coloring
problem as a Monte Carlo Search problem. Remark that we focus decision problem
(i.e. deciding if a graph can be colored with a given number of colors).

We start by defining the possible moves, and then present the node ordering heuris-
tic, and deal with the question of generating valid moves. Finally, we discuss the objec-
tive function and as well as an optimization of the adapt function for the graph coloring
problem.

4.1 Legal Moves

In the context of the graph coloring problem, a move consists in assigning a particular
color to an uncolored vertex of the graph. Thus, given a graph G = (V,E) and a set of
colors C, a move is a pair (v, c) where v is an uncolored vertex in V , and c is any color
in c.

NMCS and NRPA only consider legal moves at each step, and lowering the number
of legal moves is a key performance issue for both algorithms. In NMCS, a large number
of legal moves leads to a very large branching factor which slows down the algorithm at
each recursive level. For NRPA a large number of legal moves results in a large policy
vector, which makes it more difficult to train with comparatively less training examples.

A first naive approach consists in considering every possible move at every step,
leading to a number of possible moves that can be as big as |V | × |C| in the initial
condition. This solution results in poor efficiency and low quality solution which we
do not report here. To lower the number of possible moves down, we adopt a different
model in which each move vertex is considered in a particular order (e.g. random order).
At each step, only one node and all its legal coloration are considered. This reduces the
maximum number of moves from |V | × |C| to |C|. As we will see, it leads to good



6 Tristan Cazenave, Benjamin Negrevergne, and Florian Sikora

results in practice. However, imposing an order over the vertices induces a strong bias
over the exploration of the search space, which we study in the next section.

4.2 Node order

The naive approach to node ordering is to fix a predefined or random order of the nodes
and to color them in this order. A better heuristic is DSatur [2]. It chooses as the next
node to color the node that has the less possible colors. In case multiple nodes have the
same minimal number of possible colors it break ties by choosing the node that has the
most neighbors. DSatur is a good heuristic to order nodes for NRPA since it propagates
the constraints in the graph and avoids choosing colors for a node that would reveal
inconsistent later due to more constrained neighbors. For example if a node has only
one possible color it will always be chosen first by DSatur. By doing so the neighbor-
ing nodes have one less possible color and it avoids taking this impossible colors for
neighboring nodes which would not have been the case if the one color node had been
chosen later.

4.3 Selective Search

When trying possible colors for a node it is not wise to choose a color that is already
assigned to a neighboring node. In order to avoid as much as possible bad branching
decisions we use forward checking. When selecting the color for a node, all the colors
of the neighboring nodes are removed from the set of possible colors for the node.
This is related to selective NRPA [6] where heuristics are used to avoid bad moves.
However in our case of Graph Coloring the moves that are discarded are moves that
can never be part of a valid solution. So it is safe to remove them. Inconsistent colors
are never considered as possible moves except if there a no possible color for a node
since neighboring nodes already contains all the available colors. In this case all colors
are considered possible and the algorithm chooses a color for the node even if it is
inconsistent.

4.4 Scoring function

Another design choice is the way to score a playout. In [5] the depth of the playout was
used for Sudoku and the playouts were stopped when reaching an inconsistent state,
i.e. a state where a variable has no more possible values. For Graph Coloring we use a
more informed score. We count the number of inconsistent edges, i.e. monochromatic
edges. If there are two adjacent vertices with the same color, the score decrease by
one. A score equal to the number of edges of the graph means that we have found a
solution. Note that we also tried a scoring function mixing both the number of colors
and the number of inconsistent edges (trying to decrease both), which would allow the
algorithm to solve the optimization problem directly, but it didn’t work well.

We also experimented with NMCS. For the sake of completeness NMCS is given
in algorithm 2. The score of the playouts, the selection of edges, and the selectivity of
colors in NMCS are the same as in NRPA.
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4.5 Coding the moves

In NRPA it is important to design how moves are coded. There is a bijection between
moves and integer such that moves are associated to weights. We choose to use a simple
coding for our moves: the index of a node multiplied by the number of colors plus the
index of the color in the move.

