Pareto-NRPA: A Novel Monte-Carlo Search Algorithm for
Multi-Objective Optimization

Noé Lallouet **, Tristan Cazenave® and Cyrille Enderli®

2LAMSADE, Paris Dauphine - PSL University, Paris, France
bThales DMS, Elancourt, France

Abstract. We introduce Pareto-NRPA, a new Monte-Carlo algo-
rithm designed for multi-objective optimization problems over dis-
crete search spaces. Extending the Nested Rollout Policy Adaptation
(NRPA) algorithm originally formulated for single-objective prob-
lems, Pareto-NRPA generalizes the nested search and policy update
mechanism to multi-objective optimization. The algorithm uses a set
of policies to concurrently explore different regions of the solution
space and maintains non-dominated fronts at each level of search. Pol-
icy adaptation is performed with respect to the diversity and isolation
of sequences within the Pareto front. We benchmark Pareto-NRPA on
two classes of problems: a novel bi-objective variant of the Traveling
Salesman Problem with Time Windows problem (MO-TSPTW), and
a neural architecture search task on well-known benchmarks. Results
demonstrate that Pareto-NRPA achieves competitive performance
against state-of-the-art multi-objective algorithms, both in terms of
convergence and diversity of solutions. Particularly, Pareto-NRPA
strongly outperforms state-of-the-art evolutionary multi-objective al-
gorithms on constrained search spaces. To our knowledge, this work
constitutes the first adaptation of NRPA to the multi-objective setting.

1 Introduction

Multi-objective optimization (MOO) is a research area consisting in
finding ways to optimize several, often conflicting, objective functions.
A MOO problem can be formulated in the following way:

chin(fl(ﬂf), f2(2), s fp(2))

subjectto x € X

(€]

where (f1, ..., fp) are the objective functions and X is the feasible set.
X can be a subset of R™ for continuous optimization problems or N™
for discrete optimization tasks, and includes possible constraints. The
concept of Pareto-dominance allows one to compare two solutions
x and y. It is said that a solution x dominates y (x < y) iff f;(z) <
fi(y), Vi =1,...,k and there exists a j € 1, ..., p such that f;(z) <
fi(y). A solution z is said Pareto-optimal iff -3y € X : y < z, i.e.
if there is no solution y that dominates z. The set of all Pareto-optimal
solutions is called the Pareto front.

In this paper, we are concerned with tackling multi-objective op-
timization problems over a discrete search space using Monte-Carlo
methods. Monte-Carlo methods typically use random simulations to
collect information about the search space and converge to a solu-
tion. We introduce Pareto-NRPA, which is an extension of the NRPA

algorithm [30] to the case of multi-objective optimization. NRPA is
a Monte-Carlo algorithm tailored to single-objective optimization
(SOO) that uses nested searches combined with policy updates. NRPA
has shown high performance on games and combinatorial optimiza-
tion problems, finding world records on Morpion Solitaire and cross-
word puzzles [30]. The contributions of this work are the following:

o We propose Pareto-NRPA, a novel algorithm for multi-objective
optimization, and discuss the motivations behind the design choices
of the algorithm.

e We introduce a new benchmark dataset based on popular travel-
ing Salesman Problem with Time Windows (TSPTW) instances
adapted to MOO. This dataset (MO-TSPTW) is publicly released
and available online. !

e We compare the results of Pareto-NRPA against state-of-the-art
MOO algorithms on two different sets of problems: the bi-objective
TSPTW problem defined previously and bi-objective Neural Ar-
chitecture Search (NAS) on well-known NAS benchmark datasets.

We find that Pareto-NRPA exhibits strong performances on these
problems. As such, Pareto-NRPA may be identified as a suitable can-
didate for many multi-objective optimization problems over discrete
search spaces. Similarly to evolutionary multi-objective optimization
algorithms, Pareto-NRPA is a non-exact method for multi-objective
optimization. To the best of our knowledge, this work is the first gen-
eralization of the NRPA algorithm to the multi-objective optimization
setting.

2 Related Works
Multi-objective optimization

A large part of the literature in MOQO is related to evolutionary comput-
ing, and particularly genetic algorithms. Multi-objective evolutionary
algorithms (MOEAs) typically generate good solutions while keeping
a large degree of diversity in the solution set. NSGA-II [14] is one
of such algorithms, and is popular in MOO due to its ease of use
and adaptability. Other popular genetic algorithms for multi-objective
optimization include SMS-EMOA [19], SPEA-2 [41], NSGA-III [13]
and MOEA/D [40]. MOEAs have been used successfully for many
multi-objective optimization problems, such as water management
[23] or change detection in satellite images [38].

Approaches to MOO using reinforcement learning have also been
proposed [34]. Multi-objective reinforcement learning (MORL) is a

* Corresponding Author. Email: noe.lallouet @dauphine.eu.

L https://github.com/pareto-nrpa/mo-tsptw

branch of reinforcement learning that aims to learn a set of policies
for multi-objective Markov decision processes. MORL has been suc-
cessfully applied to many real-world problems [26] [24] [2]. Search
and planning methods such as Monte-Carlo Tree Search, on the other
hand, are less popular approaches for MOO. The UCT algorithm [21],
one of the foremost MCTS algorithms, has notably been adapted to
MOQO [10], [36]. While there are similarities between RL and MCTS
techniques [35], MCTS algorithms largely ignore the discounted re-
ward mechanism, which is crucial in RL, in favour of terminal rewards
observed after a playout. MCTS methods also often keep in mem-
ory only part of the search space and collect information through
simulated playouts instead of real interaction with the environment.

Monte-Carlo Tree Search and NRPA

Monte-Carlo Tree Search (MCTS) is a popular set of techniques
used to explore a search tree. MCTS uses random playouts to collect
information about the value of a node in the search tree and uses a
selection formula to balance exploration and exploitation in the tree.
The UCT algorithm [21] and RAVE [17] are some node selection
methods.

Nested Monte-Carlo Search (NMCS) [3] is a different way of
exploring a search tree. NMCS implements a nested structure, which
means that each search recursively launches a lower-level search,
until level O where the search returns the terminal reward of a random
playout starting from the current state. A state is a point in the search
space representing a partial (in which case, actions can be taken) or
terminal solution. Starting from an empty sequence, NMCS chooses
actions until it reaches a terminal state. In state s;, a level £ NMCS
search launches a level £ — 1 search for each available action. The
action with the highest score is played. NMCS has been successfully
applied to various games and combinatorial optimization problems
(311 [8].

NRPA [30] combines the nested structure of NMCS with a policy
learning method. At each level, NRPA performs a lower-level search
and updates the policy with respect to the best returned sequence. Each
search of level ¢ launches n searches of level £ — 1. Atlevel 0, a search
is a playout where the actions are conditioned by a policy vector .
The policy 7 associates a weight ws, to a (state, action) couple.
(state, action) couples are uniquely encoded by a domain-specific
code method.

During a playout and at state s;, the probability of picking action

eWiLk

SIRER At
algorithm initialization, 7 is a random policy with uniform distribu-
tion over the actions. After each search, the policy 7 is updated using
gradient ascent towards the best sequence found at the current level.
Algorithms 1 shows the playout algorithm. The reader is kindly re-
ferred to the original NRPA paper [30] for pseudocodes of the NRPA
algorithm and the Adapt algorithm.

The research work of [11] introduces A-NMCS, a variant of
NMCS for MOO problems, using scalarization to decompose a multi-
objective problem into several single-objective problems, while high-
lighting that no adaptation of NRPA has been proposed for multi-
objective optimization. We aim to fill this gap in the literature by
proposing Pareto-NRPA.

k is derived from the associated policy weight: p;r =

3 Contributions

Given the space of all possible sequences .S, NRPA tries to find the
sequence with the highest score s* = arg maxseg score(s). As such,
NRPA is suited to single-objective optimization (SOO) problems. In

Algorithm 1 Playout
Input: state, 7
1: sequence + [|
2: while true do

3: if state is terminal then

4: return (score(state), sequence)

5 end if

6: z+0

7: for m € possible moves for state do

8: z + z + exp(w[code(m)])

9: end for
10: choose a move with probability M
11: state < play(state, move)
12: sequence < sequence U move

13: end while

the context of multi-objective optimization, one aims to identify, rather
than a single sequence s*, a set S™ of Pareto-efficient sequences:

S ={seS|-FueS:u#su=<s} 2)

In order to optimize several objectives simultaneously, a number of
changes have to be made to the original NRPA algorithm. First of all,
instead of optimizing a single policy 7, we introduce a set of policies
IT = {m,...,mn}. The cardinality of II is a user-defined hyperpa-
rameter. By using several policies instead of one, the algorithm is
able to optimize different regions of the search space, with one policy
focusing on its own region.

At the end of a search, the original NRPA algorithm returns the
best score and its associated sequence. The score () method takes
as input a solution and returns the objective function values for that
solution. In Pareto-NRPA, they are replaced by the Pareto set of non-
dominated scores and the associated sequences. For each playout (i.e.
a level O search), Pareto-NRPA first samples a policy 73 € II from a
uniform distribution, then uses the policy to guide a search starting
from the root where probabilities of taking actions are conditioned by
policy weights. When the playout reaches a terminal state, the objec-
tive functions f1, ..., fp are evaluated and returned. For each sequence,
the policy that was followed during the playout is memorized. Storing
the sequence-policy couples (s, 7) can be done in a tabular fashion
or (as implemented in this work) by storing 7 as an attribute of the
evaluated sequence. Line 2 of Algorithm 2 indicates that the policy
is sampled from a uniform distribution. Using a uniform distribution
promotes a similar number of function evaluations for all policies.
More complex policy sampling methods, such as weighting policies
according to their relative performance, remain an avenue for future
work.

After alevel £ — 1 search, instead of memorizing the best score and
the associated sequence, Pareto-NRPA memorizes a non-dominated
set. The algorithm uses non-dominated sorting [14] to categorize the
result of a search in several fronts Fp, F1, ..., F}, and memorizes the
solutions belonging to the dominating set F. Algorithm 3 shows that
policies are adapted with respect to the solutions they have produced
if and only if these solutions belong to S* (line 9). As such, if a policy
has not led to a non-dominated solution, it will not be updated. In
order to update each policy at least once, a minimum of one solution
per policy is kept in S™. If a policy 7y, is not represented in Fp,the next
fronts 1, ...}, are iterated through until the first solution belonging
to 7y is found.

