
Budget Limited Spatial Network Improvement Using
Monte Carlo Search

Milo Roucairola and Tristan Cazenavea;*

aLAMSADE, Université Paris Dauphine - PSL
ORCiD ID: Milo Roucairol https://orcid.org/0000-0002-7794-5614,

Tristan Cazenave https://orcid.org/0000-0003-4669-9374

Abstract. We propose a comparison of a large selection of state-of-
the-art deterministic and Monte Carlo Search (MCS) algorithms on
the budget-limited network optimization problem. Including a new
one producing better results, and different approaches to simplifying
this problem. We show that not one algorithm can be the only an-
swer for optimizing both efficiency and robustness, but that a simple
heuristic can perform well for the optimization of robustness, and
that the LNMCS with greedy playout is a reliable choice for opti-
mizing efficiency on 100 nodes large graphs. LNMCS and other al-
gorithms are able to outperform the previous state of the art in all
situations and variations of the problem encountered. We provide
results for procedurally generated graphs and real-world ones, and
show that results obtained on synthetic graphs match with real-world
graphs.

1 Introduction

Optimizing transportation networks is one of the most important real-
world problems engineers have to face. Critical infrastructure, such
as the Internet or roads, efficiencies and robustness rely on optimiz-
ing these types of networks.

Search algorithms are already making most of the State of the Art
on this problem. More precisely, stochastic search algorithms domi-
nate the network optimization problem due to the large search space.
We identified two families of stochastic search algorithms for net-
work optimization: genetic algorithms [9], [15], and Monte Carlo
Search algorithms [2].

Whether it be communications or transportation, the optimization
must respect constraints such as budget or topology. In this paper, we
compare the performances of multiple algorithms over synthetic and
real world instances of the problem. Classic deterministic ones such
as Beam search or Best First Search (BFS). Against Monte Carlo
Search ones, namely Upper Confidence bounds applied to Trees
(UCT) and others such as Nested Monte Carlo Search (NMCS),
Nested Rollout Adaptation (NRPA), and Rapid Action Value Estima-
tion (RAVE). As transportation and communication networks have to
be efficient and resilient, we chose to optimize them over one metric
focused on robustness, and another focused on efficiency.

∗ Corresponding Author. Email: tristan.cazenave@lamsade.dauphine.fr .

2 The Budget Limited Spatial Network
Improvement Problem

Our instance of the Network Design Problem (NDP) [18] consists of
a pre-existing weighted graph with infinite capacity. The weight on
the edges represents the cost of going to the node on one side of the
edge from the node on the other side of the edge. Here, the cost is the
distance between the two nodes. It is the kind of graph on which we
can use the Dijkstra and Floyd-Warshall algorithms. We do not look
at the flow optimization in this paper, only the topological properties.

Our goal is, given such a graph, to optimize selected metrics on
it. The optimization process starts from a graph and adds new edges
until the budget is not exhausted, each edge added subtracts its length
to the budget. The actions a search algorithm can select are the edges
that are absent from the graph. The final states are states where the
budget is too low to add any new edge. Here we chose to maximize
specific definitions of the efficiency [8] and of the robustness [4].

Efficiency is defined as in Latora’s work [8] : E(G) =
1

N(N−1)

∑
i ̸=j

1
sp(i,j)

with N the size of the graph, and sp(i, j) the
shortest path between vertices i and j. Similarly to [2], we divide this
value by the ideal efficiency, the efficiency of the complete graph, to
obtain a value between 0 and 1.

However, we decided to use another metric for robustness than the
one used in [2]. We think this metric for robustness is too computa-
tionally costly (we can not compare our results directly with theirs
anyway, see section 4). We instead decided to use the much less
costly spectral radius of the adjacency matrix λ1. It is the largest
eigenvalue and is described as a powerful robustness estimation in
[4], in the words of this survey:

"The spectral radius is closely related to the path capacity or loop
capacity of the graph. That is, the number of walks of length k (k =
2, 3, 4...) gives an indication of how well connected the graph is. If
the graph has many loops and paths, then the graph is well connected
i.e., larger λ1."

"As a robustness measure, a larger λ1 indicates a more robust
graph to random failures and attack, along with increased suscep-
tibility to virus propagation."

This is not the only relevant robustness metric present in [4]. It is
also stated that the average distance between stops (i.e. the efficiency)
can be a good robustness metric, and that spectral-based techniques
are scalable to larger graphs, which is one of our goals here.

https://orcid.org/0000-0002-7794-5614
https://orcid.org/0000-0003-4669-9374


2.1 Synthetic instances

To compare our algorithm, we need instances of various sizes. We
used the same method as used in [2], which itself was from [7]. This
method is as follows:
(1) place a node u with random positions in [0, 1]2

(2) if there are other nodes, connect this node to each of them (v)
given the probability p(u, v) = βe−αd(u,v)

(3) if u was not connected remove it
(4) if there’s less than the desired amount of nodes, go to (1)

We use the same parameters as in [2]: α = 10 and β = 0.001
The networks generated this way have the advantage of resembling

real-world networks, as you can see in figure 1. However, they feature
overlapping edges that are absent from real-world networks.

