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Abstract. The RNA Inverse Folding problem comes from computational biol-
ogy. The goal is to find a molecule that has a given folding. It is important for
scientific fields such as bioengineering, pharmaceutical research, biochemistry,
synthetic biology and RNA nanostructures. Nested Monte Carlo Search has given
excellent results for this problem. We propose to adapt and evaluate different
Monte Carlo Search algorithms for the RNA Inverse Folding problem.

1 Introduction

Monte Carlo Tree Search (MCTS) [16,24] originated in the field of computer Go and
has been applied to many other problems [4].

Nested Monte Carlo Search (NMCS) [5] uses multiple levels of search, memorizing
the best sequence of each level. It has been applied to many single-player games and
optimization problems [31,25,23,2,6,29,30,3] and also to two-player games [7].

Nested Rollout Policy Adaptation (NRPA) [32] also uses multiple levels of search,
memorizing the best sequences. It additionally learns a playout policy using the best
sequences. It has also been applied to many problems [13,18,20,21,22,19,17,11] and
games [8].

The RNA design problem also named the RNA Inverse Folding problem is compu-
tationally hard [1]. This problem is important for scientific fields such as bioengineer-
ing, pharmaceutical research, biochemistry, synthetic biology and RNA nanostructures
[28]. NMCS has been successfully applied to the RNA Inverse Folding problem with
the NEMO program [28]. As a follow-up to NEMO, we propose to investigate different
Monte Carlo Search algorithms for this problem.

The paper is organized as follows. The second section describes the Inverse Folding
problem, the NEMO program by Fernando Portela [28] and the domain knowledge
used in NEMO. The third section describes the Monte Carlo Search algorithms we have
used for solving Inverse Folding problems of the Eterna100 benchmark. We present a
new algorithm performing well for this problem, the Generalized Nested Rollout Policy
Adaptation (GNRPA) algorithm with restarts. The fourth sections details experimental
results.
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2 Inverse Folding

2.1 Presentation of the RNA inverse folding problem

An RNA strand is a molecule composed of a sequence of nucleotides. This strand folds
back on itself to form what is called its secondary structure (See Figure 1). It is possible
to find in a polynomial time the folded structure of a given sequence. However, the
opposite, which is the RNA inverse folding problem, is much harder and is supposed
to be NP-complete. This problem still resists algorithmic approaches that still fail to
match the performance of human experts. This is partly due to the chaotic changes that
can occur in the secondary structure because of a small change in the sequence (See
difference between Figure 3 and 2.b).

These performances are evaluated on the Eterna100 benchmark which contains 100
RNA secondary structure puzzles of varying degrees of difficulty. A puzzle consists of
a given structure under the dot-bracket notation. This notation defines a structure as a
sequence of parentheses and points each representing a base. The matching parentheses
symbolize the paired bases and the dots the unpaired ones. The puzzle is solved when a
sequence of the four nucleotides A,U,G and C, folding according to the target structure,
is found. In some puzzles, the value of certain bases is imposed.

Where human experts have managed to solve the 100 problems of the benchmark,
no program has so far achieved such a score. The best score so far is 95/100 by NEMO,
NEsted MOnte Carlo RNA Puzzle Solver [28].

2.2 NEMO

NEMO works by performing several iterations of NMCS-B, a slightly modified version
of NMCS. Between each iteration of the NMCS-B, NEMO retains part of the best
current solution. It identifies a part of the sequence on which to perform mutations
using stochastic heuristics and restarts the NMCS-B on it. We model a candidate by
a sequence. The bases assigned are represented by the corresponding letter (A/U/G/C)
and the others by the letter N. This is how the NMCS-B identifies the bases on which it
must work.