The Adapt algorithm in Pareto-NRPA differs from the original
NRPA formulation by incorporating multiple sequences into the policy
update, rather than a single best one. In multi-objective optimization,

a solution may outperform another with respect to one objective while
being inferior with respect to another. Thus, the policy update cannot
rely on a single dominant sequence but must consider a set of non-
dominated sequences. For each sequence s € S™ generated under
policy 7y, the Adapt algorithm performs a weighted gradient update,
conditioned by «, which is a user-defined hyperparameter representing
the learning rate. The weight assigned to each sequence depends on its
relative isolation within the non-dominated front, which is calculated
using the crowding distance (CD) [14]. This distance approximates
the perimeter of the hyper-rectangle defined by the nearest neighbors
of a point in objective space, thus providing a measure of how sparsely
populated the region around a sequence is.

Sequences with a high crowding distance are considered more iso-
lated and are more likely to contribute to high diversity in the solution
space. To prevent instability during policy updates, particularly for
sequences with extreme objective function values that yield a +o0o
CD, the values are clipped to a maximum of 2. This ensures that the
policy is updated preferentially towards isolated, diverse sequences
without causing gradient explosion. An ablation study evaluating
Pareto-NRPA with and without weighting sequences using CD is pre-
sented in the supplementary material of this paper (Section 6, Table
13).

The NRPA and Adapt algorithms adapted to the multi-objective
optimization setting are presented in Algorithms 2 and 3.

Algorithm 2 Pareto-NRPA
Input: level, policy set I1
1: if level = O then
2: Choose 7y, : p(m) ~ UJ0, |11]]

3: return Playout(root,)
4: else
5: S* 0
6: for N iterations do
7: set < Pareto-NRPA(level — 1,1I)
8: S* < S U set
9: S*—{seS*|~Fue S u#su<s}
10: TT «Pareto-Adapt(IT, S™)
11: end for
12: return S™
13: end if
It is straightforward to note that Pareto-NRPA with

n_objectives = 1 and |II] = 1 is equivalent to NRPA. As
such, Pareto-NRPA is a generalization of NRPA. To the best of
our knowledge, this work is the first generalization of NRPA to
multi-objective optimization.

A large number of improvements have been proposed to NRPA
over time [12] [33] [4]. Crucially, GNRPA [4] generalizes the NRPA
algorithm to include a domain-specific bias term. GNRPA has been
shown to improve performance on several problems, including the
TSPTW. GNRPA is very easily implemented in Pareto-NRPA, as it re-
quires minimal modifications to the algorithm. Specifically, line 10 of
Algorithm 3 is replaced by z < z + exp (7w(state, m) + 3(m))
and line 13 is replaced by 7’[code(m)] < 7'[code(m)] — (a *
exp(fr[cede(;n)HB(m» « DJ[s]).

It may also be noted that Pareto-NRPA is parallelizable. Although
more complex ways to perform parallelization will be the object of
future research, a straightforward way to parallelize Pareto-NRPA
is by implementing playout parallelization, where a master process
runs the main Pareto-NRPA algorithm and launches several playouts
simultaneously with follower processes. This way of parallelizing

Algorithm 3 Pareto-Adapt
Input: Policy vector II, optimal set S™
1: D + CrowdingDistance(S™)
2: for s € S* do
3: 7 < policy used to sample s
4 7
5: state < root
6: for move € s do
7
8
9

7’ [code(move)] < 7' [code(move)] + (o * D[s])

z+0

: for m € possible moves for state do
10: z + z + exp(w[code(m)]])
11: end for
12: for m € possible moves for state do
13: 7’[code(m)] « 7’ [code(m)]—
14: (a % M * DIs])
15: end for
16: state < play(state, move)
17: end for
18: T 7
19: end for
20: Return II

Pareto-NRPA is reminiscent of Stabilized-NRPA [9].

4 Results

We benchmark the performances of Pareto-NRPA on two problems.
The first problem is an extension of classical instances of the traveling
Salesman Problem with Time Windows (TSPTW) to bi-objective
optimization. The second problem relates to finding neural network
architectures in a large search space (NAS).

Comparing sets of results in a MOO setting is not as straightforward
as in the single-objective case. A solution set S may contain elements
that outperform those in another set S2 with respect to one objective
f1, while simultaneously being dominated or inferior with respect to
other objectives fs, ..., fp. We compare sets of solutions obtained by
different algorithms in the following ways:

e Qualitative: For bi-objective optimization problems, the best so-
lutions found by each run of the algorithm are aggregated and their
global dominating front is plotted. This graphical and qualitative
comparison allows one to identify performing regions, Pareto front
spread, and relative dominance.

e Quantitative: We use the hypervolume metric [18] to compare the
size of the region that the Pareto front dominates over a reference
point. Let Y™ be the objective space values of the elements in the
Pareto set approximation S™*. The hypervolume metric is defined as
volume of the space dominated by Y™ and bounded by a reference
point r. Formally, the hypervolume indicator is written:

HV(Y",r) = Am (U [%T]) 3)

YyeEY *

where A, is the Lebesgue measure in m dimensions.

In order to evaluate solution diversity and Pareto front homogeneity,
the overall spread (OS) and spacing metrics are used. The overall
spread metric, introduced by [37], gives information on the extent

of the Pareto front. It is calculated in the following way:

m;;x Yi — mln Yi
yey* yey
7| 4)

)11

=1

where 7} is an approximation of the ideal objective vector and ;"
is an approximation of the maximal objective vector.

Finally, the spacing metric [32] returns a quantity related to the
variation of the Manhattan distance between the elements of Y*.
Its expression is:

[Y™*|

ﬁ 2 [d=d Y\ {wh?) ©

SP(Y™) =
where dl(9 Y*\ {y’}) is the minimal L;-distance between an
element y’ and the rest of the elements of Y* and d is the mean
of all d* (37, Y™ \ {¢’}). A lower spacing value indicates a better
distribution of points over the Pareto front approximation.

The results obtained by Pareto-NRPA are compared to the following
algorithms:

o NSGA-II [14] is one of the most popular multi-objective evolu-
tionary algorithms. It uses non-dominated sorting and crowding
distance assignment to manage a population of individuals. We run
NSGA-II with a population size of 250 and a sample size of 25.

o SMS-EMOA [19] uses the hypervolume metric to as the selection
criterion for survival. It is a state-of-the-art multi-objective evolu-
tionary algorithm. SMS-EMOA is run with a population size of
250.

e Pareto Local Search (PLS) [27] is a very straightforward discrete
multi-objective algorithm based on local search. PLS demonstrates
great performance on the unconstrained multi-objective traveling
salesman problem.

e MOEA/D [40] uses decomposition and genetic operators to itera-
tively slove single-objective decompositions of a multi-objective
problem, gradually reaching a Pareto front approximation. It is
widely used in multi-objective optimization problems due to its
computational efficiency and high performance.

e Pareto-MCTS [10] is an adaptation of UCT to multi-objective
optimization. The comparison of Pareto-NRPA to this work is
relevant because both methods use random playouts to optimize a
Pareto front. The two algorithms are related to Monte-Carlo Tree
Search.

SMS-EMOA, MOEA/D and NSGA-II are benchmarked using their
respective implementation in the PyMoo framework [1].

MO-TSPTW

In this work, we introduce a novel bi-objective optimization dataset
based on the TSPTW problem. In the classical version of the TSPTW
problem, one aims to find a tour (permutation) of n cities such that
the tour starts and ends at city 0, each city is visited exactly once and
each city is visited inside a particular time window. NRPA has shown
promising results on this problem, finding state-of-the-art solutions
on numerous instances [7]. For each instance of the famous Solomon-
Potvin-Bengio dataset [29], we generate a new set of coordinates for
each city, and set the secondary cost associated to the travel from
city ¢ to city j as the euclidean distance between ¢ and j. Figure 1

shows the primary and secondary cost matrices for instance rc_204.2
of the MO-TSPTW dataset. The time windows associated to each
city are identical to the classical TSPTW instances. The primary and
secondary distances between two cities are unrelated. As such, we
find that minimizing both objectives at the same time is a challeng-
ing task, suitable for evaluating Pareto-NRPA. The multi-objective
optimization problem associated with MO-TSPTW is:

6

S {ﬁ(s) = cost1(s) + 10° x Q(s)
minimize
f2(s) = costa(s) + 10° x Q(s)

where :

e cost1(s) (resp. costz(s)) is the sum of the primary (resp. sec-
ondary) distances between each city and the city that follows it in
the sequence s.

e Q(s) is the number of violated constraints (i.e. the number of cities
that have been visited outside of their respective time window).

The 10° penalty applied to violated constraints quickly forces the
algorithms to find valid sequences, as any valid solution, however
inefficient it might be, always dominates an invalid solution.

rc_204.2

Primary cost matrix Secondary cost matrix
u -

323028262422201816 141210 8 6 4 2 0
3230 28262422201816 141210 8 6 4 2 0

02 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 02 4 6 8 101214 16 18 20 22 24 26 28 30 32

Figure 1. The two independent cost matrices for instance rc_204.2 of the

TSPTW

The MO-TSPTW dataset contains 31 instances. For three of those
instances, complete algorithm results (including hypervolume, overall
spread, spacing and constraint violations) are presented and discussed:

e rc_204.3 (24 cities) is the instance with the largest average time
window per city. Thus, it is very easy to generate a valid solution
that doesn’t violate any constraints.

e rc_201.3 (32 cities) is the instance with the narrowest average time
window per city. It is particularly hard to generate a valid solution
for this instance.

e rc_204.1 (46 cities) is the instance with the largest number of cities
to visit. While this instance has the second largest average time
window in the dataset, the large number of cities strongly increases
the complexity of the dataset: as such, satisfying the time window
constraints for this instance is moderately hard.

Those three instances are representative of varying degrees of diffi-
culty in the dataset and allow us to discuss different problem configu-
rations. For all 31 instances of the dataset, the hypervolume indicator
is presented in this section (Table 4). Complete results and metrics,
including hypervolume, overall spread, spacing and average con-
straint violations for all 31 instances are shown in the supplementary
material (Section 6, Tables 7-10). These tables include 95% confi-
dence intervals : results for a metric X are shown as X + CI, where
X = L S""-"uns X, s the average value of a metric over all

n_runs =0

runs, and C'I = 1.96 * ——Z—, where o is the standard deviation of
X. For space reasons, Table 4 omits the confidence intervals, which
may be found in the supplementary material.

The run configurations of each algorithm are the following:

NSGA-II and SMS-EMOA: For both MOEAs, a member of the
population is represented by a vector of size n_cities. The sam-
pling operator samples a permutation of all cities. The mutation
operator randomly inverts the order of a random subsequence in
the solution [28]. Floating point values obtained after mutation
and crossover are corrected using a rounding operation. The initial
population size is 250.

PLS: The initial population consists of 250 individuals.

o MOEA/D uses the same genetic parameters as NSGA-II and SMS-
EMOA. The bi-objective problem is decomposed into 200 single-
objective optimization subproblems.