Figure 1: Graphs of size 25, 50, 100 generated by seed 0

3 Algorithms
All algorithms presented in the following subsections were selected
for being the state of the art in tree search, Monte Carlo and determin-
istic. Although many other state-of-the-art deterministic algorithms
exist.

3.1 Playout

Playouts or Rollouts are the core elements of most Monte Carlo
Search (MCS) algorithms. They are used to evaluate a state by simu-
lating the rest of the generation from it.

Playouts are usually uniformly random and return a terminal state.
However, if the problem admits any state encountered during the sim-
ulation as a potential solution, the best state encountered can be re-
turned. The playout can also not be uniformly random, but can be
guided by the immediate gain. Finally, the playouts can be guided
by a learned policy like with the Nested Rollout Policy Adaptation
(NRPA) algorithm (a rollout is another name for playout).

3.2 BEAM

BEAM search is a simple baseline tree search algorithm. It only takes
one integer parameter, the width w. It necessitates having access to

a reliable evaluation of the search space states; otherwise, the evalu-
ation can be made with playouts. The algorithm keeps in memory w
nodes, opens and evaluates all the children of these nodes, and then
replaces the previous w nodes with the w best nodes recently opened.
It has the advantage of forcing progress deep into the tree.

A beam search with width = 1 is what we call a greedy playout.
A beam search of width w is usually w times more computationally
heavy than a beam search of width 1; thus, greedy playouts can be
replaced by beam searches in many algorithms with a linear increase
in computation costs.

3.3 GBFS

Greedy Best First Search is another simple yet effective baseline tree
search algorithm [3]. It necessitates having access to a reliable way
to evaluate nonterminal states, using playouts as a substitute if it is
not possible, like Beam search. The algorithm selects the node with
the best evaluation from a queue, evaluates all its children, and in-
serts them into the queue according to their evaluations. Thus, GBFS
is guaranteed to explore only once all the nodes in the search tree,
unlike BEAM search, which can miss states with great valuations.
Missing states with great valuations is usually unavoidable and not a
shortcoming since the problems we are facing are generally NP-Hard
and could never be solved exhaustively anyway.

3.4 UCT

The Upper Confidence Bound applied to Trees is the most widely
used instance of Monte Carlo Tree Search, and the default algorithm
to which one goes when using Monte Carlo Methods. It, or variants
of it, is used in groundbreaking applications such as Deepmind’s Al-
phago [16] or AstraZeneca’s Aizynthfinder [6], and other [17].

Contrary to BEAM and GBFS, MCTS does not need a way to eval-
uate any state from the search tree, and only needs to evaluate final
states. This is especially useful in games, like chess, where the func-
tion to evaluate a game in progress is not trivial. But even when such
a function is available, MCTS algorithms are generally better per-
forming because they are more capable of avoiding local maximum
and other traps that come with a noisy search space.

UCT and all the other MCTS algorithms share the same 4 phases:
(1) selection: until an unknown node is opened, go down the search

tree according to the exploration/exploitation formula. (2) expansion:
add a new node to the search tree (3) simulation: evaluate the newly
added node, using playouts to get a terminal state (4) backpropaga-
tion: use the simulation result to update the values of all the search
tree nodes visited during the selection phase

In UCT’s case, the exploration/exploitation formula for each move

m from a state s is: w
n
+ c ∗

√
lnN
n

Where w is the sum of all scores obtained after playing m from s,
n is the number of times m was played from s, and N is the num-
ber of times s was visited during the selection phase. c is a constant
(usually c ≈ 1).

3.5 RAVE and GRAVE

Rapid Action Value Estimation (RAVE) is an MCTS algorithm de-
rived from UCT and introduced by Sylvain Gelly and David Silver
[5]. The main difference with UCT is that RAVE generalizes the
value of moves over the entire search tree (for example, if a move
generally leads to better results, then it may be favored even if in the



UCT-like subtree it led to worse results). This is adapted to prob-
lems where the order of the moves is less important, for example, in
go and not in chess. We think the network optimization problem is
appropriate.

The Generalized Rapid Action Value Estimation (GRAVE) is a
generalization of RAVE [1]. Unlike RAVE, when deciding which
move to play, it inherits a policy from the last parent move whose
children experienced more than ref playouts for more localized gen-
eralization. It can also be used in conjunction with a move selection
heuristic.

3.6 NMCS

Nested Monte Carlo Search is another type of Monte Carlo Search al-
gorithm, different from MCTS like UCT, PUCT, RAVE, and GRAVE
in their iterative natures; NMCS is recursive.

