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Abstract. In recent years, much progress has been made in computer
Go and most of the results have been obtained thanks to search algo-
rithms (Monte Carlo Tree Search) and Deep Reinforcement Learning
(DRL). In this paper, we propose to use and analyze the latest algo-
rithms that use search and DRL (AlphaZero and Descent algorithms) to
automatically learn to play an extended version of the game of Go with
more than two players. We show that using search and DRL we were
able to improve the level of play, even though there are more than two
players.
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1 Introduction

Due to a huge game tree complexity, the game of Go has been an important
source of work in the perfect information setting. In 2007, search algorithms
have been able to increase drastically the performance of computer Go pro-
grams [8, 9, 11, 10]. In 2016, AlphaGo has been able to beat a strong professional
player for the first time [15]. This great success has been achievable thanks to
a combination of two key elements: Search (Monte Carlo Tree Search [1]) and
Learning (Reinforcement Learning) methods [15–17]. Currently, the level of play
of such algorithms is far superior to those of any human player.

Even though, the game of Go has been given great interest, less has been
done on variants of the game. In practice, there exist many variants of the game
of Go such as Blind Go [5] (where the players cannot see the board), Phantom
Go [2] (where the players cannot see the opponent stones) or Capture Go (where
the game is finished when the first player to capture a stone wins). In this paper,
we study the variant Multiplayer Go. As the name suggests, Multiplayer Go is
a variant of the game of Go where there are more than two players. Going from
two-player Go to Multiplayer Go makes the game even more complex.

In this paper, we propose to apply and analyze the latest developments in
the game of Go to the game of Multiplayer Go. More specifically, we are using
search and reinforcement learning method such as AlphaZero [15] and Descent [6,
7] for the game of Multiplayer Go. In past work, [3] has described multiple UCT
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algorithms with different multi-agent behaviors (coalitions, paranoid or with
alliance) for the game of Multiplayer Go and in [4], they successfully improve
past performances using GRAVE, a heuristic method for MCTS algorithms.
An adaptation of AlphaZero to multiplayer games was also used in [14] for the
multiplayer versions of Tic-Tac-Toe and Connect 4.

The paper is organized as follows: the second section presents the game of
Multiplayer Go, section three presents the algorithms we have been using to an-
alyze the game, section four presents our results and the last section summarizes
our work and future work.

2 Multiplayer Go

The game of Go is a strategic board game with perfect information, played by
two players. Each player aims at capturing more territory than their opponent
by placing stones on the board. One is playing black stones and the second is
playing white stones. At each turn, one player is acting and placing a stone
on a vacant intersection of the board. After being placed, a stone cannot be
moved or removed by the player. Nevertheless, a player stone can be removed
by its opponent if the latter successfully surrounds the stone on all orthogonally
adjacent points. The game ends when no player is able to make a move or until
none of them wishes to move.

For the scoring, there exist multiple rules, in our case, we have used the Chi-
nese rule i.e., the winner of the game is defined by the number of stone that a
player has on the board, plus the number of empty intersections surrounded by
that player’s stones and komi (bonus added to the second player as a compen-
sation for playing second).

Fig. 1. A game of Multiplayer Go.
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Multiplayer Go is a variant of the game of Go with more than two players.
In our case, we have added a third player which is playing a third color, red. An
example is provided in Figure 1. By adding a third player, one must be wary to
not create a queer game [13].

A queer game is when, in some positions, no player can force a win. As an
example, in some positions, even if a player is sure to lose, they can still have
an impact on the winner by adapting this strategy. As a consequence, coalitions
can arise in order to help defeat another opponent.

As a preliminary matter, we have compared the performance of two different
type of rewards, one that uses the winning player as an objective and another
one that tries to maximize the score, using Chinese rules. Maximizing the score
allows us to reduce the problem of queer games. This analysis had already been
carried out in [3]. For the remainder of the paper, we thus use the objective for
each player to maximize his score using Chinese rules.

Even tough the rule are relatively simple, the game of Go is know as an
extremely complex one in comparison to other board game such as Chess. With
a larger board (common board have a size of 19×19), the number of legal board
positions has been estimated to be 2.1 × 10170. Moreover, with a large number
of possible actions and longer games on average, the complexity is much greater
than that. Worse than that, in our case, the addition of a three-player game
adds a significant layer to the complexity of the game. As a consequence, in an
effort to study the learning in a multiplayer setup rather than the difficulty of
the game, we studied a simplified version of Go on a 5× 5 board. Nevertheless,
even being smaller, the version of the game is very complex.