NEMO uses a level 1 NMCS for its NMCS-B. At level 1, the NMCS, in each state of
the problem, will perform a certain number of playouts for each possible move. It then
plays the move that led to the best playout and moves to the next state until it reaches
a final state. In the context of NEMO, each state corresponds to a sequence, initially
the candidate sequence. Each move consists in taking the first N in the sequence and
assigning a value to it, working on paired bases first. When the base is paired in the
target structure, it will assign a value to both bases of the pair simultaneously. Indeed
only the three combinations AU, GC, and GU can be paired, so it is more convenient
to consider them at the same time. To perform playouts, NEMO is also using heuristics
with biased weights depending on the location in the target structure. In addition, unlike
the classic NMCS, the NMCS-B retains the best playout achieved so far throughout the
execution. A final state is found when the sequence is fully completed. The playouts are
evaluated according to the function :



Monte Carlo Inverse Folding 3

Fig. 1: Secondary Structure of a RNA strand

(a) Target Structure of a Puzzle (b) Solved puzzle

Fig. 2: Exemple of an Eterna100 puzzle
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Fig. 3: Sequence of figure 2.b with base 25 replaced by U

score =

{
K

1+∆G if K > 0

K(1 +∆G) else

with K = 1− BPD
2∗NumTargetPairs

Where BPD is the number of different pairs between the secondary structure of
the sequence and the target structure.
NumTargetPairs is the number of pairs in the target structure.
∆G is the difference between the Minimum Free Energy of the secondary structure and
the free energy that the sequence would have in the target structure.

The objective is to maximize the score function until a value of 1 is obtained, mean-
ing that the problem is solved. Indeed, we use a model based on Minimum Free Energy
(MFE) predictions. For each pair composed of a sequence and a secondary structure of
the same size we can compute the Gibbs-Free Energy. The predicted secondary struc-
ture of a sequence is the one minimizing the Gibbs-Free Energy among all structures
of this length. Thus we try to minimize the positive values ∆G and BPD until they
are zero, i.e. score=1. Due to the large number of possible matches, BPD is for most
sequences very high especially for long sequences and K is therefore negative. How-
ever, interesting sequences whose secondary structure is close to the target structure
thus have scores between 0 and 1.
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2.3 Domain Knowledge and Heuristics

The heuristics used for the sampling of the NMCS-B are based on domain knowledge
and personal experience and are chosen without computational optimization. These are
crucial as they increase the average number of puzzles solved in a run from 88 to 92.1
and is on average twice as fast.
The paired bases are generally chosen according to the same rule. With the exception
of adjacent stacks in multi-loops, the closing pairs of the left-most and rightmost stacks
are chosen with the weights given in the following table. The notion of right and left in
this case is defined from the point of view of the inside of the loop.

Paired Bases GC/CG AU/UA GU/UG

General Case 60% 33% 7%
Left-Most in Junction 82% 11% 7%

Right-Most in Junction 37% 56% 7%

Various rules are applied for unpaired bases. The weights used to choose between
A/U/G/C in the general case are 93%, 1%, 5% and 1%. Mismatches are treated differ-
ently depending on the case.
Since NEMO first assigns a value to the paired bases, the weights for the bases with a
paired mismatch depend on the value of this mismatch.

Mismatch with a Paired Base A U G C

Mismatch is a paired A 63% 0% 25% 12%
Mismatch is a paired U 0% 55% 9% 36%
Mismatch is a paired G 25% 12% 63% 0%
Mismatch is a paired C 55% 36% 0% 9%

Furthermore, in internal loops, the weights also depend on the mismatch value if it
has already been assigned, otherwise a more general rule applies.

Mismatch in Internal Loops A U G C

Mismatch is not assigned 18% 4% 74% 4%
Mismatch is A 44% 0% 44% 12%
Mismatch is U 0% 67% 11% 22%
Mismatch is G 67% 11% 22% 0%
Mismatch is C 66% 17% 0% 17%

Finally, the mismatch in junctions and external loops are drawn according to the
distribution 97%, 1%, 1% and 1%.
Much stronger and more deterministic rules are applied with high probabilities (more
than 80%) in specific cases, especially for triloops and internal loops. For both 1-1 and
2-2 internal loops for instance, only one mismatch pair is possible, and there are only
three possibilities in the general case. This is part of a process of reproducing a "boost-
ing" strategy. Depending on the type of loop, certain combinations of nucleotides at
specific locations called "boosting points", especially terminal mismatches, can be used
to reduce the energy of the structure. However, the most difficult puzzles may require
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less conventional solutions, hence the need not to apply these rules 100% of the time.
Therefore, in the use we will make of this heuristic we will not apply these last rules
and when we mention the weights of the NEMO heuristic we refer to the previously
mentioned values.