The NMCS calls lower-level NMCS on all of the currently avail-
able moves from the current state. Each NMCS returns the best path
it found to optimize the value of the state. The higher-level NMCS
then executes the first action from the best path it has in memory
and calls new lower-level NMCS on the available moves from the
resulting state.

Compared to UCT, NMCS has the advantage of optimizing at any
depth of the search tree and not only near the root. It generally shows
better results on optimization problems [12] [13].

3.7 LNMCS

The Lazy Nested Monte Carlo Search presented in [12] is a variant of
NMCS made to address one of its shortcomings. An NMCS of level
l requires computing as many NMCS of level l − 1 as the number
of moves available from the state, and then repeating that for each
level of depth of the search tree. The computation time of the NMCS
increases greatly with the level, an NMCS of level over 3 or even 2
can be too computationally costly depending on the problem.

Under the assumption that some moves doom the lower-level
NMCS to underwhelming results, we decide to reintroduce the
exploration-exploitation dilemma present in MCTS to the NMCS,
and prune some of the lower-level NMCS based on cheap and rela-
tive evaluations using playouts.

Before calling a lower-level LNMCS, the available moves are each
sampled with b playouts. If the mean of the evaluations of a move
is inferior to the mean of all the evaluations made at that depth tr
plus the rate r times the difference between the best evaluation ever
encountered on that depth trmax and the mean of all the evaluations
made on that depth tr, then it is pruned: a single playout is launched
instead of a lower-level LNMCS. For example in Figure 2, the middle
and right moves are sampled with good enough results to pass the
threshold and their lower-level LNMCS are called, while the leftmost
move has poor sampling and is pruned.

This means that a rate r of 0 prunes all the moves inferior to the
mean of the evaluations at a certain depth.

The pseudocode for LNMCS is available in [12].

3.8 NRPA

The Nested Rollout Policy Adaptation is a MCTS algorithm intro-
duced by Christopher Rosin [11] in 2011. It is derived, but very dif-
ferent, from the NMCS. It uses the nesting not to progress deeper
into the tree, but to contribute hierarchically to a policy that is learned
from playouts (or rollouts) to guide future playouts.

5
3

6
2

2 18
21

18
20

19 19
21

22
19

21

...
...

...
...

...
...

level n

level n-1

Figure 2: Level n LNMCS pruning a search subtree and launching
n-1 LNMCS on surviving search subtrees.

4 Results

4.1 Preliminary results

4.1.1 Variation among the synthetic instances

Before diving into the performances of our algorithms on the syn-
thetic benchmark instances, we think it is crucial to sample these
possible synthetic instances to know more about their depth and po-
tential scores. To do so, we generated 20 synthetic instances of size
25 with α = 10 and β = 0.001 and maximized their efficiency using
an exhaustive algorithm with a budget of 0.1 times the total cost of
the starting edges as in [2].

With as little as 15206 and as much as 18222026 explored states,
even small 25 nodes graphs can take hours to be explored exhaus-
tively, or a few minutes. The search space size can vary greatly with
a standard deviation of 4183678.3, mainly due to extreme outliers.

The starting efficiency and their improvement show a significant
standard deviation too.

With such variations among all the parameters surrounding the
synthetic instances, it appears necessary to compare our algorithms
on multiple instances and share them to help with reproducibility and
improve the relevance of said results. There seems to be no correla-
tion between the size of the search tree and the efficiency gain over
this small sample, however, the start efficiency and the efficiency gain
seem to sum around 0.8 with these parameters.

Given [2] results show almost no variation, we assume they real-
ized all their experiments on a graph generated from a unique seed.

4.1.2 Hyperparameter tuning and algorithmic choice

Before diving into lengthy experiments, we first need to quickly eval-
uate the algorithms likely to perform well and how much the results
would vary

We launched UCT with c = 1.0 and NMCS with level = 2, 3,
10 times over the graph of size 50 generated by the seed 0 with the
previously mentioned parameters and budget with a timeout of 600
seconds, the initial score is 0.43899. During our 10 experiments, we
obtain the final efficiencies featured in tables 2. The experiments in
this subsection were performed on an Intel i5-6600K 3.50GHz CPU,
which is different from the CPU used in Section 4.2.

It is interesting to note that UCT peaks around the 120th second,
and NMCS continues to find better results after the 400th second.