3 Deep Reinforcement Learning

In this section, we described the algorithms used for addressing Multiplayer Go.
The subsection 3.1 presents Monte Carlo Tree Search (MCTS) and its variant
UCT, the subsection 3.2 presents AlphaZero and the subsection 3.3 presents
Descent. All the hyperparameters used are explained and defined in Table 1 and
in Table 2.

3.1 Monte Carlo Tree Search

In our experimentation, we have been using UCT (Upper Confidence bounds
applied to Trees), which is a variant of MCTS, as a baseline. Before explaining
UCT, we must explain MCTS. Monte Carlo Tree Search [1] is the state of the
art in perfect information games. MCTS is a tree search algorithm which works
as follows (i) selection — select a path of node based on the exploitation policy
(ii) expansion — expand the tree by adding a new child node (iii) playout —
estimate the child node by using an exploration policy (iv) backpropagation
— backpropagate the result obtained from the playout through the nodes chosen
during the selection phase.



4 Driss et al.

UCT is a variant of MCTS where the selection phase is decided by UCB (Upper
Confidence Bounds), a bandit algorithm and where the playout use a random
policy. The UCB formula is decomposed on two parts, the first part represents
the exploitation i.e., it attempts to play the best action observed so far, and the
second part represents the exploration i.e., it attempts to play an action less
visited.

The formula is defined as follow :

UCT (s, a) = Q(s, a) + c

√
ln[N(s)]

N(s, a)
(1)

where the best action is the one that maximizes the upper confidence bound
UCT (s, a), s denotes the state of the game, a is an action possible from the set
A(s) which represents all the actions possibles in the state s. Q represents the
value when playing the action a in the state s, N(s, a) is the number of times
that the action a has been visited in the state s, N(s) represents the number of
times that the state s has been visited and c is a variable that help controlling
the exploration.

Furthermore, as we are in a multiplayer context, we must use Multiplayer UCT
[18] which is the same algorithm as UCT where the only difference being the
score representation. In a multiplayer setup, we get an array instead of a single
value, containing the results of the different players.

In our experimentation, we use the following hyper-parameters (i) n = 180 the
number of rollout i.e., the number of times the playout is repeated in order to
obtain a better approximation of the child node (ii) c = 0.8.

3.2 AlphaZero

As a famous deep reinforcement learning paradigm, combining online Monte
Carlo Tree Search (MCTS) and offline neural network has been widely applied to
solve game-related problems, especially known as AlphaGo series programs [15,
17, 16]. MCTS is used to enhance the policy and the neural network provides
the state estimation.

The neural network based MCTS employs PUCT formula to balance the
exploration and exploitation as following :

PUCT (s, a) = Q(s, a) + cpuct.Pθ(s, a)

√
N(s)

1 +N(s, a)
(2)

where the best action is the one that maximizes the upper confidence bound
PUCT (s, a), s denotes the state of the game, a is an action possible from the
set A(s) which represents all the actions possibles in the state s. Q represents
the value when playing the action a in the state s, N(s, a) is the number of times
that the action a has been visited in the state s, N(s) represents the number of
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times that the state s has been visited, cpuct is a variable that help controlling
the exploration and Pθ(s, a) is the estimation of taking action a in the state s
according to the policy of the network θ.

The network architecture is similar to the original AlphaZero one, having the
board as input and producing two outputs : a probability distribution over moves
(policy head) and a vector of score prediction for every player (value head).

Fig. 2. AlphaZero network architecture

Network architecture The general architecture of AlphaZero can be found in
Figure 2. All hyperparameters and differences can be found in Table 2.

In order to encode the board, we are using a 5× 5 matrix. The input of the
state is represented by 6 channels where each channel is a 5×5 matrix. The first
3 channels represent the position of one player’s stones on the board, and the
last 3 channels represent the current player who has to play.

After the encode of the game, 8 residual block of width 128 are placed one
after the other. The first residual block take the game encoded as an input. Each
residual block are using convolution kernel of size 3 with the activation function
being ReLU and as we are using a residual block, the input of the layer is also
for the next residual block.

The policy head give the probability of playing each action for the current
player i.e., for the 25 actions, the policy head return a value between 0 and 1.
Thus, the policy head is composed of a 1x1 convolution, outputting a policy
distribution in logits.

The value head outputs 3 values as described in multiplayer UCT [18] which
estimated the value that each player will obtain i.e., for the 3 players, the value
head returns a score between 0 to 25. Thus, the value head is a fully connected
with 3 parallel hidden layers, each one connected to an output layer of size 26
(possible integer scores for each player from 0 to 25 points).
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Usually, in the game of Go, a player has the possibility of passing. However,
when tested, and even with the goal of maximizing the score, the agent starts
passing even in positions where it is still possible to continue gaining more points.
In order to fix this performance issue, we removed the pass from the network,
and only allowed passing when no more moves are possible (or only moves that
fill the eyes).