In addition, between iterations of NMCS-B, if it hasn’t solved the problem NEMO
keeps part of the best current solution to restart the algorithm on. The set of bases that
are not kept contains those that do not fold correctly, their neighborhood and randomly
selected bases. This principle, i.e. keeping part of the best current solution, has not been
applied to the presented algorithms.

3 Monte Carlo Search

3.1 Presentation of the NRPA algorithm

The Nested Rollout Policy Adaptation (NRPA) algorithm is a Monte Carlo Tree Search
based algorithm with adaptive rollout policy during execution. It is a recursive algo-
rithm. At level 0 it generates a playout according to the current policy. At level n, it
calls for a given number of iterations the n-1 level of the algorithm, adapting the policy
each time with the best solution so far. NRPA is given in algorithms 1, 2 and 3. The
policy consists of a set of weights, one for each possible coding value. The adaptation
is made through gradient ascent. Given a rollout to adapt the policy on, we increase the
weights of the moves chosen during this playout in proportion to their values and de-
creasing that of the other possible moves in each state. The NRPA applies this gradient
ascent on the best current solution of the level after each iteration.

Algorithm 1 The playout algorithm
1: playout (state, policy)
2: sequence← []
3: while true do
4: if state is terminal then
5: return (score (state), sequence)
6: end if
7: z← 0.0
8: for m in possible moves for state do
9: z← z + exp (policy [code(m)])

10: end for
11: choose a move with probability exp(policy[code(move)])

z

12: state← play (state, move)
13: sequence← sequence + move
14: end while
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Algorithm 2 The Adapt algorithm
1: Adapt (policy, sequence)
2: polp← policy
3: state← root
4: for move in sequence do
5: polp [code(move)]← polp [code(move)] + α
6: z← 0.0
7: for m in possible moves for state do
8: z← z + exp (policy [code(m)])
9: end for

10: for m in possible moves for state do
11: polp [code(m)]← polp [code(m)] - α ∗ exp(policy[code(m)])

z

12: end for
13: state← play (state, move)
14: end for
15: policy← polp

Algorithm 3 The NRPA algorithm.
1: NRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: (result,new)← NRPA(level − 1, policy)
8: if result ≥ bestScore then
9: bestScore← result

10: seq← new
11: end if
12: policy← Adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if
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3.2 Application of NRPA to Inverse Folding

As part of the Inverse Folding problem, one solution consists in a chain of bases. A
playout is made by running through the targeted structure of the chain, each move con-
sists in assigning a value to the missing links. We distinguish between two cases, the
unpaired bases in the target structure have four possible moves, one for each nucleic
base (A/U/G/C). The paired bases have 6 possible moves, one for each possible ordered
combination with their pair (GC/CG/AU/...). Each move is therefore defined by its po-
sition in the chain and whether it is a pair or not. Thus, there is a fixed number of moves,
which are always ordered in the same way. Solutions are evaluated with the same score
function as in the NEMO algorithm which is a combination of the fitness of the chain
with the target structure and the difference between the target structure and the folded
chain structure.

3.3 Generalized NRPA

Let wib be the weight associated to move b at index i in the sequence. In NRPA the
probability of choosing move b at index i is:

pib =
ewib

Σkewik

We propose to try Generalized NRPA (GNRPA) [9] for Inverse Folding and to re-
place it with:

pib =
ewib+βib

Σkewik+βik

where we use for βib the logarithm of the probabilities used in NEMO.

3.4 Stabilized GNRPA

Stabilized NRPA [12] is a simple improvement of NRPA. The principle is to play P
playouts at level 1 before each call to the adapt function. The number of calls to the
adapt function as level 1 is still N, the number of iteration of upper levels. So at level 1,
P ×N playouts are performed. The same principle is used for stabilized GNRPA.