We do not include the standard deviation in subsequent results as it
is always between 0.005 and 0.015 and impairs readability. We think
it is low enough to justify using the means over 10 runs.



seed search tree size start efficiency efficiency gain
0 180557 0.575 0.222
1 453598 0.498 0.304
2 1118035 0.511 0.279
3 19353 0.600 0.190
4 3990749 0.423 0.354
5 16593 0.585 0.203
6 196488 0.289 0.523
7 451586 0.427 0.301
8 6662608 0.431 0.349
9 15206 0.158 0.571

10 849969 0.604 0.226
11 18222026 0.305 0.498
12 202226 0.468 0.295
13 744556 0.475 0.305
14 144717 0.491 0.312
15 1538641 0.432 0.322
16 247973 0.527 0.273
17 3326338 0.540 0.226
18 443276 0.455 0.340
19 334322 0.529 0.331

Mean 1.957e6 0.466 0.321
Std dev 4.183e6 0.112 0.103

Table 1: Differences in search tree sizes, starting and best values
among 20 synthetic graphs of size 25 with α = 10 and β = 0.001

experiment UCT NMCS 2 NMCS 3
1 0.56436 0.57813 0.59877
2 0.55633 0.58891 0.59768
3 0.56271 0.59257 0.58098
4 0.55491 0.57611 0.58943
5 0.55557 0.58085 0.57400
6 0.56734 0.58652 0.58554
7 0.55697 0.57866 0.57649
8 0.57557 0.60954 0.58618
9 0.55668 0.60097 0.59544

10 0.56689 0.60194 0.57162
Mean 0.56173 0.58942 0.58561

Std dev 0.00682 0.01158 0.00980

Table 2: Preliminary comparison between NMCS and UCT and eval-
uation of the variance on one seed

4.2 On the synthetic instances

4.2.1 Experimental setup

To evaluate each algorithm, we launch each of them 10 times over
3 different sizes: 25, 50, and 100. We then repeat this experiment 5
times, for each graph generating seed from 0 to 4. In tables 3, 4, and
5 we display the results for directly solving the efficiency problem
with each algorithm and each size.

In tables 6, 8, and 7 we try new approaches to try to maximize the
final efficiency.

In tables 12, 14, and 13 we apply the previously best methods
on the robustness problem and compare it against few representative
baseline methods.

As seen in Figure 1, these networks seem to imperfectly model
networks like streets, since the edges can overlap.

These experiments were made with Rust 1.59, on an Intel Core
i7-11850H 2.50GHz using a single core.

We compare the following algorithms:

• UCT, with c = 1 as the baseline MCTS algorithm
• GBFS, a baseline greedy deterministic algorithm
• BEAM, with widths of 10, 50, and 100, another baseline greedy

deterministic algorithm
• NMCS, with l = 2 and another with l = 3 given its good perfor-

mances and relative simplicity
• LNMCS, with the default hyperparameters l = 3, r = 0.8 and

p = 3 as it usually improves over NMCS [14]

• NRPA, with l = 3
• RAVE, as a recent improvement over UCT
• GRAVE, ref = 50 is shown to be a good value in [1]
• GRAVE B with ref = 50, bias = 10 and using the cost-

effectiveness (valuechange/cost) as a move selection heuristic.

4.2.2 Solving the problem directly

seed 0 1 2 3 4
start value 0.575 0.498 0.511 0.600 0.423

BFS 0.797 0.802 0.791 0.790 0.778
BEAM 10 0.768 0.757 0.736 0.778 0.749
BEAM 50 0.781 0.802 0.747 0.790 0.770
BEAM 100 0.766 0.769 0.786 0.790 0.770

LNMCS 0.755 0.754 0.729 0.764 0.763
NMCS 2 0.769 0.752 0.757 0.772 0.752
NMCS 3 0.791 0.786 0.781 0.789 0.764

NRPA 0.792 0.776 0.770 0.790 0.719
UCT 0.724 0.748 0.677 0.746 0.770

RAVE 0.711 0.612 0.687 0.716 0.623
GRAVE 0.704 0.624 0.680 0.702 0.641

GRAVE B 0.708 0.632 0.693 0.709 0.611

Table 3: Final efficiencies found for each algorithm on each graph of
size 25 after 600s

seed 0 1 2 3 4
start value 0.438 0.398 0.439 0.445 0.373

BFS 0.607 0.619 0.623 0.639 0.587
BEAM 10 0.614 0.543 0.583 0.668 0.587
BEAM 50 0.659 0.624 0.659 0.687 0.604
BEAM 100 0.655 0.620 0.642 0.700 0.627

LNMCS 0.647 0.632 0.637 0.681 0.621
NMCS 2 0.628 0.583 0.637 0.673 0.561
NMCS 3 0.641 0.589 0.646 0.692 0.588

NRPA 0.644 0.577 0.650 0.677 0.570
UCT 0.590 0.542 0.602 0.580 0.541

RAVE 0.545 0.510 0.547 0.592 0.487
GRAVE 0.556 0.505 0.570 0.589 0.518

GRAVE B 0.558 0.506 0.557 0.589 0.513

Table 4: Final efficiencies found for each algorithm on each graph of
size 50 after 600s

As you can see in Table 1, a network size of 25 is small enough
for the BFS to find the optimal value with all seeds except seed 2,
which features a large search tree. The optimal value is found on
seed 4 despite an even larger search tree. Beam search features good
results but they are not optimal, the problem cannot always be solved
optimally by greedy playouts. Among the Monte Carlo algorithms,
NMCS 3 and NRPA show the best results, the UCT family is lagging
behind the nested family. Over 10 runs, the NRPA managed to always
find the optimal solution on seed 3, which is impressive for a Monte
Carlo algorithm.