Pareto-MCTS: Pareto-MCTS implements the UCT algorithm [21]
with leaf parallelization for improved stability [6] and speed. The
UCB formula is parametrized by an exploration constant C'. For op-
timization problems with rewards between 0 and 1, the exploration
constant is often set to small values. However, as the results values
of a playout in the two studied problem domains may be far greater
than 1, we set C' as a dynamic value computed for every node 3 :
Ci = Tmax — Tmin, Where Tmax (resp. 7min) is the maximal (resp.
minimal) average node value for children of .

e Pareto-NRPA: The same configuration of Pareto-NRPA is used for
all instances in MO-TSPTW. The initial level L is set as 4 and the
learning rate « as 0.5. The number of policies in 11 is 4. These hy-
perparameters have been chosen after a succinct grid search on the
rc_205.2 instance. Hypervolume evolution for different values of
|TI| and v are shown in Figures 2a and 2b. Complete hyperparame-
ter search metrics for values of « € {0.1,0.25,0.5,0.75, 1, 2} and
|TT] € {1,2,4} are presented in the supplementary material. Al-
though tuning the hyperparameters for each instance would likely
lead to improved performance, we intentionally use a fixed config-
uration to enable a fair comparison with other algorithms, which
are also evaluated without instance-specific tuning.

o 20000 40000 0000 80000 100000
0 20000 40000 60000 80000 100000 eration

eration — poretotePn,a-0.1

Pareto NP, a=0.25

Parcto \RPA, a=0.5

(a) (b)

— parctoNRPA, /= 1 Paroto NRPA, 1| =2 — Pareto NRPA 1] = ¢

Figure 2. Different values of |II| and c on rc_205.2

All algorithms are run for 100 000 objective function evaluations.
30 independent runs are performed for each algorithm.

It has been shown that adding a bias to the probabilities of action
selection strongly improves NRPA performance [4]. A bias value
classically used for TSPTW is —10 = d;;, with d;; the normalized
distance between two cities [5]. For fairness concerns, we also imple-
ment the same bias term in the sampling operators for SMS-EMOA
and NSGA-II, as well as in the playout algorithm in Pareto-MCTS.
An ablation study done on SMS-EMOA and NSGA-II (Section 6,

Table 1. Metrics on rc_204.3
Algorithm Hypervolume Overall Spread Spacing Ccv
NSGA-II 0.97 0.37 5.33 0.00
SMS-EMOA 0.96 0.33 7.06 0.00
Pareto-MCTS 0.61 0.16 18.08 0.00
PLS 0.91 0.37 5.18 0.00
MOEA/D 0.93 0.38 9.66 0.00
Pareto-NRPA 0.94 0.32 6.19 0.00

Table 11) confirms that the introduction of bias significantly improves
MOEA performance, as the algorithms find better solutions during
the sampling step. In Tables 1, 2 and 3, the hypervolume values are
calculated with respect to a vector r = (maxy f1(y), maxy f2(y))
for all valid solution vectors y in the aggregation of results of all
30 runs for all algorithms combined. The hypervolume indicator is
then normalized using maximal hypervolume value after algorithm
termination. Constraint violations (CV) refers to the average number
of violated constraints for the best solution(s) over all 30 runs. The
spacing metric is not computed for runs where no valid sequence has
been found.

Table 2. Metrics on rc_201.3

Algorithm Hypervolume Overall Spread Spacing CvV
NSGA-II 0.00 0.00 - 7.33
SMS-EMOA 0.00 0.00 - 5.97
Pareto-MCTS 0.00 0.00 - 9.63
PLS 0.00 0.00 - 11.80
MOEA/D 0.00 0.00 - 5.53
Pareto-NRPA 0.91 0.35 4.38 0.00
Table 3. Metrics on rc_204.1
Algorithm Hypervolume Overall Spread Spacing CvV
NSGA-IT 0.12 0.06 12.30 1.90
SMS-EMOA 0.00 0.00 - 2.17
Pareto-MCTS 0.00 0.00 - 20.47
PLS 0.00 0.00 - 5.67
MOEA/D 0.01 0.07 4.98 2.23
Pareto-NRPA 0.26 0.08 10.12 0.00

Table 1 indicates that NSGA-II and SMS-EMOA converge to a
slightly better solution set than Pareto-NRPA on a very easy instance.
Every algorithm succeeds in finding valid solutions for all 30 runs.
However, Tables 2 and 3 show that, on the two harder instances, Pareto-
NRPA converges to the best solutions, illustrated by the superior
hypervolume values. The evolutionary algorithms, PLS and Pareto-
MCTS fail to produce valid solutions for almost every run, while
Pareto-NRPA converges quickly to solutions that do not violate time
constraints. A hypervolume value of 0 indicates that the solution set
generated by the algorithm is dominated by the reference point, which
means that no valid solution has been found.

The results in Table 4 show that Pareto-NRPA strongly outperforms
the state-of-the-art evolutionary MOO algorithms on most instances of
the multi-objective TSPTW dataset. Precisely, Pareto-NRPA returns

Table 4. Normalized hypervolume on all instances of MO-TSPTW

Instance Cities NSGA-II SMS-EMOA Pareto-UCT PLS MOEA/D Pareto-NRPA
re_206.1 4 1.00 1.00 1.00 1.00 1.00 1.00
re_207.4 6 1.00 1.00 1.00 1.00 1.00 1.00
rc_203.4 15 1.00 1.00 0.65 0.97 0.99 0.95
rc_202.2 14 1.00 1.00 0.84 0.91 0.99 0.98
rc_204.3 24 0.97 0.96 0.61 0.91 0.93 0.94
re_203.1 19 0.91 0.87 0.44 0.72 0.88 0.97
re_204.2 33 0.80 0.79 0.00 0.80 0.57 0.82
rc_208.2 29 0.94 0.93 0.00 0.89 0.84 0.86
rc_204.4 14 1.00 1.00 0.60 0.89 0.99 0.99
re_205.1 14 1.00 1.00 0.63 0.98 0.99 1.00
re_204.1 46 0.12 0.00 0.00 0.00 0.01 0.29
re_203.2 33 0.11 0.27 0.00 0.05 0.21 0.86
rc_203.3 37 0.08 0.04 0.00 0.03 0.04 0.90
rc_208.3 36 0.92 0.93 0.00 0.57 0.63 0.81
re_202.4 28 0.01 0.07 0.00 0.00 0.00 0.77
re_208.1 38 0.06 0.06 0.00 0.02 0.01 0.46
re_207.3 33 0.24 0.28 0.00 0.05 0.37 0.92
re_207.2 31 0.00 0.08 0.00 0.00 0.02 0.33
re_206.3 25 0.56 0.63 0.01 0.03 0.79 0.94
re_207.1 34 0.42 0.44 0.00 0.00 0.34 0.79
re_202.1 33 0.00 0.08 0.00 0.02 0.04 0.91
re_205.3 35 0.27 0.25 0.00 0.00 0.00 0.77
re_201.1 20 0.77 0.73 0.61 0.28 0.93 0.97
re_205.2 27 0.00 0.00 0.00 0.00 0.01 0.92
re_205.4 28 0.25 0.28 0.00 0.00 0.22 0.80
re_202.3 29 0.00 0.00 0.00 0.00 0.00 0.94
rc_206.2 37 0.00 0.00 0.00 0.00 0.00 0.76
re_206.4 38 0.00 0.00 0.00 0.00 0.00 0.51
re_201.2 26 0.06 0.25 0.00 0.00 0.14 0.84
re_201.4 26 0.00 0.08 0.00 0.00 0.03 0.33
re_201.3 32 0.00 0.00 0.00 0.00 0.00 0.93

a greatly superior hypervolume metric to the other state-of-the-art
algorithms on 22 out of the 31 problem instances of MO-TSPTW.
Evolutionary algorithms match or slightly outperform (in 5 cases)
Pareto-NRPA in 8 of the 10 easiest instances in the dataset, while
Pareto-NRPA is the superior algorithm in 20 of the 21 remaining
hardest instances of the dataset. We note that Pareto-MCTS performs
poorly on most hard instances of the dataset. Indeed, the UCB formula
[21] is not suited to constraint handling. Setting the reward with a
large penalty for violated constraints prevents efficient node value
estimation, and simply aborting a playout where constraints are vio-
lated often leads to suboptimal, over-conservative policies [22]. While
Pareto-NRPA and Pareto-MCTS are both based on Monte-Carlo play-
outs, these results show that Pareto-NRPA is much more suited to
constrained search spaces.

NSGA-II, MOEA/D and SMS-EMOA converge to good and diverse
solution sets on easy instances (such as rc_202.2 or rc_205.1, even
slightly outperforming Pareto-NRPA), but generally fail to converge
to a valid solution for harder instances, while Pareto-NRPA succeeds
in finding solutions that don’t violate any time constraints. Indeed,
the policy adaptation mechanism implemented in Pareto-NRPA al-
lows the algorithm to learn sequences of moves which leads to faster
convergence. Pareto-NRPA thus emerges as an efficient algorithm for
constraint handling in sequential discrete multi-objective optimiza-
tion problems, strongly outperforming MOEASs on problems with
constraints that are hard to satisfy.

We note that Pareto Local Search, despite being very popular on
the unconstrained multi-objective TSP, doesn’t yield good results on
MO-TSPTW. This can be explained by the fact that the algorithms are
capped at 100 000 function evaluations, a relatively low value for PLS
which requires more iterations to efficiently evaluate diverse regions
of the search space. Further experiments comparing the algorithms
under equal search times show that PLS reaches good performances
with more function evaluations (Section 6, Tables 21-23).

The diversity of the solutions produced by Pareto-NRPA is not al-

Objective 2
Objective 2

2

. !
. 0
% .. -
“-

-

450 500 550 600 650 500 550 600 650 700
Objective 1 Objective 1

* Policy 0 Policy3 o Policy2 e Policy 1 o Policy2 Policyd e Policy3 s Policyl

(a) (b)

Figure 3. Policy distribution for two different runs on rc_204.3. Each color
represents the policy from which the solution has been sampled.

ways as good as the MOEAs. This is due to the fact that MOEAs main-
tain a large population, which retains diversity, while Pareto-NRPA
only maintains a front of non-dominated sequences. Pareto-NRPA
does not explicitely enforce diversity of solutions and their associated
policy weights: the policy update is merely performed with respect
to the crowding distance of sequences in S™. As such, the overall
distribution of policies in the Pareto front approximation may be un-
even. Figure 3 shows the distribution of policies over the generated
solutions for two different runs on rc_204.3. It may be appreciated
that one run has converged to policies focusing on different regions
of the search space, leading to varied solutions, while the other has a
less distinct separation of policies in the solution space. Improving
Pareto-NRPA’s distribution of policies over different regions of the
search space remains an axis for future work.