3.5 Beam GNRPA

Beam NRPA has already been applied successfully to the TSPTW and to Morpion Soli-
taire [14]. The best results were obtained using a beam at level 1. Similarly to Stabilized
GNRPA, at level 1, B ×N playouts are performed for a beam of size B. However the
algorithm is different from Stabilized GNRPA since it memorizes B best sequences and
B policies and plays the B playouts with different policies.

As Stabilized GNRPA it is embarrassingly parallel at level 1 and can be very effi-
cient on a parallel machine.

When using Beam NRPA/GNRPA it can be beneficial to ensure the diversity of the
beam [17]. The diversity criterion we have used is to only keep in the beam sequences
that have different scores. It is simple and efficient as it ensures diversity while keeping
enough sequences.
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3.6 Coding Moves

Moves in the policy are represented by their encoding values, hence their importance.
The natural way to code moves for Inverse Folding is to use the index of the base or of
the pair of base in the string (m.index) and the index of the base in the list of bases or
of the pair of bases in the list of pairs of bases (m.number). The formula is then:

code(m) = m.index+M ×m.number

For example if the move m is to put the fourth base at index 10 the code is 10 +
2000 ∗ 4 = 8010, provided strings always have less than 2000 characters and therefore
M = 2000.

It may be interesting to include the previously chosen bases in the code of a move,
for example if a base has meaning only if following another base. We call the history
of a code the number of bases in the history included in the code. The previous formula
holds for a code history of 0. The code for a code history of 1 is:

code(m) = m.index+M ×m.number +M × 6× previousMove.number

Six is the maximum value for a move number, the maximum number of legal moves
is 6. The code for a code history of 2 includes the two previous moves in the code.

3.7 Start Learning

In order to wait for better sequences before learning it is possible to delay learning
only after a given number of sequences have been found [7]. For this we call the adapt
method only after a certain number of iterations as in line 19 of algorithm 4.

3.8 Zobrist Hashing

Each state is associated to a different hash code. This is done with Zobrist Hashing.
Each move at each index is associated to a random number. The hash code of a state is
the XOR of all the random numbers corresponding to the moves that have been played
to reach this state. Zobrist hashing is used in games to build a transposition table. We
will use it in the UCT variants. Another use of Zobrist Hashing is to detect playouts that
have already been evaluated. As most of the time in Inverse Folding is spent scoring the
playouts, it is advisable to avoid reevaluating an already evaluated playouts. This is done
with a score hash table that contains the hash of the terminal states already encountered
associated to their computed scores. If a terminal state is met again the score need not be
recomputed it can just be sent back from the table. There are variations on the number
of playouts already evaluated according to the sequence, some sequences have very few
while others have a lot.
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3.9 Restarts

There can be large variations on the solving times of some problems. Sometimes the
search algorithm takes a wrong direction and stay stuck on a suboptimal sequence with-
out making any progress. A way to deal with this behavior is to periodically stop and
restart the search. For some difficult problems however a long search is required to
find the solution. There are multiple ways to use restarts. The algorithm can double the
search time at each restart for example. We call this method iterative doubling. We have
observed that a level 2 search is able to solve many problems, a restart strategy can also
be to repeatedly call GNRPA at level 2 until thinking time is elapsed. Another way to
deal with search being stuck is to stop a level when the best sequence has not changed
for a given number of recursive calls.

It is difficult to set a static restart strategy for all problems. Long sequences are
much more difficult than short ones and the progress on long sequences is slower. In
order to cope with this property we use a restart threshold. It is set to the length of the
sequence divided by 5. When using this restart strategy there is no limit on the length
of a level.

Algorithm 4 gives the GNRPA algorithm with restarts.