With a network size of 50, the BFS is no longer able to explore
most of the tree, and larger widths are required for the beam search
to produce good results. LNMCS becomes the best algorithm among
the MCTS (except on seed 2). When the search tree size increases,
pruning bad subtrees becomes more efficient.

As the size of the search tree increases further with networks of
size 100, in Table 5, LNMCS becomes the best algorithm and is only
outperformed by BFS on seed 3 and BEAM 10 on seed 2. BEAM 10
being a very close second is interesting because it is both a simple



seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329

BFS 0.456 0.464 0.477 0.511 0.444
BEAM 10 0.459 0.476 0.517 0.484 0.429
BEAM 50 0.440 0.436 0.449 0.467 0.411
BEAM 100 0.416 0.421 0.439 0.458 0.392

LNMCS 0.459 0.480 0.497 0.505 0.461
NMCS 2 0.443 0.451 0.476 0.479 0.425
NMCS 3 0.437 0.453 0.473 0.479 0.431

NRPA 0.446 0.451 0.471 0.484 0.426
UCT 0.406 0.424 0.441 0.449 0.399

RAVE 0.405 0.412 0.441 0.449 0.386
GRAVE 0.406 0.420 0.437 0.469 0.409

GRAVE B 0.373 0.425 0.422 0.456 0.398

Table 5: Final efficiencies found for each algorithm on each graph of
size 100 after 600s

seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329

UCT 0.386 0.420 0.432 0.487 0.387
CSGUCT 0.386 0.420 0.432 0.487 0.387
GPBFS 0.430 0.449 0.463 0.495 0.405
LNMCS 0.399 0.449 0.463 0.495 0.405
NMCS 3 0.405 0.453 0.463 0.491 0.407

Table 6: Final efficiencies found with few algorithms on each graph
of size 100 after 600s with greedy playouts

and a greedy algorithm. This result is what pushes us to investigate
the use of greedy playouts instead of random playouts.

4.2.3 Greedy playouts and action space reduction

One of the main obstacles we encountered with these experiments is
the width of the search tree: with a size of 50, the number of avail-
able moves is around a thousand at each state. This poses a problem
to the NMCS (which achieves better performance than UCT despite
that), as it means billions of score computations. Even LNMCS en-
counters difficulties in properly evaluating each of these moves when
its pruning capabilities help to alleviate this problem.

Inspired by PUCT, which uses a prior neural network to suggest
a smaller set of moves when the number of playable moves is too
large (like for go with Deepmind’s alphago), we make our algorithms
only consider the N cheapest moves (here N = 20). Thus, many more
expensive moves will not be used, it leads to better results as shown
in [2].

Inspired by the good performance of the beam search in tables 4
and 5, even on larger networks, we aim to try greedy playouts on this
problem.

We compare the best algorithms with greedy playouts, with action
space reduction, and with greedy playouts and action space reduction
combined.

The BFS, when using greedy playouts (GPBFS), is slightly modi-
fied to swap the node evaluation function to a single greedy playout.

NRPA is by definition applying a learned policy on the playout,
replacing it with greedy playouts would turn it into a simple sampling
algorithm. The beam search does not use playouts at all. This is why
NRPA and beam search are not featured in our experiments involving
greedy playouts.

As you can see in Table 6, using greedy playouts alone did not lead
to better results. With large graphs and no action space reduction, it
is required to compute the efficiency thousands of times per greedy
playout, each one requiring applying the Floyd-Warshall algorithm,

making each of the playouts very costly. Only a few greedy playouts
can be played in 10 minutes (∼15s per greedy playout), which ex-
plains the redundancy of the results; LNMCS does not have enough
time to prune anything. Both UCT and CSGUCT produced the exact
same results because they are very similar. GPBFS is slightly better
performing, but is worse than without greedy playouts too. We did
not conduct any more experiments on greedy playouts alone because
we speculate that the results will be inferior for all algorithms com-
pared to their random playouts results.