4.6 Adapt all the colors

When modifying the weights with the adapt function, there are two options. The first
one is to modify the weights of the possible moves and to adapt using only the proba-
bilities of the moves that can be played in the current state. The second one is to modify
the weights for all the colors, including the colors that were discarded as possible moves
since they were inconsistent with neighboring nodes.

The standard Adapt function is given in algorithm 4. The modified function that
modifies the probabilities for all the colors is given in algorithm 5.

Algorithm 5 The AdaptAll algorithm
AdaptAll (policy, sequence)
polp← policy
state← root
for move in sequence do
polp [code(move)]← polp [code(move)] + α
z← 0.0
for m in all possible colors even the illegal ones do
z← z + exp (policy [code(m)])

end for
for m in all possible colors even the illegal ones do
polp [code(m)]← polp [code(m)] - α ∗ exp(policy[code(m)])

z

end for
state← play (state, move)

end for
policy← polp

5 Compared approaches for graph coloring

In this section we present the other Graph Coloring algorithms that we used to compare
with our approach.

5.1 SAT

We used the following SAT encoding to decide if one can color a graph G = (V,E)
with k colors (this formulation is for example used in [21]). We add a variable xv,i for
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each v ∈ V and each i ∈ [k]. Then, for each v ∈ V , we add a clause (
∨

i xv,i), ensuring
that each vertex receives a color, and for each edge uv ∈ E and each color i ∈ [k], we
add a clause (¬xu,i ∨ ¬xv,i) such that adjacent vertices receives different colors. This
formula is true iff there is a k-coloration of G. Note that if there is no truth assignment
for the formula, it tells that the graph is not k-colorable. However, we will not use this
in our experiments.

As a solver, we used MiniSat to solve the built formula [15].

5.2 HEAD

HEAD [27] is an hybrid meta-heuristic, more precisely a memetic algorithm, mixing a
local search procedure (Tabu-Search) with an evolutionary algorithm. It is based on the
Hybrid Evolutionary Algorithm (HEA) by Galinier and Hao [17].

The general principle of HEA and HEAD is to start with a population of individuals,
which are first improved using a local search procedure. Then, a crossover operator is
applied to the best individuals in order to generate new diverse individuals and the
procedure is repeated for a fixed number of steps which are called generations.

However general crossover operators do not work well for the graph coloring prob-
lem, so the main contribution of HEA is a specialized crossover operator. In HEA each
individual is a partition of vertices into color classes, and the crossover operator is re-
quired to preserve color classes or subset of color classes.

HEAD builds on HEA by introducing various improvements including an original
method to maintain diversity inside the population: individuals from earlier generations
are re-introduced as candidate individuals in later generations. Using these technique,
HEAD has been able to rediscover known coloring at much lower computational cost
that earlier approaches [27].

The source-code of HEAD is available online1. Authors provided experiments show-
ing good performances on the classical benchmarks and is probably the faster heuristic
to date.

5.3 Greedy Coloring

For greedy coloring we use the same generation of possible moves as NRPA except
that we only play one playout and that the maximum numbers of colors is not fixed.
The order in which vertices are visited during this greedy coloring is the one given by
DSatur [2]. Greedy Coloring is used to establish initial upper bounds for NRPA, NMCS,
SAT and HEAD that are lowered down using search to establish better upper bounds.

6 Experiments

In this section, we compare the performance of two Monte-Carlo based approaches
described in Section 3 and 4 with the other approaches described in Section 5.

1 https://github.com/graphcoloring/HEAD/

https://github.com/graphcoloring/HEAD/
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6.1 Experimental Protocol

Execution strategy: In practice we observe a high variance in runtimes and best results
throughout the different runs of the same algorithm. To reduce the variance in the re-
sults, and allow a fair comparison, we proceed as follows: each algorithm is executed
5 times for a given number of color k with a timeout of 30 minutes. If the algorithm
discovers at least one valid k-coloring for the graph instance, we decrease k by one, and
repeat this procedure until the algorithm is unable to discover a k-coloring within the
timeout limit. Then, we report the lowest k for which the algorithm was able to discover
a coloring (denoted UB in the result tables), as well as the success rate for this lowest
k (denoted Reached). The initial value of k to start with is determined with the simple
greedy algorithm with nodes ordered according to DSatur (denoted UBI). Sometimes
the algorithm is unable to improve over the simple greedy algorithm, which we signal
with a ’–’ in the result table (unless the greedy algorithm has already discovered the
minimum number χ).