Algorithm 4 The GNRPA algorithm with restarts.
1: GNRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore←−∞
6: last← 0
7: for i in range(∞) do
8: (result,new)← GNRPA(level − 1, policy)
9: if result ≥ bestScore then

10: if result > bestScore then
11: last← i
12: end if
13: bestScore← result
14: seq← new
15: end if
16: if i− last ≥ limitRestart then
17: return (bestScore, seq)
18: end if
19: if i ≥ startLearning then
20: policy← Adapt (policy, seq)
21: end if
22: end for
23: end if
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3.10 Parallelization

The multiple playouts of stabilized NRPA and the loop over the elements of the beam
are embarrassingly parallel. We simply parallelized with OpenMP a common loop in-
cluding the beam and the stabilized playouts at level 1. If we have 4 stabilized playouts
and a beam of 8, the 32 resulting playouts are played in parallel. This kind of paral-
lelization is a kind of leaf parallelization [10,15].

We also experiment with root parallelization [10,15]. The principle is to perform
multiple independent GNRPA in parallel and to stop as soon as one has found a solution
or when the allocated time is elapsed.

Leaf parallelization is more difficult to scale than root parallelization. For the same
wall clock time leaf parallelization runs more iterations for a single policy than root
parallelization which optimizes many more different policies but with less iterations.
On the other hand root parallelization scales very well and has a built-in restart strat-
egy. Root parallelization works well for problems that converge relatively rapidly on a
suboptimal solution as they benefit from restarts, while leaf parallelization works better
for problems that converge slowly but steadily towards the best solutions.

Table 1: Number of problems solved, out of 100 problems, using different parameters.
Level α N βib P Beam H Solved

1 1.0 100 no 1 1.1.1 0 3
1 1.0 100 yes 1 1.1.1 0 30
1 1.0 100 yes 1 1.1.1 1 32
1 1.0 100 yes 1 4.1.1 1 42
1 1.0 100 yes 1 8.1.1 1 53
1 1.0 100 yes 1 16.1.1 1 54
1 1.0 100 yes 4 8.1.1 1 69
1 1.0 100 yes 4 8.1.1 2 69
2 1.0 100 no 1 1.1.1 0 49
2 1.0 100 yes 1 1.1.1 0 73
2 1.0 100 yes 1 1.1.1 1 75
2 1.0 100 yes 2 1.1.1 0 73
2 1.0 100 yes 3 1.1.1 0 74
2 1.0 100 yes 4 1.1.1 0 80
2 1.0 100 yes 5 1.1.1 0 77
2 1.0 100 yes 6 1.1.1 0 75
2 1.0 100 yes 7 1.1.1 0 80
2 1.0 100 yes 8 1.1.1 0 79
2 1.0 100 yes 9 1.1.1 0 81
2 1.0 100 yes 10 1.1.1 0 80
2 1.0 100 yes 4 8.1.1 1 85
3 1.0 100 yes 1 1.1.1 0 85
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Table 2: Parallelization efficiency.
Algorithm 1 2 4 6 8 12

GNRPA(level=1,N=100,P=4,Beam=8) 11.916 6.889 4.526 3.657 3.169 3.359

Table 3: Number of problems solved by GNRPA using different parameters and a fixed
time limit.

βib P Beam // R N Start H 1m 2m 4m 8m 16m 32m 64m

no 1.1 1.1 n n 100.100 0.0 0 30 33 41 50 61 67 69
yes 1.1 1.1 n n 100.100 0.0 0 58 64 68 72 74 75 79
yes 4.1 4.1 n n 100.100 0.0 0 71 75 78 79 81 83 84
yes 4.1 8.1 n n 100.100 0.0 0 75 75 79 80 81 83 84
yes 4.1 8.1 n n 100.100 0.0 1 75 78 80 82 83 85 87
yes 4.1 8.1 n n 100.100 4.4 1 76 80 81 82 84 85 87
yes 4.1 8.1 y n 100.100 4.4 1 78 84 83 86 87 87 88
yes 4.1 8.1 y 3 ∞.∞ 4.4 1 80 84 85 85 88 89 92

Table 4: Number of problems solved by different algorithms and a fixed time limit.
Algorithm 1m 2m 4m 8m 16m 32m 64m

UCT(0.4) 47 49 50 54 56 57 62
Nested(1) 59 62 64 65 67 71 73
Nested(2) 55 59 61 66 66 71 73
Diversity GNRPA(5.1) 72 73 73 77 78 78 80
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Table 5: Number of problems solved with different options.
Correction Order 1m 2m 4m 8m 16m

no no 84 87 85 85 87
yes no 80 86 85 86 87
no yes 81 84 86 85 87

yes yes 80 82 84 88 87

Table 6: Number of problems solved with root parallel GNRPA.
Process 1m 2m 4m 8m 16m 32m 64m

20 82 84 85 86 87 88 89

4 Experimental Results

We now detail experiments with the different Monte Carlo Search algorithms on the
Eterna100 benchmark.