It is worth noting that Pareto-NRPA is computationally heavier than
the compared state-of-the-art algorithms, especially the extremely fast
MOEA/D and PLS. When the size of the search space increases, the
complexity of Pareto-NRPA grows. Experimental results comparing
the algorithms under equal CPU time are shown in the supplemen-
tary material of this paper, and demonstrate that Pareto-NRPA can
be outperformed under strict search time conditions. Improving the
computational complexity of Pareto-NRPA is a very clear research
avenue.

Neural Architecture Search

Neural Architecture Search (NAS) refers to the task of automatically
exploring a search space to find a neural network architecture mini-
mizing one, or several, metrics. A classical goal for single-objective
NAS is finding the architecture according to:

a” = argmin £(X, Y, W) (7

where S is the space of all architectures, W, are the neural network
weights associated to architecture a and £(X, Y, W,) is the loss com-
puted on the validation dataset. The search space S is, in practical
applications, typically large (S| > 10'°). Recently, tabular bench-
marks have been proposed to facilitate NAS research. These tabular
benchmarks contain training and validation accuracies for every neu-
ral network in a restrained search space. Some of these benchmarks
are NAS-Bench-201 [15], which contains 15625 architectures, and
NAS-Bench-101 [39], with 423 000 neural network architectures. We
use these two benchmarks to quickly evaluate the metrics associated
to neural networks in a multi-objective setting. The two objective
functions we aim to optimize are :

e f1 =100— Acc(a): the classification error of network a computed
over the CIFAR-10 validation set.

o fo = #params: the number of parameters of the neural network.

Minimizing these two metrics simultaneously amounts to finding an
efficient trade-off between validation accuracy and neural network
computational complexity. Indeed, it may be of interest to deep learn-
ing practicioners to identify high-performing neural networks with a
limited resource budget in terms of inference speed of memory con-
straints. Multi-objective NAS approaches have been proposed using
evolutionary algorithms [16] [25] and reinforcement learning [20].
Moreover, we intentionally limit the number of objective function
evaluation to a low value (2000 function evaluations) as a single
function evaluation is often very costly in NAS [42].

The first NAS benchmark dataset is NAS-Bench-201 [15]. Itis a
cell-based search space where a cell is represented as a directed acyclic
graph with 4 vertices. Each edge (u, v) in the DAG is associated with
one of the following operations applied to vertex w, transforming
it to vertex v: skip-connection, 1x1 convolution, 3x3 convolution,
3x3 average pooling, or no operation at all. Searching a cell thus
consists in assigning one of the available operations to each edge. The
searched cell is finally used to create a neural network according to a
pre-defined skeleton. We refer the reader to [15] for more information
concering NAS-Bench-201.

NSGA-II, SMS-EMOA, Pareto-MCTS and Pareto-NRPA are in-
dependently run 30 times on the NAS-Bench-201 dataset. Each run
consists in 2000 objective function evaluations. Figure 4a plots the
accuracy of the neural networks found during search (100 — f1). It
indicates that all algorithms have succeeded in finding the true Pareto
front for NAS-Bench-201 after 30 runs. The Pareto fronts are super-
posed, meaning that all the algorithms have found the same set of
points. Data points plotted in grey refer to the available architectures
in the search space. It is expected that all algorithms succeed in finding
the optimal Pareto front since the search space is small (|S| = 15625).
Computing the average overall spread and hypervolume metrics how-
ever indicates that some runs converge to slightly suboptimal Pareto
front approximations (Table 5). While all algorithms show very good
performance, NSGA-II and SMS-EMOA obtain a hypervolume value
0.01 larger than Pareto-NRPA.

Table 5. Metrics on NAS-Bench-201

Algorithm Hypervolume Overall Spread
NSGA-II 0.994+0.00 0.7240.02
SMS-EMOA 0.99 + 0.00 0.70 £0.03
Pareto-MCTS 0.96 £ 0.00 0.68 + 0.05
Pareto-NRPA 0.98 +0.00 0.70 £ 0.03

The second NAS benchmark dataset is NAS-Bench-101 [39]. NAS-
Bench-101 is also a cell-based search space, where each cell is en-
coded as a DAG with 7 vertices. While NAS-Bench-201 associates
operations to graph edges and feature maps to vertices, NAS-Bench-
101 associates operations to vertices. The available operations are 1x1
convolution, 3x3 convolution and 3x3 max pooling. There are a total
of 423 000 valid architectures in the NAS-Bench-101 search space:
as such, finding a good Pareto front approximation on this dataset is
slightly harder than on NAS-Bench-201. Each algorithm is run for
2000 objective function evaluations for 30 runs.

Results in Table 6 and Figure 4b show that, once again, all algo-
rithms succeed in finding good solutions sets for NAS-Bench-101.
This time, Pareto-NRPA slightly outperforms the state-of-the-art
MOEAs. The two NAS search spaces presented are both uncon-

Table 6. Metrics on NAS-Bench-101

Algorithm Hypervolume Overall Spread
NSGA-II 0.98 £ 0.00 0.64 +0.04
SMS-EMOA 0.97 £ 0.00 0.62 + 0.03
Pareto-MCTS 0.97 £ 0.00 0.56 + 0.03
Pareto-NRPA 0.99 +0.00 0.72 4 0.04

NAS-Bench-201 NAS-Bench-101

e

1T o

curacy on CIFAR-10

Validation accuracy on CIFAR 10

s 120 2 2

25 120 1 »
logl#params) logl #params)

o nsGadl o swsEuon

NSGA o Porstomcrs
Parcto NRPA ParctoNRPA = SMSEMOA

(a) (b)

Figure 4. Aggregated Pareto fronts on NAS-Bench-201 and
NAS-Bench-101
strained, which means that no neural network architecture is con-
sidered invalid. As such, MOEAs are well-suited to the task and
Pareto-NRPA does not outperform them as strongly as in constrained
search spaces such as harder instances of MO-TSPTW.

5 Conclusion

We have proposed Pareto-NRPA, a novel multi-objective Monte-Carlo
search algorithm using nested rollouts and policy adaptation. Pareto-
NRPA uses a set of policies to guide a recursive search over several
nested levels, and adapts the policy weights based on non-dominated
solutions in the objective space. We benchmark Pareto-NRPA on a
novel dataset extending classical instances of the Traveling Sales-
man Problem with Time Windows to multi-objective optimization
(MO-TSPTW), as well as a neural architecture search task (NAS). We
report that Pareto-NRPA outperforms state-of-the-art multi-objective
evolutionary algorithms on MO-TSPTW and leads to competitive
results on the NAS task. Pareto-NRPA is identified as a strong algo-
rithm for constraint handling in sequential discrete multi-objective
optimization problems. Future research directions include:

Extending Pareto-NRPA to continuous search spaces.

e Benchmarking Pareto-NRPA on multi-objective optimization prob-
lems with 3 and more objectives.

Improving policy diversity in the solution set.

Accelerating Pareto-NRPA by reducing the computational com-
plexity of the algorithm.

References

[1] J. Blank and K. Deb. Pymoo: Multi-Objective Optimization in Python.
IEEE Access, 8:839497-89509, 2020. ISSN 2169-3536. doi: 10.1109/
ACCESS.2020.2990567. URL https://ieeexplore.ieee.org/document/
9078759.

[2] A. Castelletti, F. Pianosi, and M. Restelli. Tree-based Fitted Q-iteration
for Multi-Objective Markov Decision problems. In The 2012 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1-8, June
2012. doi: 10.1109/1ICNN.2012.6252759. URL https://ieeexplore.ieee.
org/document/6252759. ISSN: 2161-4407.

[3] T. Cazenave. Nested Monte-Carlo Search. 2009.

[4] T. Cazenave. Generalized Nested Rollout Policy Adaptation, Mar. 2020.
URL http://arxiv.org/abs/2003.10024. arXiv:2003.10024 [cs].

[3]

[6]
(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

T. Cazenave. Generalized Nested Rollout Policy Adaptation with
Limited Repetitions, Jan. 2024. URL http://arxiv.org/abs/2401.10420.
arXiv:2401.10420 [cs].

T. Cazenave and N. Jouandeau. On the Parallelization of UCT.

T. Cazenave and F. Teytaud. Application of the Nested Rollout Policy
Adaptation Algorithm to the Traveling Salesman Problem with Time
Windows. In Y. Hamadi and M. Schoenauer, editors, Learning and In-
telligent Optimization, pages 42-54, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-34413-8.

T. Cazenave, A. Saffidine, M. J. Schofield, and M. Thielscher. Nested
Monte Carlo Search for Two-Player Games. In Thirtieth AAAI Confer-
ence on Artificial Intelligence (AAAI-16), pages 687—693, Phoenix, Ari-
zona, United States, Feb. 2016. URL https://hal.science/hal-01436286.
T. Cazenave, J. Sevestre, and M. Toulemont. Stabilized nested rollout
policy adaptation. CoRR, abs/2101.03563, 2021. URL https://arxiv.org/
abs/2101.03563.

W. Chen and L. Liu. Pareto Monte Carlo Tree Search for Multi-Objective
Informative Planning. In Robotics: Science and Systems XV. Robotics:
Science and Systems Foundation, June 2019. ISBN 978-0-9923747-5-4.
doi: 10.15607/RSS.2019.XV.072. URL http://www.roboticsproceedings.
org/rss15/p72.pdf.

M. Cornu. Local Search, data structures and Monte Carlo Search for
Multi-Objective Combinatorial Optimization Problems. PhD Thesis,
2017. URL http://www.theses.fr/2017PSLED043/document.

C. Dang, C. Bazgan, T. Cazenave, M. Chopin, and P.-H. Wuillemin.
Warm-Starting Nested Rollout Policy Adaptation with Optimal Stopping.
Proceedings of the AAAI Conference on Artificial Intelligence, 37(10):
12381-12389, June 2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i10.
26459. URL https://ojs.aaai.org/index.php/AAAl/article/view/26459.
Number: 10.

K. Deb and H. Jain. An Evolutionary Many-Objective Optimiza-
tion Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. /EEE
Transactions on Evolutionary Computation, 18(4):577-601, Aug. 2014.
ISSN 1941-0026. doi: 10.1109/TEVC.2013.2281535. URL https:
/lieeexplore.ieee.org/document/6600851.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182-197, 2002. doi: 10.1109/4235.996017.
X. Dong and Y. Yang. NAS-Bench-201: Extending the Scope
of Reproducible Neural Architecture Search. Technical Report
arXiv:2001.00326, arXiv, Jan. 2020. URL http://arxiv.org/abs/2001.
00326. arXiv:2001.00326 [cs] type: article.