Test instances: We used standard benchmark instances available on the website main-
tained by Gualandi and Chiarandini [18], collected from DIMACS benchmark. This
benchmark has been used extensively to evaluate graph coloring algorithms and is now
considered to be the standard set for experimentation [24] in this field. Moreover, be-
cause these instances have been extensively studied, the optimal chromatic number χ is
known for most of them.

These instances are sorted by difficulty. Instances marked NP-m (resp. NP-d) should
be solved in less than a hour (resp. than a day). For the harder instances marked NP-?,
either the chromatic number is unknown or the time needed to solve them is unknown
to [18].

Hardware and implementations details: Every execution reported in this experimental
section has been conducted on a Intel Xeon E5-2630 v3 (Haswell, 2.40GHz). Although
some algorithm support parallel execution, (e.g. NRPA and HEAD), we on report exe-
cution times on sequential execution (using one thread) to reduce the variance in execu-
tion times, and to allow meaningful comparison with other purely sequential algorithms.

The peak memory usage is limited to 4GB which is not a limitation for any of the
algorithm except for the SAT model which runs out of memory sometimes.

We implemented algorithms using SAT, NRPA and NMCS in C++, using the Boost
Graph Library. For NRPA, we use our implementation described in [28] and available
online2. In our experiments we use l = 7, N = 100 for NRPA3. For NMCS, we use
increasing nesting levels. This mean that we start the search with a level of 1, and if no
solution is found, we increment the level and repeat.
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Table 1. Results for the easy instances (marked NP-m) with a timeout of 30 minutes.

NMCS NRPA SAT HEAD
Instance |V | |E| χ UBI UB Reached UB Reached UB Reached UB Reached

1-FullIns 4 93 593 5 5 5 100% 5 100% 5 100% 5 100%
2-FullIns 4 212 1621 6 6 6 100% 6 100% 6 100% 6 100%
3-FullIns 3 80 346 6 6 6 100% 6 100% 6 100% 6 100%
4-FullIns 3 114 541 7 7 7 100% 7 100% 7 100% 7 100%
5-FullIns 3 154 792 8 8 8 100% 8 100% 8 100% 8 100%

ash608GPIA 1216 7844 4 6 4 100% 4 100% 4 100% 4 100%
ash958GPIA 1916 12506 4 6 4 60% 4 100% 4 100% 4 100%

le450 15a 450 8168 15 17 15 60% 15 100% 15 100% 15 100%
mug100 1 100 166 4 4 4 100% 4 100% 4 100% 4 100%

mug100 25 100 166 4 4 4 100% 4 100% 4 100% 4 100%
qg.order40 1600 62400 40 42 40 100% 40 100% 40 100% 40 100%

wap05a 905 43081 50 50 50 100% 50 100% 50 100% 50 100%
myciel6 95 755 7 7 7 100% 7 100% 7 100% 7 100%

school1 nsh 352 14612 14 26 14 100% 14 100% 14 100% 14 100%
Avg. ratio to χ 1.0000 1.0000 1.0000 1.0000

Table 2. Results for the instances marked NP-h by [18] with a timeout of 30 minutes.

NMCS NRPA SAT HEAD
Instance |V | |E| χ UBI UB Reached UB Reached UB Reached UB Reached

flat300 28 0 300 21695 28 41 38 20% 35 20% 39 100% 31 100%
r1000.5 1000 238267 234 248 243 20% 240 40% 247 100% 248 –
r250.5 250 14849 65 67 65 100% 65 100% 65 100% 66 40%