Table 1 gives the number of problems solved with different parameters for the GN-
RPA algorithm. We can see that at level 1 using GNRPA instead of NRPA enables to
solve 30 problems instead of 3. Similarly at level 2 it solves 73 problems instead of 49.
Using Stabilized GNRPA with P=4 and Beam GNRPA with a beam of 8 at level 1 also
improves quite much the number of problems solved at levels 1 and 2. P and H take
several values for the number of threads and beams, respectively, used at each level.
Interestingly for level 2 it is 32 times slower that a regular level 2 search and solves 85
problems, when a search at level 3 is 100 times slower and still solves 85 problems.

Table 2 gives the median time over 3 runs of a level 1 search with different numbers
of threads on problem 64 which is difficult. The algorithm is GNRPA with P = 4, a beam
of 8 and N = 100. We can see that using 8 threads gives the best results. We optimized
memory in order to avoid cache misses but we were not able to have better results with
more threads.

Table 3 gives the number of problems solved within a fixed time limit for different
algorithms. The time limits range from 1 minute to 64 minutes per problem. The parallel
algorithm runs on a multicore machine. The results of the parallel program are given in
the last line of table 3. The times used to stop the parallel program are the wall clock
times. The last line is leaf parallel GNRPA with restarts and gives the best results within
1 hour of wall clock time, solving 92 of the 100 problems in one run. Start is 4 meaning
that it starts learning after 4 playouts. H is 1 meaning the code include the previous
move, R is 3 meaning that the restart threshold is set to the length of the string divided
by 3.

The problems solved by different runs of 1 hour we made are not always the same.
Some hard problems are solved only in some runs. So the limit of 92 solved problems
is not the limit of the algorithm. The problems that were never solved in 1 hour are
problems 100, 99, 97, 91, 90, 78. With a two hours limit, problem 90 is solved thus
reaching 95 solved problems, the same number of solved problems as NEMO. However,
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it is interesting to note that GNRPA solves problem 94 while NEMO solves problem
91.

For the sake of completeness we also tested other popular Monte Carlo Search algo-
rithms. The results are given in table 4 for UCT [24], Nested Monte Carlo Search [5,28]
and Diversity NRPA [17]. The UCT constant is set to 0.4, NMCS is tested for repeated
calls to level 1 and level 2. Diversity GNRPA [17] is called with a set of 5 sequences at
level 1 and 1 sequence at level 2. The improved GNRPA algorithm gives better results
than these algorithms.

Table 5 gives the results with time of the best parallel algorithm using different
options. The Correction option is to fix a discrepancy between the NEMO paper and
the NEMO code in the heuristic. The Order option is to order moves such as NEMO or
to use the order of the string. Given the results in the table the two options do not seem
to matter much.

Table 6 gives the number of problems solved with time using the root parallel GN-
RPA algorithm with 20 process. The results are slightly worse than when using leaf par-
allelization with 8 threads. It is due to problems that converge slowly and do not benefit
from restarts and where leaf parallelization enables to improve during much longer than
root parallelization the best policy. Given enough resources the best algorithm might be
the combination of root and leaf parallelization as in [27]. The parallelization of NRPA
proposed by Nagorko [26] is also appealing.

5 Conclusion

We experimented with various Monte Carlo Search algorithms for the Inverse Folding
problem. We have used very limited domain knowledge, essentially using a small part
of the NEMO heuristics for the bias. By applying general Monte Carlo Search heuristics
we were able to solve as many problems as NEMO in comparable times.
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