T. Elsken, J. H. Metzen, and F. Hutter. Efficient Multi-objective Neu-
ral Architecture Search via Lamarckian Evolution. Technical Report
arXiv:1804.09081, arXiv, Feb. 2019. URL http://arxiv.org/abs/1804.
09081. arXiv:1804.09081 [cs, stat] type: article.

S. Gelly and D. Silver. Monte-Carlo tree search and rapid action
value estimation in computer Go. Artificial Intelligence, 175:1856—
1875, 2011. URL http://www.sciencedirect.com/science/article/pii/
S000437021100052X.

A. P. Guerreiro, C. M. Fonseca, and L. Paquete. The Hypervolume
Indicator: Problems and Algorithms. ACM Computing Surveys, 54(6):
1-42, July 2022. ISSN 0360-0300, 1557-7341. doi: 10.1145/3453474.
URL http://arxiv.org/abs/2005.00515. arXiv:2005.00515 [cs].

N. Hochstrate, B. Naujoks, and M. Emmerich. SMS-EMOA: Mul-
tiobjective selection based on dominated hypervolume. European
Journal of Operational Research, 181:1653-1669, Feb. 2007. doi:
10.1016/j.€jor.2006.08.008.

C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-C. Chang,
J.-Y. Pan, Y.-T. Chen, W. Wei, and D.-C. Juan. MONAS: Multi-Objective
Neural Architecture Search using Reinforcement Learning. Technical
Report arXiv:1806.10332, arXiv, Dec. 2018. URL http://arxiv.org/abs/
1806.10332. arXiv:1806.10332 [cs, stat] type: article.

L. Kocsis and C. Szepesvdri. Bandit Based Monte-Carlo Planning. In
J. Fiirnkranz, T. Scheffer, and M. Spiliopoulou, editors, Machine Learn-
ing: ECML 2006, pages 282-293, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-46056-5.

J. Lee, G.-h. Kim, P. Poupart, and K.-E. Kim. Monte-Carlo
Tree Search for Constrained POMDPs. In Advances in Neu-
ral Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://papers.nips.cc/paper_files/paper/2018/hash/
54¢c3d58c5efcf59ddeb7486b7061ea5a- Abstract.html.

A. Lewis and M. Randall. Solving multi-objective water management
problems using evolutionary computation. Journal of Environmental
Management, 204(Pt 1):179-188, Dec. 2017. ISSN 1095-8630. doi:
10.1016/j.jenvman.2017.08.044.

C. Li and K. Czarnecki. Urban Driving with Multi-Objective Deep

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

Reinforcement Learning, Feb. 2019. URL http://arxiv.org/abs/1811.
08586. arXiv:1811.08586 [cs].

Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf. NSGA-Net: Neural Architecture Search using Multi-
Objective Genetic Algorithm. Technical Report arXiv:1810.03522, arXiv,
Apr. 2019. URL http://arxiv.org/abs/1810.03522. arXiv:1810.03522 [cs]
type: article.

Y. Oh, A. Ullah, and W. Choi. Multi-Objective Reinforcement Learn-
ing for Power Allocation in Massive MIMO Networks: A Solution to
Spectral and Energy Trade-Offs. IEEE Access, 12:1172-1188, 2024.
doi: 10.1109/ACCESS.2023.3347788. URL https://ieeexplore.ieee.org/
document/10375483.

L. Paquete, M. Chiarandini, and T. Stiitzle. Pareto Local Optimum
Sets in the Biobjective Traveling Salesman Problem: An Experimental
Study. In X. Gandibleux, M. Sevaux, K. Sorensen, and V. T’kindt,
editors, Metaheuristics for Multiobjective Optimisation, pages 177-199,
Berlin, Heidelberg, 2004. Springer. ISBN 978-3-642-17144-4. doi:
10.1007/978-3-642-17144-4_7.

Y. M. Peng. Traveling salesman problem implementation with pymoo.
Technical report, 2020. URL https://github.com/Peng- YM/pymoo/blob/
master/pymoo/operators/mutation/inversion_mutation.py.

J.-Y. Potvin and S. Bengio. The Vehicle Routing Problem with Time
‘Windows Part II: Genetic Search. INFORMS Journal on Computing, 8(2):
165-172, May 1996. ISSN 1091-9856. doi: 10.1287/ijoc.8.2.165. URL
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.8.2.165. Publisher:
INFORMS.

C. Rosin. Nested Rollout Policy Adaptation for Monte Carlo Tree Search.
pages 649-654, 2011. doi: 10.5591/978-1-57735-516-8/1JCAI11-115.
M. Roucairol and T. Cazenave. Solving the HP model with Nested Monte
Carlo Search. Jan. 2023. doi: 10.48550/arXiv.2301.09533.

J. Schott. Fault tolerant design using single and multicriteria genetic al-
gorithm optimization. PhD thesis, Massachussets Institute of Technology,
1995.

J. Sentuc, F. Ellouze, J.-Y. Lucas, and T. Cazenave. Learning
the Bias Weights for Generalized Nested Rollout Policy Adapta-
tion. In Learning and Intelligent Optimization: 17th International
Conference, LION 17, pages 194-207. Springer-Verlag, Oct. 2023.
doi: 10.1007/978-3-031-44505-7_14. URL https://doi.org/10.1007/
978-3-031-44505-7_14.

K. Van Moffaert, M. M. Drugan, and A. Nowé. Hypervolume-Based
Multi-Objective Reinforcement Learning. In R. C. Purshouse, P. J.
Fleming, C. M. Fonseca, S. Greco, and J. Shaw, editors, Evolutionary
Multi-Criterion Optimization, pages 352-366, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-37140-0.

T. Vodopivec, S. Samothrakis, and B. Ster. On Monte Carlo Tree Search
and Reinforcement Learning. Journal of Artificial Intelligence Research,
60:881-936, Dec. 2017. ISSN 1076-9757. doi: 10.1613/jair.5507. URL
https://jair.org/index.php/jair/article/view/11099.

W. Wang and M. Sebag. Multi-objective Monte-Carlo Tree Search.

J. Wu and S. Azarm. Metrics for Quality Assessment of

a Multiobjective Design Optimization Solution Set. Jour-
nal of Mechanical Design, 123(1):18-25, Mar. 2001. ISSN
1050-0472, 1528-9001. doi: 10.1115/1.1329875. URL

https://asmedigitalcollection.asme.org/mechanicaldesign/article/123/1/
18/471851/Metrics-for-Quality- Assessment-of-a- Multiobjective.

A. Yavariabdi and H. Kusetogullari. Change Detection in Multispectral
Landsat Images Using Multiobjective Evolutionary Algorithm. /EEE
Geoscience and Remote Sensing Letters, 14(3):414—418, Mar. 2017.
ISSN 1558-0571. doi: 10.1109/LGRS.2016.2645742. URL https://
ieeexplore.ieee.org/document/7828040.

C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter.
NAS-Bench-101: Towards Reproducible Neural Architecture Search.
Technical Report arXiv:1902.09635, arXiv, May 2019. URL http://arxiv.
org/abs/1902.09635. arXiv:1902.09635 [cs, stat] type: article.

Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. /EEE Transactions on Evolutionary Computa-
tion, 11(6):712-731, Dec. 2007. ISSN 1941-0026. doi: 10.1109/TEVC.
2007.892759. URL https://ieeexplore.ieee.org/document/4358754.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm. Report, ETH Zurich, May
2001. URL https://www.research-collection.ethz.ch/handle/20.500.
11850/145755. Accepted: 2022-08-12T12:06:45Z Publication Title:
TIK Report Volume: 103.

B. Zoph and Q. V. Le. Neural Architecture Search with Reinforcement
Learning. 2016. doi: 10.48550/ARXIV.1611.01578. URL https://arxiv.
org/abs/1611.01578.

6 Supplementary material
6.1 Full results on MO-TSPTW
The full results on TSPTW are shown in Tables 7, 9, 8 and 10. Specifically,

e Table 7 shows hypervolumes for all instances of MO-TSPTW
e Table 8 shows the overall spread (OS) metric

e Table 9 shows the spacing metric

e Table 10 shows the average constraint violations

n_runs

These tables include 95% confidence intervals : results for a metric X are shown as X + C1T, where X = m oo™ X is the average
value of a metric over all runs, and C'I = 1.96 % \/ﬁ, where o is the standard deviation of X. The instances are ordered by ascending ratio
between average time window width of cities and number of cities. While not exactly representative of instance hardness, this ordering gives an

idea of the relative ease of satisfying the constraints.

Instance Cities NSGA-II SMS-EMOA Pareto-UCT Pareto-NRPA

rc_206.1 4 1.00+0.00 1.00+0.00 1.00+0.00 1.00= 0.00
rc_207.4 6 1.00 £0.00 1.00+0.00 1.00%40.00 1.0040.00
rc_203.4 15 1.00 +0.00 1.00 #+ 0.00 0.65 +0.01 0.95 £ 0.01
rc_202.2 14 1.00 = 0.00 1.00 =4 0.00 0.84 £0.01 0.98 = 0.00
rc_204.3 24 0.97 + 0.01 0.96 £ 0.01 0.61 +0.02 0.94 +0.01
rc_203.1 19 0.91 £0.02 0.87£0.03 0.44 £0.04 0.97 +0.01
rc_204.2 33 0.80 £0.03 0.79 £ 0.04 0.00 £ 0.00 0.82 £ 0.02
rc_208.2 29 0.94 £+ 0.01 0.93 +£0.01 0.00 £ 0.00 0.86 = 0.02
rc_204.4 14 1.00 +0.00 1.00 =+ 0.00 0.60 +0.04 0.99 +0.01
rc_205.1 14 1.00 & 0.00 1.00 =% 0.00 0.63 £0.04 1.00 + 0.01
rc_204.1 46 0.12+£0.11 0.00 £ 0.00 0.00 £ 0.00 0.29 £ 0.05
rc_203.2 33 0.11 +0.08 0.27 £ 0.12 0.00 +0.00 0.86 + 0.02
rc_203.3 37 0.08 +0.07 0.04 +£0.05 0.00 £ 0.00 0.90 £ 0.02
rc_208.3 36 0.92 £ 0.06 0.93 + 0.01 0.00 = 0.00 0.81 +0.02
rc_202.4 28 0.01 £0.02 0.07 £ 0.06 0.00 £ 0.00 0.77 4+ 0.08
rc_208.1 38 0.06 £ 0.07 0.06 £ 0.07 0.00 £ 0.00 0.46 £ 0.06
rc_207.3 33 0.24 £ 0.12 0.28 £0.14 0.00 £ 0.00 0.92 £ 0.02
rc_207.2 31 0.00 £ 0.00 0.08 £ 0.09 0.00 £ 0.00 0.33 £ 0.11
rc_206.3 25 0.56 £0.17 0.63 £0.16 0.01 £0.01 0.94 £ 0.02
rc_207.1 34 0.42+0.15 0.44+0.14 0.00 £ 0.00 0.79 £ 0.03
rc_202.1 33 0.00 £ 0.00 0.08 +0.09 0.00 £+ 0.00 0.91 4 0.02
rc_205.3 35 0.27+£0.14 0.25+0.13 0.00 +£0.00 0.77 £ 0.05
rc_201.1 20 0.77£0.15 0.73£0.16 0.61 +0.05 0.97 4 0.00
rc_205.2 27 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.92 £ 0.05
rc_205.4 28 0.25+£0.13 0.28+£0.14 0.00 £ 0.00 0.80 £ 0.03
rc_202.3 29 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.94 £+ 0.01
rc_206.2 37 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.76 4 0.07
rc_206.4 38 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.51 £ 0.08
rc_201.2 26 0.06 £ 0.08 0.25£0.15 0.00 £ 0.00 0.84 £+ 0.03
rc_201.4 26 0.00 £ 0.00 0.08 +0.09 0.00 £ 0.00 0.33 £0.11
rc_201.3 32 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.93 £ 0.02