DSJR500.5 500 58862 122 132 125 60% 122 40% 126 100% 124 60%
DSJR500.1c 500 121275 85 88 88 – 87 60% 86 100% 86 80%
DSJC125.5 125 3891 17 23 19 100% 18 100% 19 100% 17 100%
DSJC125.9 125 6961 44 50 45 40% 44 100% 46 100% 44 100%
DSJC250.9 250 27897 72 90 84 20% 76 20% 86 100% 72 100%
queen10 10 100 2940 11 14 11 60% 11 40% 12 100% 11 100%
queen11 11 121 3960 11 14 13 100% 13 100% 13 100% 12 100%
queen12 12 144 5192 12 16 14 100% 14 100% 14 100% 13 100%
queen13 13 169 6656 13 17 15 100% 15 100% 15 100% 14 100%
queen14 14 196 4186 14 19 16 100% 16 100% 16 100% 15 100%
queen15 15 225 5180 15 20 17 40% 17 100% 18 100% 16 100%
Avg. ratio to χ 1.1101 1.0851 1.1276 1.0428

6.2 Results

We give results of Monte Carlo approaches (NMCS and NRPA) compared to other
approaches in tables 1,2,3 and 4.

2 https://github.com/bnegreve/nrpa
3 Note that level 7 will probably never be reached in a reasonable amount of time, this is to allow

NRPA to continue to search until a solution is found ; this value of N gave often better results
than smaller or bigger values

https://github.com/bnegreve/nrpa
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Table 3. Results for the difficult instances marked NP-? by [18] with a timeout of 30 minutes.

NMCS NRPA SAT HEAD
Instance |V | |E| χ UBI UB Reached UB Reached UB Reached UB Reached
le450 5a 450 5714 5 10 6 20% 5 100% 5 100% 5 100%
le450 5b 450 5734 5 7 6 40% 5 20% 5 100% 5 100%
le450 15b 450 8169 15 17 15 100% 15 100% 15 100% 15 100%
le450 15c 450 16680 15 24 22 100% 21 100% 22 100% 15 100%
le450 15d 450 16750 15 24 22 100% 20 20% 22 100% 15 100%
le450 25c 450 17343 25 28 27 100% 26 100% 27 100% 26 100%
le450 25d 450 17425 25 29 27 100% 26 100% 27 100% 26 100%
qg.order60 3600 212400 60 63 60 40% 62 100% 61 100% 60 100%
qg.order100 10000 990000 100 106 – 20% 102 20% – 20% 100 100%
Avg. ratio to χ 1.7626 1.0963 1.1300 1.0089

Table 4. Results for the very difficult problems (NP-?) with a timeout of 30 minutes. The chro-
matic number of these graphs seems unknown and we only know a lower bound via [18].

NMCS NRPA SAT HEAD
instance |V | |E| χLB UBI UB Reached UB Reached UB Reached UB Reached

DSJC250.1 250 3218 4 10 9 100% 8 40% 9 100% 8 100%
DSJC250.5 250 15668 26 37 34 100% 32 100% 35 100% 28 100%
DSJC500.1 500 12458 9 16 14 40% 14 100% 15 100% 12 100%
DSJC500.5 500 62624 43 65 62 20% 59 80% 63 100% 48 100%
DSJC500.9 500 112437 123 163 161 20% 148 20% 163 – 126 100%

DSJC1000.1 1000 49629 10 25 25 – 24 100% 25 – 21 100%
DSJC1000.5 1000 249826 73 114 114 – 112 40% 114 – 83 60%
DSJC1000.9 1000 449449 216 301 301 – 299 40% 301 – 223 20%
flat1000 50 0 1000 245000 15 113 113 – 111 40% 113 – 50 100%
flat1000 60 0 1000 245830 14 112 112 – 112 – 112 – 60 100%
flat1000 76 0 1000 246708 14 115 115 – 110 20% 113 100% 82 80%

r1000.1c 1000 485090 96 107 107 – 107 – 105 100% 98 20%
abb313GPIA 1557 53356 8 11 11 – 11 – 9 100% 9 60%

latin square 10 900 307350 90 129 129 – 121 20% 129 – 103 20%
wap01a 2368 110871 41 47 46 60% 45 40% 43 100% 42 60%
wap02a 2464 111742 40 46 46 – 45 100% 42 100% 42 100%
wap03a 4730 286722 40 57 55 40% 55 100% 46 100% 44 20%
wap04a 5231 294902 40 46 46 – 46 – 44 100% 44 100%
wap06a 947 43571 40 44 42 100% 41 100% 41 100% 42 60%
wap07a 1809 103368 40 47 44 80% 43 60% 42 100% 42 100%
wap08a 1870 104176 40 44 43 20% 43 100% 42 100% 42 100%
C2000.5 2000 999836 99 207 207 – 207 – 207 – 151 40%
C4000.5 4000 4000268 107 376 376 – 376 – 376 – 281 20%