In table 7, all algorithms except BFS have better results than in
table 5. In addition, it is noticeable that the smaller number of avail-
able moves seems to help the NRPA achieve even better results. We
suppose it is because the action space becomes small enough for the
NRPA to learn a policy. Having a thousand actions available makes it
harder to build up the policy. The gap between LNMCS and NMCS
3 results has disappeared compared to the results featured in Table
5. This is unexpected since LNMCS usually performs better than
NMCS on most problems. We suppose it might be due to the prun-
ing of the expensive moves: with this setting, all moves lead to good
subtrees and LNMCS loses its advantage.

seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329
BEAM 10 0.509 0.540 0.564 0.547 0.518

BFS 0.449 0.442 0.462 0.507 0.429
NMCS 3 0.528 0.548 0.555 0.588 0.529
LNMCS 0.499 0.545 0.560 0.593 0.522
NRPA 0.538 0.560 0.565 0.597 0.514
UCT 0.467 0.497 0.494 0.522 0.465

Table 7: Final efficiencies found with selected algorithms on each
graph of size 100 after 600s with action space reduction

seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329

GPBFS 0.512 0.568 0.597 0.569 0.501
NMCS 3 0.545 0.493 0.569 0.537 0.458
LNMCS 0.519 0.569 0.592 0.599 0.503

UCT 0.483 0.502 0.489 0.541 0.470
CSGUCT 0.460 0.511 0.482 0.510 0.470

Table 8: Final efficiencies found with selected algorithms on each
graph of size 100 after 600s with action space reduction and greedy
playouts

In green, you can see the best results at maximizing the efficiency
over all approaches for the graphs of side 100.

The combination of greedy playouts and reduction is shown in
Table 8. The results are almost always better than the direct approach,
even the previously worse-performing algorithms can outperform the
direct approach LNMCS (best algorithm in Table 5). It also slightly
outperforms the NRPA in the reduction-only approach except on seed
4. The best algorithm using both action space reduction and greedy
playouts is LNMCS, only outperformed by NMCS 3 on seed 0, and
by GPBFS on seed 2. GPBFS is a very close second.

GPBFS and LNMCS using greedy playouts and action space re-
duction, and NRPA using action space reduction, are the three glob-
ally dominating approaches to the efficiency problem.

4.2.4 Robustness

Previously, we showed that combining both greedy playouts and ac-
tion space reduction led to generally better results. This is true for



efficiency, in this sub-subsection we explore a different metric: ro-
bustness. Our goal is to determine if the best algorithms are roughly
the same with this metric, and how a smaller computational cost of
the metric affects the results.

Note that the efficiency used previously is the inverse of the aver-
age distance divided by the average distance of the complete version
of the graph, according to [4] it is also linked to robustness. Here
we need a robustness evaluation of lesser cost, we chose to use the
spectral radius: the largest eigenvalue from the adjacency matrix.

seed 0 1 2 3 4
start value 2.512 2.861 3.153 2.738 3.146

BFS 3.969 4.147 4.308 4.083 4.914
BEAM 10 3.755 3.832 3.943 3.842 4.499
BEAM 100 3.969 4.147 4.145 4.083 4.689

LNMCS 3.728 3.898 3.832 3.932 4.407
NMCS 3 3.857 4.071 4.153 4.045 4.762

NRPA 3.759 3.876 4.045 4.025 4.487
UCT 3.755 3.987 3.488 3.778 3.968

Table 9: Final robustness found for each algorithm on each graph of
size 25 after 600s

seed 0 1 2 3 4
start value 3.483 2.755 2.993 3.273 2.706

BFS 4.412 4.895 4.809 4.620 4.626
BEAM 10 4.286 4.734 4.383 4.667 5.354
BEAM 100 5.313 5.000 4.673 5.097 5.782

LNMCS 4.167 4.869 4.485 4.653 5.116
NMCS 3 4.593 4.880 4.663 4.726 5.114

NRPA 4.049 4.218 4.245 4.228 4.420
UCT 3.989 4.133 4.137 4.215 4.252

Table 10: Final robustness found for each algorithm on each graph of
size 50 after 600s

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500

BFS 4.215 5.242 5.071 4.551 5.537
BEAM 10 4.838 5.467 5.144 5.627 5.633
BEAM 100 3.788 4.090 4.019 4.164 4.241

LNMCS 4.988 5.353 5.134 5.328 5.444
NMCS 3 4.530 5.260 5.110 4.932 5.189

NRPA 3.961 4.222 4.032 4.156 4.303
UCT 3.780 4.111 3.944 4.029 4.145

Table 11: Final robustness found for each algorithm on each graph of
size 100 after 600s

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500

UCT 4.508 4.718 4.191 4.358 4.527
CSGUCT 4.508 4.718 4.191 4.358 4.527
NMCS 3 4.878 5.355 4.614 4.803 5.007
LNMCS 4.775 5.121 4.447 4.764 4.775
GPBFS 4.775 5.121 4.447 4.764 4.775

Table 12: Final robustness found with selected algorithms on each
graph of size 100 after 600s with greedy playouts

In green, you can see the best results at maximizing the robustness
over all approaches for the graphs of side 100.