Table 7. Normalized hypervolume on all instances of MO-TSPTW

Table 8. Pareto front spread on all instances of MO-TSPTW

Instance Cities NSGA-II SMS-EMOA Pareto-MCTS Pareto-NRPA

rc_206.1 4 1.00+0.00 1.00+0.00 1.00+0.00 1.00+ 0.00
rc_207.4 6 1.00+0.00 1.00+0.00 1.00+0.00 1.00+ 0.00
rc_203.4 15 0.58 + 0.01 0.58 £0.03 0.29 £ 0.07 0.30 £ 0.05
rc_202.2 14 0.794+0.00 0.79 £0.00 0.40 £ 0.04 0.26 +0.03
rc_204.3 24 0.37 £ 0.03 0.33 £0.02 0.16 +0.02 0.32 £0.02
rc_203.1 19 0.28 £0.04 0.28 £0.03 0.05 £ 0.02 0.35 4 0.03
rc_204.2 33 0.41 £0.04 0.35 £ 0.04 0.00 £ 0.00 0.44+0.04
rc_208.2 29 0.40 £ 0.04 0.25 £ 0.03 0.00 £ 0.00 0.25 £ 0.03
rc_204.4 14 0.55+0.00 0.55+0.00 0.34 +£0.03 0.54 £0.01
rc_205.1 14 0.70 £ 0.02 0.71 + 0.00 0.35+£0.04 0.67 +0.03
rc_204.1 46 0.06 £ 0.06 0.00 £ 0.00 0.00 £ 0.00 0.10 £+ 0.03
rc_203.2 33 0.03 £0.03 0.09 £ 0.04 0.00 £ 0.00 0.52 £ 0.04
rc_203.3 37 0.04 +£0.03 0.03 +£0.03 0.00 £ 0.00 0.37 £ 0.04
rc_208.3 36 0.37 £ 0.05 0.29 +£0.03 0.00 £ 0.00 0.23£0.04
rc_202.4 28 0.00 £ 0.01 0.02 £0.02 0.00 £ 0.00 0.40 + 0.06
rc_208.1 38 0.02 £ 0.02 0.02 £ 0.02 0.00 £ 0.00 0.13 £ 0.04
rc_207.3 33 0.11 £ 0.06 0.10 £0.05 0.00 £ 0.00 0.44 £ 0.05
rc_207.2 31 0.00 £ 0.00 0.03 +£0.03 0.00 £ 0.00 0.10 4= 0.04
rc_206.3 25 0.24 £0.08 0.27 £ 0.09 0.00 £ 0.00 0.44 £+ 0.05
rc_207.1 34 0.18 £0.07 0.22 £0.08 0.00 £ 0.00 0.39 4 0.04
rc_202.1 33 0.00 £ 0.00 0.03 £0.04 0.00 £ 0.00 0.45 £ 0.06
rc_205.3 35 0.07 £ 0.04 0.12 +0.07 0.00 £ 0.00 0.16 £ 0.04
rc_201.1 20 0.63 £ 0.12 0.60 £0.13 0.21 +£0.03 0.42 £ 0.06
rc_205.2 27 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.65 4 0.06
rc_205.4 28 0.11 £ 0.07 0.06 £0.03 0.00 £ 0.00 0.45 £+ 0.04
rc_202.3 29 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.71 £ 0.06
rc_206.2 37 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.23 £ 0.06
rc_206.4 38 0.00 £ 0.00 0.00 £ 0.00 0.00 = 0.00 0.12+0.03
rc_201.2 26 0.05 £ 0.07 0.17£0.10 0.00 £ 0.00 0.44 + 0.08
rc_201.4 26 0.00 £ 0.00 0.04 £ 0.06 0.00 £ 0.00 0.48 £+ 0.02
rc_201.3 32 0.00 + 0.00 0.00 £ 0.00 0.00 £ 0.00 0.35 £ 0.03

Table 9. Spacing on all instances of MO-TSPTW (lower is better)

Instance Cities NSGA-II SMS-EMOA Pareto-MCTS Pareto-NRPA
rc_206.1 4 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 0.00 £+ 0.00
rc_207.4 6 6.01 + 0.00 6.01 + 0.00 6.01 + 0.00 6.01 £+ 0.00
rc_203.4 15 7.32£0.18 7.51+0.42 19.07 £ 2.48 6.17 + 0.92
rc_202.2 14 11.91 £ 0.01 11.96 £ 0.07 15.62 + 2.36 13.56 £0.13
rc_204.3 24 5.33 + 0.61 7.06 £1.19 18.08 £ 3.26 6.19 +0.56
rc_203.1 19 7.34 +£1.07 7.28 +1.39 15.67 £ 7.11 8.35 £ 0.90
rc_204.2 33 11.54 +1.86 14.69 £ 2.71 - 10.43 £ 1.21
rc_208.2 29 7.90 & 1.06 10.26 + 2.63 - 10.36 £ 1.15
rc_204.4 14 7.231+0.16 7.28 £0.07 9.26 £1.61 7.25+0.24
rc_205.1 14 8.04 £0.12 8.02+0.2 9.13 +2.26 7.75 + 0.26
rc_204.1 46 12.30 £ 2.54 - - 10.68 £ 2.20
rc_203.2 33 11.80 £ 7.34 9.74 £5.21 - 7.13 +1.12
rc_203.3 37 8.21+2.19 7.04 +2.43 - 4.51+0.74
rc_208.3 36 10.61 £+ 1.61 11.13 £ 1.66 - 11.29+1.74
rc_202.4 28 15.34 4+ 21.26 12.20 +5.45 - 11.10 £ 1.81
rc_208.1 38 11.92 £ 5.45 8.45 + 2.09 - 13.16 + 3.83
rc_207.3 33 9.63 - 0.81 12.52 +3.18 - 9.94 +0.78
rc_207.2 31 - 11.74 +2.48 - 8.65 +2.18
rc_206.3 25 9.07+£1.83 9.63 £ 2.02 - 7.58 +1.84
rc_207.1 34 7.73£1.11 11.28 £1.72 - 7.68 +0.93
rc_202.1 33 - 8.73£6.31 - 8.12 1+ 1.06
rc_205.3 35 13.46 +4.78 13.09 + 2.69 - 11.99 £ 2.43
rc_201.1 20 4.44 £+ 0.01 4.44 £+ 0.01 13.65 £2.17 4.57 £ 0.08
rc_205.2 27 - - - 9.07 £+ 0.69
rc_205.4 28 9.50 £ 4.52 8.49 £ 2.26 - 7.11 +0.76
rc_202.3 29 - - - 6.51 + 0.63
rc_206.2 37 - - - 12.56 + 2.56
rc_206.4 38 - - - 7.20 + 2.16
rc_201.2 26 6.79 £ 0.30 8.54 £ 2.17 - 6.57 +0.44
rc_201.4 26 - 13.48 £11.13 - 19.73 £ 0.10
rc_201.3 32 - - - 4.38 £0.48

Table 10. Average constraint violations after 100000 objective function evaluations on all instances of MO-TSPTW

Instance Cities NSGA-II SMS-EMOA Pareto-MCTS Pareto-NRPA

rc_206.1 4 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
rc_207.4 6 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
rc_203.4 15 0.00 £ 0.00 0.00 £+ 0.00 0.00 £ 0.00 0.00 £ 0.00
rc_202.2 14 0.00 & 0.00 0.00+0.00 0.00+£0.00 0.00=+0.00
rc_204.3 24 0.00 £ 0.00 0.00 %+ 0.00 0.00 £ 0.00 0.00 £ 0.00
rc_203.1 19 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
rc_204.2 33 0.00+0.00 0.00 % 0.00 4.07+£0.28 0.00 £ 0.00
rc_208.2 29 0.00 +0.00 0.00 £ 0.00 7.10£0.41 0.00 £ 0.00
rc_204.4 14 0.00+0.00 0.00+0.00 0.00+£0.00 0.00+0.00
rc_205.1 14 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00
rc_204.1 46 1.90 +0.47 2.17+0.43 20.474+0.32 0.00 £ 0.00
rc_203.2 33 1.90 £ 0.54 1.17£0.43 10.63 £0.45 0.00 % 0.00
rc_203.3 37 2.40 £ 0.52 2.63+0.43 10.53 £0.26 0.00 % 0.00
rc_208.3 36 0.03 £ 0.06 0.00+0.00 13.43+0.42 0.00 £ 0.00
rc_202.4 28 1.57 £0.30 2.10 £ 0.55 6.60 = 0.35 0.07 £ 0.09
rc_208.1 38 0.97£0.15 1.03 £0.22 23.97+0.22 0.13+£0.26
rc_207.3 33 1.23 £0.41 1.13+0.35 16.03 £0.35 0.00 & 0.00
rc_207.2 31 1.17+£0.16 1.03£0.17 18.50+0.20 0.40 £ 0.18
rc_206.3 25 0.67 £0.35 0.50 £0.33 1.00£0.13 0.00 £ 0.00
rc_207.1 34 0.73£0.33 0.70 £0.34 4.60 £ 0.46 0.00 £ 0.00
rc_202.1 33 1.93 +£0.32 1.70 £0.44 9.00 £ 0.49 0.00 £ 0.00
rc_205.3 35 1.90 £ 0.55 1.80 £ 0.53 10.80 £0.33 0.00 4 0.00
rc_201.1 20 0.20 £ 0.14 0.33+0.21 0.00 +0.00 0.00 %+ 0.00
rc_205.2 27 4.73£0.51 3.90+£0.44 3.83+0.31 0.00 £ 0.00
rc_205.4 28 0.93 £0.32 0.87£0.35 5.13+£0.29 0.00 £ 0.00
rc_202.3 29 2.10+£0.47 2.63 +0.60 10.23 £0.27 0.00 & 0.00
rc_206.2 37 4.70 £ 0.63 3.70 £ 0.55 22.17+0.29 0.03 £+ 0.06
rc_206.4 38 5.13+£0.47 4.57+£0.49 19.13+£0.27 0.10+0.14
rc_201.2 26 3.63 £ 0.54 1.93+0.73 4.37+£0.24 0.00 £ 0.00
rc_201.4 26 2.97 £ 0.54 1.93 £0.36 3.40£0.25 0.00 £ 0.00
rc_201.3 32 7.33 £0.50 5.97+0.43 9.63 +0.52 0.00 £ 0.00

6.2 Impact of bias on evolutionary multi-objective optimization algorithms

Section 4 indicates that implementing a bias term in the rollout policy strongly improves NRPA performance. In order to provide a fair
comparison between Pareto-NRPA and state-of-the-art MOO algorithms, the same bias term is implemented in the sampling operators for
NSGA-II and SMS-EMOA. Figures 5a and 5b as well as Table 11 show that implementing a bias term improves the results of NSGA-II as well.
The initialization part of the algorithm benefits from higher-quality samples thanks to the bias, which gives an important head start to algorithm
convergence. Results in Table 11 demonstrate that adding a bias to NSGA-II gives an equal or higher hypervolume in 23 out of 31 instances, and
adding a bias to SMS-EMOA gives equal or higher hypervolume in 25 out of 31 instances.