Warm-Start self-play For training our network, we have been using self-play
i.e., we compete against ourselves, save the data collected and train using this
data. AlphaZero self-play starts with randomly initialized networks for the value
and policy. Both of them are used, combined with tree search, in order to gen-
erate games which are used to improve the networks, leading to better decisions
by learning MCTS selected moves (policy improvement) and better value esti-
mation, having access to the games results at the end (value improvement).

Playing moves based on a random policy network will generate games where
decisions are almost random, leading to longer training time before observable
improvement. In order to accelerate this process, we add UCT agents during
self-play, replacing (one or many) AlphaZero agents randomly with a decreasing
probability ϵ, where ϵ = max((0.5− iteration number

n updates ), 0.05).

As a result, in earlier iterations, every AlphaZero agent (each color) has a
50% probability in every game to be replaced by a UCT agent, this probability
decreases every iteration, reaching 5% by iteration 50 where it stops decreasing.

Table 1. Training cycle hyperparameters

Hyperparameter Description Value

n Number of rollouts 180

c Exploration constant in UCT/PUCT 0.8

n updates Number of network updates (iterations) 50

n games Number of self-play games per update 1000

n envs Number of parallel workers 8

buffer size Size of replay buffer 2000

N Total games played (n updates ∗ n games) 50000

3.3 Descent

The second deep reinforcement learning algorithm is Descent [6, 7]. Descent is
a recent algorithm which has shown great success in international competitions
such as the 2021 Computer Olympiad of the ICGA. Descent is not based on
MCTS but on Unbounded MinMax [12].
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Table 2. Neural network hyperparameters

Hyperparameter Description
AlphaZero
Value

Descent Value

n res Number of residual blocks 8 8

res filters
Number of output filters in
convolutions in residual blocks

128 128

res kernel size
Convolution kernel size in
residual blocks

3 3

res activation Activation in residual blocks ReLU ReLU

policy filters
Number of output filters in
policy head

1 None

policy kernel size
Convolution kenel size in pol-
icy head

1 None

policy activation
Activation in the last layer of
the policy head

Softmax None

value activation
Activation function in the last
layer of value head

Softmax Linear

kernel regularizer
L2 regularization applied to
all weights

0.0001 0.0001

policy loss
Loss function used for the pol-
icy head

Categorical
crossentropy

None

value loss
Loss function used for the
value head

Categorical
crossentropy

Mean squared
error

optimizer Training optimizer SGD Adam

lr Training learning rate 0.0001 0.0001
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At the difference of Minimax, Unbounded Minimax explores the game tree
in a non-homogeneous way where the exploration is a best-first approach at each
iteration. In descent, the exploration is a best-first approach, that is recursively
applied until the end of the game. This allows to backpropagate the values of
terminal states more efficiently through the nodes chosen. Furthermore, during
the exploration phase, the best move is determined by the utilization of a neural
network.

Descent architecture is the same as AlphaZero but, in AlphaZero there are
two output networks (policy head and value head) and in descent, there is only
one output network (value head). Furthermore, in the value head of descent, we
are using a linear for the activation function as a regression for player scores.

The neural network has been trained with the value obtained from the mini-
max values of the trees built during the game. In addition, each state which has
been explored during the game (not just for the sequences of states of the played
games) is learned. As a result, all the information acquired during the search is
used during the learning process. We use the same network and hyperparameters
as described in the original article [7] and train for 120 hours, the same duration
as AlphaZero.

In the original paper, the authors have achieved better performance that
AlphaZero on multiple game and more quickly.

4 Experimental Results

The experiences were made on 2 NVIDIA GeForce RTX 2080 TI. Each test have
been experimented on 500 games. All neural networks have been trained for 120
hours.

Table 3. Average number of point when all players are using UCT. The test has been
run on 500 game with 95% confidence interval.

Black White Red

Point 11.5± 1.0 7.1± 0.9 6.3± 0.9

As as baseline, we are using the Table 3 . In this table, we observe the
average number of points when all player are using UCT. As we are not using
komi during our experimentation, it makes sense to observe that the black player
has an advantage against white and red. However, as we can see, white does not
have a significant advantage in comparison to the red player.

4.1 Training of AlphaZero and Descent.

In this subsection, we are analyzing the performance of AlphaZero and Descent
against UCT for all players. In Figure 3, we can observe the evolution of the
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performance according to the training time where we tested the performance
every 12 hours.

AlphaZero
For AlphaZero, the improvement of the performance are available in a, c and

e of the Figure 3. As we can observer, AlphaZero improves its performance for
the three different colors using the same network. At the end of the training, we
observe that the average points obtained are close to 16, 10, 11 for the black,
white and red players respectively.