Contrary to the good performances of a beam search of width 10
on table 11, using greedy playouts does not allow to beat these results

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500
BEAM 10 4.382 4.783 4.924 4.633 4.592

BFS 4.244 4.514 4.727 4.331 4.757
NMCS 3 4.633 5.214 4.981 4.654 4.674
LNMCS 4.207 4.868 4.974 4.514 4.664
NRPA 4.414 4.724 4.767 4.825 4.856
UCT 3.918 4.110 4.282 4.057 4.347

Table 13: Final robustness found with selected algorithms on each
graph of size 100 after 600s with action space reduction

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500

GPBFS 4.802 4.694 5.131 4.546 5.023
NMCS 3 4.743 5.233 4.672 4.593 4.426
LNMCS 4.772 5.296 5.161 4.782 5.127

UCT 4.134 4.319 4.477 4.280 4.387
CSGUCT 4.457 4.451 4.684 4.281 4.427

Table 14: Final robustness found with selected algorithms on each
graph of size 100 after 600s with action space reduction and greedy
playouts

on table 12. The action space is still too large for greedy layouts, only
about 20 of them can be played without search space reduction in 10
minutes (30s per playout), which explains the good performances of
NMCS over the other algorithms, the playouts are more spread.

The action space reduction does not lead to strictly better results
(table 13) than the approach with greedy playouts only, the results
are worse than the base approach too. Combined, the two approaches
produce slightly better results (table 14) than isolated, but still infe-
rior to the base approach.

Overall, to optimize this definition of the robustness over such
graphs, the optimal way seems to use a beam search on the base
approach (random playouts, full action space), a good second choice
could be the LNMCS on the base approach too.

The goal of this section was not to determine which algorithms
provide the best results for this specific robustness metric but to know
if we may generalize the results of the various approaches tried on the
efficiency over other metrics. We think these results are satisfactory
because by trying only one other metric, we can say that the met-
rics are differently affected by the approaches. We know that greedy
playouts and action space reduction are not universally better for this
problem depending on the metric we want to optimize.

4.3 Real World Graphs

To better measure our algorithms on the network optimization prob-
lem, we decided to apply it to graphs from the Survivable Network
Design Library, SNDlib [10]. This library features 26 networks, some
represent cities or countries, some are inspired by biology, and some
are more abstract. We decided to run the best algorithms from the
previous results on 4 graphs from the real world:

1. France, representing the country of France with 25 vertices and 45
edges.

2. Germany50, representing the country of Germany with 50 vertices
and 88 edges.

3. India35, representing the country of India with 35 vertices and 80
edges.

4. Cost266, representing the European Union with 37 vertices and
57 edges.



For comparison, Germany50 is the third largest graph in the database,
with only the abstract graphs of "brain" and "ta2" bigger with, respec-
tively, 167 and 65 vertices. In Figure 3 you can see what the graphs
look like.

Figure 3: Graphs from SNDlib for Europe, France, Germany, and In-
dia from left to right.

Based on the previous results, we selected the best algorithms from
each size (25, 50, 100) for robustness (BFS, BEAM 100, BEAM 10)
and efficiency (BFS, BEAM 100, LNMCS GR). LNMCS GR is the
variant of LNMCS with greedy playouts and action space reductions
as it is the one that performs the best overall for optimizing efficiency
on large graphs, see table 8. As a baseline, we add the NMCS of level
3 with normal playouts and no action space reduction as it performed
well enough in all the experiments.

graph france germany50 cost266 india35
start value 0.716590 0.848845 0.844898 0.953861

BFS 0.884692 0.883322 0.912834 0.965096
BEAM 100 0.876070 0.887081 0.912834 0.965004
LNMCS GR 0.872731 0.895397 0.909709 0.964143

NMCS 3 0.871349 0.885278 0.909772 0.964209

Table 15: Final efficiencies found with selected algorithms on each
graph from SNDlib after 600s

graph france germany50 cost266 india35
start value 4.712265 4.085959 3.399925 5.491604

BFS 5.594335 5.102157 4.760420 6.354730
BEAM 100 5.505853 5.325418 4.834799 6.307945
BEAM 10 5.407345 5.218283 4.494036 6.271883
NMCS 3 5.565474 5.113068 4.799523 6.336223

Table 16: Final robustness found with selected algorithms on each
graph from SNDlib after 600s

Except for NMCS 3, the results presented in Tables 15 and 16
are all from deterministic tree search algorithms so they were only
executed once.

The results obtained in Tables 16 and 15 corroborate the ones
found on synthetic instances: BFS and BEAM give the best results
for smaller graphs. Germany50 is the biggest graph and LNMCS al-
ready performs well for synthetic instances of size 50, this explains
why this graph was best optimized with LNMCS with greedy play-
outs and action space reduction. NMCS 3 is a control experiment
and was not expected to outperform the other algorithms. The graphs
from SNDlib have 50 vertices or less and do not give indications of
whether the results obtained on synthetic instances apply similarly to
graphs with 100 vertices.