1000

950

Objective 2

900

850

840

rc_205.3
.
.
.

-+ .
.l l. ha .

] .

] Sy

]
-

<~ . e

.

.
- S .
e
» k" — .
e -
L
.
860 880 900 920 940
Objective 1
NSGAII s SMS-EMOA

NSGAIIl without bias s SMS-EMOA without bias

(a) Aggregated Pareto front

Figure 5.

0.40

0.35

e
N
=

Hypervolume

0.05

0.00

rc_205.3

= e

20000 40000 60000 80000
Iteration

—— SMS-EMOA

—— SMS-EMOA without bias

100000

—— NSGAIIl
—— NSGAII without bias

(b) Normalized hypervolume evolution

Impact of bias on EMOA convergence on rc_205.3

Table 11.

Impact of bias on EMOA hypervolume

Instance Cities NSGA-II NSGA-II (no bias) SMS-EMOA SMS-EMOA (no bias)
rc_206.1 4 1.00 4 0.00 1.00 4+ 0.00 1.00 £ 0.00 1.00 + 0.00
rc_207.4 1.00 £ 0.00 1.00 4+ 0.00 1.00 £ 0.00 1.00 + 0.00
rc_203.4 15 1.00 £+ 0.00 0.97 £ 0.01 1.00 £ 0.00 0.96 £+ 0.02
rc_202.2 14 1.00 £ 0.00 0.97 £ 0.02 1.00 £+ 0.00 0.98 +0.00
rc_204.3 24 0.97 + 0.01 0.96 +0.01 0.96 £0.01 0.95+0.01
rc_203.1 19 0.91 + 0.02 0.78 £0.03 0.87 £ 0.03 0.77 £0.02
rc_204.2 33 0.80 + 0.03 0.70 £ 0.06 0.80 £+ 0.04 0.68 £ 0.05
rc_208.2 29 0.94 4 0.01 0.94 +0.01 0.93 £0.01 0.924+0.01
rc_204.4 14 1.00 £+ 0.00 1.00 £+ 0.00 1.00 £ 0.00 1.00 £ 0.00
rc_205.1 14 1.00 £ 0.00 0.99 £ 0.01 1.00 £ 0.00 1.00 £+ 0.00
rc_204.1 46 0.124+0.11 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
rc_203.2 33 0.11 +0.08 0.24 £0.12 0.27 + 0.12 0.194+0.11
rc_203.3 37 0.09 £+ 0.07 0.01 +£0.02 0.05 £ 0.05 0.00 £ 0.00
rc_208.3 36 0.85 +0.06 0.79 £ 0.06 0.86 £ 0.02 0.80 +£0.03
rc_202.4 28 0.02 £ 0.02 0.10 £ 0.07 0.07 £0.07 0.18 +0.10
rc_208.1 38 0.06 £0.07 0.10 £ 0.09 0.06 £ 0.07 0.10 £ 0.08
rc_207.3 33 0.424+0.15 0.29 +0.14 0.44+0.14 0.44 +0.14
rc_207.2 31 0.00 £ 0.00 0.11£0.10 0.08 £+ 0.09 0.13 £0.10
rc_206.3 25 0.56 £0.17 0.70 £0.15 0.63 £0.16 0.81 +0.11
rc_207.1 34 0.42+£0.15 0.29+0.14 0.44 +0.14 0.44 +0.14
rc_202.1 33 0.00 £ 0.00 0.03 £0.05 0.08 & 0.09 0.00 £ 0.00
rc_205.3 35 0.27 +0.14 0.05 +0.07 0.254+0.13 0.02 £ 0.04
rc_201.1 20 0.77 £ 0.15 0.60 £ 0.18 0.73+0.16 0.60 £0.18
rc_205.2 27 0.00 £ 0.00 0.03 £ 0.06 0.00 £ 0.00 0.09 + 0.09
rc_205.4 28 0.26 £0.13 0.16 £0.11 0.28 +0.14 0.16 £0.11
rc_202.3 29 0.00 +0.00 0.00 £ 0.00 0.00 £ 0.00 0.03 + 0.06
rc_206.2 37 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
rc_206.4 38 0.00 £ 0.00 0.02 + 0.04 0.00 £ 0.00 0.00 £ 0.00
rc_201.2 26 0.06 £ 0.08 0.09 £0.10 0.25 + 0.15 0.03 £ 0.06
rc_201.4 26 0.00 £ 0.00 0.00 £ 0.00 0.07 £ 0.09 0.07 + 0.09
rc_201.3 32 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00

6.3 Ablation study: Adapt algorithm

We are interested in finding out if adapting the policy with respect to all sequences in the Pareto front performs better than with only one
sequence. In the one sequence setting, the solutions of the Pareto front are sorted according to their crowding distance, and each policy 7
updates with respect to the sequence originating from 75 that maximizes the crowding distance. The two algorithms are run on the instance
rc_204. 3. An easy instance such as this one is chosen because NRPA quickly finds multiple valid solutions, which highlights the difference
between the two adapt methods.

Table 12. Metrics for the two adapt strategies

Adapt strategy ~ Normalized hypervolume Overall Spread Spacing
One sequence 0.50 +0.10 0.25+0.04 10.48 +2.16
All sequences 0.70 £ 0.09 0.56 +£0.07 7.63 £+ 1.20
rc_204.3 rc_204.3
700 095 Adapting with all sequences

—— Adapting with 1 sequence

650 k]

b4
o
o

600 .

e
@
&

wu
o
=]
4
@
=

=}
~
o

450 1\

Objective 2
2
(=]
e
Normalized hypervolume

[
o
»
o
=
o

400 ha St o -

0.65
350

450 500 550 600 650 0.60

Objective 1 0 5000 10000 15000 20000 25000 30000
Adapting with all sequences e Adapting with 1 sequence iteration

(a) Aggregated Pareto front for the two adapt strategies (b) Normalized hypervolume evolution for the two adapt strategies

Figure 6. One-vs-all policy adaptation method

Figures 8a, 8b and Table 12 show the differences between adapting the policy with respect to a single sequence compared to all sequences.
The metrics are shown with a 95% confidence interval. It is clear that adapting with all sequences gives the algorithm a significant performance
boost, not only in solution quality but also diversity.

6.4 Ablation study: Crowding distance weighting

Section 3 mentions the use of crowding distance weighting during policy adaptation. Indeed, Algorithm 3 shows that the gradient ascent step for
policy 7, and sequence s € S™|s.policy = m, is weighted by a quantity related to the crowding distance (CD) [14] of the sequence compared
to other individuals in S™. This design choice is made to promote policy adaptation towards more isolated sequences, with the aim to maximize
the coverage of the Pareto front approximation in the solution space. In this ablation study, we compare Pareto-NRPA as presented in Section 3
to Pareto-NRPA where each sequence has the same weight during policy adaptation (Pareto-NRPA without CD weighting). The relevant metric
for this comparison is the overall spread (OS) metric, which indicates the extent of the Pareto front approximation. Table 13 clearly shows that
using crowding distance weighting during the Pareto-Adapt algorithm significantly improves the spread of S™ in the solution space.

Table 13. Overall spread for Pareto-NRPA with and without CD weighting

Instance Cities Pareto-NRPA Pareto-NRPA without CD weighting
rc_206.1 4 1.00 £ 0.00 1.00 £+ 0.00
rc_207.4 1.00 £ 0.00 1.00 £ 0.00
rc_203.4 15 0.51 £ 0.05 0.56 1+ 0.04
rc_202.2 14 0.53 £ 0.00 0.56 + 0.04
rc_204.3 24 0.67 £+ 0.03 0.53 £0.07
rc_203.1 19 0.65 1+ 0.06 0.58 £0.08
rc_204.2 33 0.47 4+ 0.04 0.28 £ 0.04
rc_208.2 29 0.38 +0.05 0.21 +£0.03
rc_204.4 14 0.88 £0.02 0.90 £ 0.01
rc_205.1 14 0.93 +0.04 0.90 £ 0.04
rc_204.1 46 0.17 4 0.06 0.00 £ 0.00
rc_203.2 33 0.50 4+ 0.04 0.38 £0.04
rc_203.3 37 0.38 +0.05 0.22+£0.04
rc_208.3 36 0.26 + 0.04 0.09 £ 0.02
rc_202.4 28 0.40 4 0.06 0.35 £ 0.06
rc_208.1 38 0.15 + 0.04 0.04 £ 0.02
rc_207.3 33 0.58 + 0.06 0.37 £ 0.04
rc_207.2 31 0.10 + 0.04 0.04 £0.02
rc_206.3 25 0.53 + 0.07 0.42 £0.05
rc_207.1 34 0.43 +0.05 0.29 £ 0.06
rc_202.1 33 0.44 £ 0.06 0.21 £0.04
rc_205.3 35 0.19 + 0.04 0.17£0.04
rc_201.1 20 0.57 + 0.08 0.42 £ 0.07
rc_205.2 27 0.65 4 0.06 0.58 £0.05
rc_205.4 28 0.49 £ 0.05 0.55 1+ 0.05
rc_202.3 29 0.71 + 0.06 0.65 £ 0.06
rc_206.2 37 0.21 + 0.05 0.16 £0.04
rc_206.4 38 0.11 + 0.03 0.03 £0.01
rc_201.2 26 0.49 4 0.09 0.47+£0.08
rc_201.4 26 0.48 £ 0.02 0.44 £ 0.05
rc_201.3 32 0.34 +0.03 0.26 £0.03

6.5 Hyperparameter sensitivity analysis

In order to choose the hyperparameters for Pareto-NRPA, we run a concise grid search on the rc_205.2 instance. The goal is not to find the best
hyperparameters for each instance, but rather to identify a suitable hyperparameter configuration for all instances. As such, finding the optimal
parameter combination for this particular instance is not the aim of this grid search. The hyperparameter search is conducted over values of
a ={0.1,0.25,0.5,0.75, 1,2} and values of |IT| = {1,2,4}. Once hyperparameter values have been identified (o« = 0.5 and |II| = 4), the

level parameter is studied for values in {3, 4}.