Most of the improvement in AlphaZero has been done during the first 60
hours of training. Even tough, we observe a stagnation after 60 hours, the perfor-
mance of AlphaZero are superior to UCT. The average score per game increased
from 10 to 16, from 7 to 10 and 6 to 11, respectively for the black, white and
red players.

In addition, when playing black and red, AlphaZero is able to outperform all
other opponents, and when playing white, obtains a score almost equal to black
while being at a disadvantage.

Descent
For Descent, the improvement of the performance are available in b, d and

f of the Figure 3. The figure shows that Descent also leads to performance im-
provement in a multiplayer setup. All the players converge to the same average
score, around 11 (12, 12, 11 for black, white, red respectively) and each of them
having at least better or equal performance to UCT. Having different network
update strategies and network architecture (Descent does not use a policy net-
work to guide move selection), the two methods do not converge to the same
performance.

In past work of Descent, the authors had better and faster results than Al-
phaZero. However, as we can observe, after 120 hours, AlphaZero has better
scores for the black and red players but Descent is better for the white player.
Nevertheless, we can observe that AlphaZero is not improving a lot after the 60
hours mark whereas Descent did not start showing stagnation in its curves and
this even after 120 hours of training.

4.2 Black against White and Red.

AlphaZero and Descent use different planning methods. This can result in dif-
ferent strength and strategies while playing different positions in a game. Re-
member that each method use a single network for all the different positions.
The UCT baseline in Table 3 confirm that Black has an advantage when playing
first, which is an expected results since it’s the case in Go. Without using komi,
we will only focus on how both methods play when having this advantage. Table
4 shows the results of 500 games testing Black strengh at attacking each other
weaker positions.

We notice that AlphaZero tends to be more aggressive when playing Black
against itself, which is what it learn during self-play, achieving an average score
of 13.3 points. The same aggression doesn’t work effectively against Descent
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(a) AlphaZero (Black) against UCT
(White, Red).

(b) Descent (Black) against UCT (White,
Red).

(c) AlphaZero (White) against UCT
(Black, Red).

(d) Descent (White) against UCT (Black,
Red).

(e) AlphaZero (Red) against UCT (Black,
White).

(f) Descent (Red) against UCT (Black,
White).

Fig. 3. Left/Right figure represents AlphaZero/Descent against UCT. In y-axis we
observe the average points obtained and in x-axis, we observe the training in hours.
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defenses (White and Red) since it only gets 11 points on average. Looking at
Descent scores, playing as Black against AlphaZero defenses achieves an overage
score of 12.1 points, which is between both AlphaZero scores as Black. Playing
against itself only show a small difference in score going to 11.9.

In both cases, Descent is stronger when playing positions at disadvantage, and
does not show a bigger difference playing against AlphaZero as Black, meaning
that Descent is more balanced in strengh between all the different positions.
AlphaZero on the other hand, will try to be more agressive against medium
defenses (16 points against UCT and 13.3 points against itself) but this also mean
that it can be slightly weaker playing White and Red and that the same strategy
won’t be effective against better defenses (only 11 points against Descent).

Table 4. Average number of point when black is against the others players for different
algorithms. The test has been run on 500 games with 95% confidence interval.

White and Red

UCT AlphaZero Descent

B
la
ck AlphaZero 16.2± 0.3 13.3± 0.4 11± 0.2

Descent 12.7± 0.5 12.1± 0.6 11.9± 0.3

5 Conclusion

In this paper, we used and analyzed Deep Reinforcement Learning for one of
the variants of the game of Go, the game of Multiplayer Go. We have been
using AlphaZero and Descent, which have been showing great success in recent
years. We demonstrate that both algorithms are applicable in Multiplayer Go
and both of them are able to learn in the context of multiplayer game which is
more complex than two players.

Both of the algorithms have been able to beat or equalizes UCT in all players
positions (Black, White and Red). In addition, against UCT, the two algorithms
obtain very close results in a short training time and neither of the two has been
able to beat the other in all cases.

In addition to this, we analyze the impact of the black player using a Deep RL
algorithm against the other Deep RL algorithm for the white and red position.
In this context, we show that Descent is more balanced in strength between
different positions than AlphaZero which result in a better defense, but that
AlphaZero can achieve better performance against medium and weaker defenses
(himself or UCT) than Descent.

In future work, we expect to use Deep Reinforcement Learning on other
multiplayer games, to increase the number of agents and to use it on larger
boards. Furthermore, we have observed that AlphaZero stops improving after
60 hours of training which is not the case for Descent. As a consequence, we
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are interested in making more and longer experiments in order to compare more
accurately the two DRL algorithms.
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