Avg. ratio to χ 2.3746 2.3173 2.3410 1.7027

First, we observe that the simple greedy algorithm is generally able to discover the
χ value for a number of instances in Table 1. When it is not the case, all the approaches
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we discuss in this paper have been able to tackle these instances, and discover the χ.
However, NMCS does not reach 100% success rate on two of these instances.

When we look at the other results, we can see that NMCS is generally the weakest
algorithm, and obtains the worst (higher) ratio to χ for the very difficult instances in
Table 3 and 4, often significantly worse than the ratio for NRPA. Note that with a dif-
ferent representation of the problem, authors of [9] reported better results with NMCS,
contrary to our results. We also observe that the performance gap between the two ap-
proaches is small on the medium NP-m instances (Table 1), but large on the most diffi-
cult instances (Table 3). This suggests that with our modeling, NRPA is able to acquire
better policies along the execution of the algorithm. The benefit of the learned poli-
cies over the tree search becomes more visible in long runs on difficult instances. This
motivates the general idea of introducing learning into Monte-Carlo search in order to
improve the quality of the search.

We can also see that NRPA is generally better than the SAT model, but SAT is
surprisingly good for the difficult wap instances in Table 4, unfortunately, we are unable
to explain this result and further experiments are needed.

However, a pair-wise comparison between the upper bounds discovered by NRPA
and the ones discovered by HEAD demonstrates that HEAD is better in general. It is
worth mentioning that algorithms such as HEAD include specialized graph coloring
operators which have been extensively studied over the past decades. In contrast our
algorithm is based on a general purpose implementation of NRPA, and only includes
the specializations we have described in Section 4. Nevertheless, NRPA is the second
best in all the datasets, and is often as good, or even better than HEAD.

In Figure 1 we further analyze the behaviour of the two algorithms by comparing
the execution times. We selected the best of 5 runs for each tested number of colors and
for each algorithm. The time is the accumulated time, starting with the number of colors
computed by the greedy algorithm. The y-axis represents the number of improvement
by an algorithm for this instance starting from the greedy coloring (i.e. a value of 3
means that the algorithm gave a coloration with 3 less colors than the greedy algorithm
did). For readability, we didn’t include instances like C4000.5, where HEAD is very
good. It seems that HEAD improves quite fast the number of colors but struggles to
improve more over time (this is not always true however), while NRPA seems to benefit
of longer running time. Indeed, there is not much improvement after 2000s for HEAD
while NRPA continues to find colorations after 3000s. This could be because HEAD
is stuck in local optimum and cannot find new solutions, while NRPA continues to
improve policies while exploring the search space.

This demonstrate that Monte Carlo based algorithms have the ability to compete
with state-of-the-art hybrid algorithms on the graph coloring problem, and deserve fur-
ther investigation with more optimizations (more specific strategies, restarts...). From a
broader perspective, this also shows that a continuous optimization algorithms can be
used to solve discrete problems such as the graph coloring problem.
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7 Conclusion

In this paper, we deepen our understanding of Monte Carlo Search algorithms applied to
Graph Coloring. Our method is significantly different from most other methods from the
literature, and yet, it is able to compete with state-of-the-art algorithms which have been
intensively optimized during the past decades. These results suggest that Monte Carlo
search combined with policy adaptation are able to explore the search to discover good,
yet diverse solutions. And that this technique should be investigated further alongside
with more standard approaches.

It would be also interesting to see if NMCS could combine with a good heuristic
like HEAD, by either using the local search to improves the solution or by using the
genetic algorithm as playouts.

Future works includes the use of Graph Convolution Networks to model more com-
plex policies that can make branching decisions based on the structure of graph at hand,
and generalize knowledge from one graph to another.

Finally, we could apply Monte Carlo methods to other variants of graph coloring,
like for example Weighted Vertex Coloring or Minimum Sum Coloring, since only the
evaluation function would change.
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