5 Conclusion
In this paper, we experimented with optimizing graphs for commu-
nications and transport under budget constraints. Multiple different
graphs of different sizes were experimented upon, using two defi-
nitions of robustness and efficiency among many and with greedy

playouts and action space reduction. We showed that while no algo-
rithm is better than the others in any context, the LNMCS usually
offers good enough results in most contexts. Deterministic greedy
algorithms should not be ignored, as the BEAM search offers great
results even on larger graphs. Both UCT and CSGUCT, the previous
state-of-the-art algorithms, are outperformed in all situations by all
other algorithms tested in this paper. Finally, synthetic graphs seem
to behave similarly to real-world graphs, for sizes smaller than 50
vertices at least.

References
[1] Tristan Cazenave, ‘Generalized rapid action value estimation’, in 24th

International conference on artificial intelligence, pp. 754–760, (2015).
[2] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi,

‘Planning spatial networks with monte carlo tree search’, Proceedings
of the Royal Society A, 479(2269), 20220383, (2023).

[3] James E Doran and Donald Michie, ‘Experiments with the graph tra-
verser program’, Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 294(1437), 235–259, (1966).

[4] Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and
Duen Horng Chau, ‘Graph vulnerability and robustness: A survey’,
IEEE Transactions on Knowledge and Data Engineering, (2022).

[5] Sylvain Gelly and David Silver, ‘Monte-carlo tree search and rapid ac-
tion value estimation in computer go’, Artificial Intelligence, 175(11),
1856–1875, (2011).

[6] Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis
Reymond, Ola Engkvist, and Esben Bjerrum, ‘AiZynthFinder: a fast,
robust and flexible open-source software for retrosynthetic planning’,
Journal of Cheminformatics, 12(1), 70, (December 2020).

[7] Marcus Kaiser and Claus C Hilgetag, ‘Spatial growth of real-world net-
works’, Physical Review E, 69(3), 036103, (2004).

[8] Vito Latora and Massimo Marchiori, ‘Efficient behavior of small-world
networks’, Physical review letters, 87(19), 198701, (2001).

[9] Charitha Madapatha, Behrooz Makki, Ajmal Muhammad, Erik
Dahlman, Mohamed-Slim Alouini, and Tommy Svensson, ‘On topol-
ogy optimization and routing in integrated access and backhaul net-
works: A genetic algorithm-based approach’, IEEE Open Journal of
the Communications Society, 2, 2273–2291, (2021).

[10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski, ‘Sndlib 1.0—survivable network design library’, Net-
works: An International Journal, 55(3), 276–286, (2010).

[11] Christopher D. Rosin, ‘Nested rollout policy adaptation for monte carlo
tree search’, in In IJCAI, pp. 649–654, (2011).

[12] Milo Roucairol., Jérôme Arjonilla., Abdallah Saffidine., and Tristan
Cazenave., ‘Lazy nested monte carlo search for coalition structure gen-
eration’, in Proceedings of the 16th International Conference on Agents
and Artificial Intelligence - Volume 2: ICAART, pp. 58–67. INSTICC,
SciTePress, (2024).

[13] Milo Roucairol and Tristan Cazenave, ‘Refutation of spectral graph the-
ory conjectures with monte carlo search’, in Computing and Combina-
torics, eds., Yong Zhang, Dongjing Miao, and Rolf Möhring, pp. 162–
176, Cham, (2022). Springer International Publishing.

[14] Milo Roucairol and Tristan Cazenave, ‘Solving the hydrophobic-polar
model with nested monte carlo search’, in International Conference on
Computational Collective Intelligence, pp. 619–631. Springer, (2023).

[15] N. Shanmugasundaram, K. Sushita, S. Pradeep Kumar, and E.N.
Ganesh, ‘Genetic algorithm-based road network design for optimising
the vehicle travel distance’, International Journal of Vehicle Informa-
tion and Communication Systems, 4(4), 344–354, (2019).

[16] D. Silver, Aja Huang, Chris J. Maddison, A. Guez, L. Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, S. Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and Demis Hassabis, ‘Mastering the game
of Go with deep neural networks and tree search’, Nature, 529, 484–
489, (2016).

[17] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek
Mańdziuk, ‘Monte carlo tree search: A review of recent modifications
and applications’, Artificial Intelligence Review, 56(3), 2497–2562,
(2023).

[18] Richard Wong, ‘A survey of network design problems’, (05 2004).


	Introduction
	The Budget Limited Spatial Network Improvement Problem
	Synthetic instances

	Algorithms
	Playout
	BEAM
	GBFS
	UCT
	RAVE and GRAVE
	NMCS
	LNMCS
	NRPA

	Results
	Preliminary results
	Variation among the synthetic instances
	Hyperparameter tuning and algorithmic choice

	On the synthetic instances
	Experimental setup
	Solving the problem directly
	Greedy playouts and action space reduction
	Robustness

	Real World Graphs

	Conclusion