Table 14. Normalized hypervolume for each hyperparameter configuration.

M« 0.1 0.25 0.5 0.75 1 2
1 0.92 +£0.04 0.83+£0.11 0.67+£0.13 0.46 +£0.13 0.50+0.14 0.38+0.13
2 0.88 £0.04 0.92 £ 0.04 0.92 +£0.04 0.87+0.07 0.66+0.13 0.40+0.13
4 0.84+0.02 0.93+0.02 0.934+0.02 0.82+0.10 0.83+0.07 0.65+0.10
Table 15. Overall spread for each hyperparameter configuration.
M« 0.1 0.25 0.5 0.75 1 2
1 0.49 £ 0.05 0.42 £ 0.07 0.32£0.08 0.20+0.08 0.23+0.08 0.14+0.06
2 0.40 £ 0.05 0.53 £ 0.05 0.53 £ 0.05 0.43+0.06 0.31+0.08 0.16 £0.06
4 0.28+0.05 0.544+0.05 0.544+0.05 0.45+0.08 0.40+0.05 0.28+0.06
Table 16. Spacing for each hyperparameter configuration.
Mo 0.1 0.25 0.5 0.75 1 2
1 8.65+0.58 7.64+0.69 6.66+093 6.17+1.26 7.62+153 5.54+1.53
2 8.40+0.73 842£0.60 8.09+0.60 8.09£0.88 7.70+1.97 6.81+1.44
4 8.71+0.68 894+0.57 885+056 824+0.64 8.18+0.85 8.84 £ 1.60
Table 17. Average constraint violations for each hyperparameter configuration.
Mo 0.1 0.25 0.5 0.75 1 2

0.00 + 0.00 0.03 £ 0.06 0.07 £ 0.09 0.20 +0.08 0.23+0.08 0.14 £0.06
0.00+0.00 0.00+0.00 0.00+£0.00 0.00£0.00 0.13+0.12 0.43+£0.20
0.00+0.00 0.00+0.00 0.00+0.00 0.04 +0.08 0.03+0.06 0.04£0.08

Table 18. Metrics on rc_205.2 for different values of NRPA level

Algorithm Hypervolume Overall Spread Spacing

(6\%

Pareto-NRPA level 3 0.86 £ 0.05 0.48 £ 0.06 8.821+0.79 0.00 % 0.00
Pareto-NRPA level 4 0.94 +0.03 0.63 +0.05 8.95 £ 0.57 0.00 £ 0.00

rc_205.2 rc_205.2

Objective 2
Hypervolume

760

Figure 7.

780 800 820 840 860 o 20000 40000 60000 80000 100000
Objective 1 Iteration
o Pareto-NRPA Level 3 Pareto-NRPA Level 4 — Pareto-NRPA Level 3 Pareto-NRPA Level 4

() (b)

Aggregated Pareto front and hypervolume evolution for different values of level

6.6 Results on the unconstrained multi-objective traveling salesman problem

This paper introduces a novel benchmark dataset, MO-TSPTW, based on classical instances of the traveling salesman problem with time
windows. As such, the main experiments in the paper reflect performance on this new dataset. However, one might argue that benchmarking
Pareto-NRPA on the better-known MO-TSP problem is of interest. MO-TSP associates two independent costs matrices to a number n of cities,
which can be visited in any order as there aren’t any time windows to respect.

We benchmark Pareto-NRPA on two MO-TSP problem sizes: 50 cities and 100 cities. It may be appreciated that both of these sizes are larger
than the largest MO-TSPTW instance (46 cities) but remain relatively smal. Indeed, Pareto-NRPA becomes computationally inefficient when the
number of cities is larger than 500, due to the policy vector exploding in size. Improving the computational efficiency of Pareto-NRPA remains
an avenue for future research.

Table 19. MO-TSP : 50 cities

Algorithm Hypervolume Overall Spread Spacing
NSGA-II 0.88 £ 0.00 0.51 +£0.03 682.08 £ 87.39
SMS-EMOA 0.85 4+ 0.00 0.35+0.03 828.07 &£ 115.47
PLS 0.88 £0.01 0.22 +0.02 429.07 4= 34.41
MOEA/D 0.93 £ 0.00 0.55 4 0.03 589.00 £ 68.94

Pareto-NRPA 0.98 &+ 0.00 0.41 +0.02 828.07 £ 115.47

Table 20. MO-TSP : 100 cities

Algorithm Hypervolume Overall Spread Spacing
NSGA-II 0.79 £ 0.01 0.25 +0.10 711.67 £ 86.60
SMS-EMOA 0.77 £ 0.01 0.34 £ 0.05 853.00 £ 94.88
PLS 0.80 £ 0.01 0.16 £ 0.02 561.86 £ 56.71
MOEA/D 0.85+0.01 0.32+0.11 783.72 £+ 136.09

Pareto-NRPA 0.97 £0.01 0.42 4 0.04 849.45 £+ 114.69

On the two MO-TSP datasets, Pareto-NRPA yields the best hypervolume values after 30 runs of 100000 iterations. We note that the
performance of Pareto-NRPA is much closer to the other state-of-the-art algorithms on MO-TSP. This shows that MO-TSPTW exhibits higher
complexity due to the time window constraints. As such, we believe that MO-TSPTW may be used for future research.

TSP 50 cities - 100 000 function evaluations TSP 100 cities - 100 000 function evaluations

70000
* 100000

60000 - 90000
3 e
gém }
3
~ 50000 = ~ 80000
(] (]
= >
=] =
S 5
ko) © 70000
& 40000 8
60000
30000 -
s e, 50000 . .
"a 3G "
Boe o,
20000 =
20000 30000 40000 50000 60000 50000 60000 70000 80000 90000 100000
Obiective 1 Obiective 1
MOEAD s Pareto-NRPA MOEAD s Pareto-NRPA
e PLS * SMS-EMOA e PLS * SMS-EMOA
s NSGAI s NSGAI
(a) MO-TSP with 50 cities (b) MO-TSP with 100 cities

Figure 8. Pareto front approximations on MO-TSP

6.7 On algorithm compexity and CPU time

Despite its remarkable sample effiency and fast convergence speed, it may be observed that Pareto-NRPA’s algorithmic complexity increases
with the size of the search space. Indeed, the Adapt algorithm requires copying the policy vector to a temporary value. When the search space is
large, the number of stat-action couples greatly increases and, as such, so does the cost of copying the policy. For example, copying the policy
vector for MO-TSP with 500 cities exhibits a redhibitory computational cost.

Given the fact that Pareto-NRPA is less time-efficient than competing state-of-the-art algorithms, we benchmark the performances under
the constraint of equal CPU-time for all algorithms, instead of equal number of function evaluations. This scenario is more representative of
problems where evaluating the objectives is quick, while fixing the number of function evaluations represents cases (such as neural architecture
search) where evaluating a solution is costly.

Table 21. Metrics on rc_204.3

Algorithm Hypervolume Overall Spread Spacing (&)Y

NSGA-II 0.97 £ 0.02 0.43 +£0.04 6.13 +2.25 0.00 £ 0.00
SMS-EMOA 0.75£0.35 0.27+£0.15 11.08 £12.35 0.00 %+ 0.00
Pareto-MCTS 0.41 £0.03 0.23 £ 0.08 44.94 +24.52 0.00 £ 0.00
PLS 0.99+0.01 0.68+0.18 3.69+1.41 0.00 & 0.00
MOEA/D 0.96 £ 0.03 0.35£0.07 4.57 £2.06 0.00 + 0.00
Pareto-NRPA 0.65£0.15 0.15£0.07 8.82+2.11 0.00 £ 0.00

Table 22. Metrics on rc_201.3

Algorithm Hypervolume Overall Spread Spacing CvV
NSGA-II 0.00 £ 0.00 0.00 £ 0.00 - 6.88 +0.88
SMS-EMOA 0.00 £ 0.00 0.00 £ 0.00 - 7.62+0.84
Pareto-MCTS 0.00 £ 0.00 0.00 £ 0.00 - 11.62 +1.34
PLS 0.00 £ 0.00 0.00 £ 0.00 - 10.62 + 3.23
MOEA/D 0.00 £ 0.00 0.00 £ 0.00 - 12.62 +1.25

Pareto-NRPA 0.39 +0.23 0.15+0.10 7.22+5.82 0.12+0.23

Table 23. Metrics on rc_204.1

Algorithm Hypervolume Overall Spread Spacing Cv
NSGA-II 0.00 +0.00 0.00 £ 0.00 - 2.62+£0.98
SMS-EMOA 0.124+0.23 0.124+0.23 3.31+0.00 2.25+0.83
Pareto-MCTS 0.00 £ 0.00 0.00 £ 0.00 - 22.12+£0.23
PLS 0.00 £ 0.00 0.00 £ 0.00 - 4.75 £ 1.46
MOEA/D 0.00 £ 0.00 0.00 £ 0.00 - 4.50 £0.92
Pareto-NRPA 0.00 £ 0.00 0.00 £ 0.00 - 10.25 + 1.08

Tables 21, 22 and 23 display metrics for all algorithms with a CPU runtime limited to 240 seconds. Naturally, the number of function
evaluations differs greatly under this scenario. For rc_204.3, which is a very easy and small search space, Pareto Local Search gives the best
performances, due to the algorithm’s exceptional speed. However, rc_201.3, which is the hardest instance but with a moderate number of
cities, gives back the advantage to Pareto-NRPA. Finally, rc_204.1, which is the largest instance, is best solved by SMS-EMOA. Remarkably,
Pareto-NRPA performs poorly on rc_204.1 when the search time is constrained: indeed, the large search space increases the complexity of the
algorithm, leading to the extremely small number of approximately 1600 function evaluations performed during the time frame. We believe that
reducing the computational complexity of Pareto-NRPA could have a very positive effect on performances under a constrained search time.

