
RETROGRADE ANALYSIS OF
PATTERNS VERSUS

METAPROGRAMMING

Tristan Cazenave
Laboratoire d'Intelli gence Artificielle,

Département Informatique, Université Paris 8,
2 rue de la Liberté, 93526 Saint Denis, France.

The main objective of this chapter is to present a comparative study of
two techniques that automatically generate useful knowledge in games.
Retrograde analysis of patterns generates pattern databases, starting
with a simple definition of a sub-goal in a game and progressively
finding all the pattern of given sizes that fulfill this sub-goal.
Metaprogramming is based on similar concepts, but instead of
generating fixed size patterns, it generates programs. Programs enable
to represent knowledge in a more flexible way. However, they may take
more time to use than pattern knowledge. We will describe the
application of these two methods to the game of Hex, and compare their
behaviors on this game.

1 Introduction

Computer are comparable to humans in many games, even surpassing
the world champions in classical games such as Chess or Checkers.
However, these excellent results are mainly due to some particularities
of these games. In each situation, they is a rather small number of
possible moves (8 moves on average for Checkers and 36 moves for
Chess), and a situation can be associated to a number that evaluates its
goodness with very little computer time. The main problem with these
games is to make the computer search the possible moves as fast as
possible and numerous and excellent researches have been devoted to

2

this end. Some other games such as the Game of Go and the game of
Hex do not have such nice properties: the average number of moves in
each situation is large (250 for 19x19 Go and 90 for 11x11 Hex) and the
evaluation of a position is related to abstract and high-level concepts
that are hard to capture in a very fast evaluation function.

In the game of Go, a lot of very specific knowledge is required to play
well. The best programs for the game of Go are not necessarily the
programs that search great deal but are rather those that have the best
knowledge of Go. This knowledge is for example a database of patterns
to make eyes, or some programs that suggest the interesting moves to
capture strings. Hex, which is less difficult to program than Go also
requires a great deal of knowledge to build high-level programs.

Some techniques that have proven useful in the game of Go such as
automatic generation of interesting pattern databases for some sub-
goals, or the automatic creation of programs that select few interesting
moves, may also be useful for other games such as Hex.

The goal of this research is to solve the game for greater sizes and to
improve the ability of Hex playing programs. It is considered that
retrograde analysis of patterns and metaprogramming are both efficient
tools to greatly enhance the level of Hex programs, and to solve the
game for larger sizes.

The second section describes the game of Hex and introduces the game
of Go. The third section shows how pattern databases can be generated
for games. The fourth section deals with metaprogramming. The fifth
section mentions the use of generated knowledge. The sixth section
concludes with experiments in knowledge generation and outlines future
work.

2 The game of Hex and the game of Go

2.1 Hex rules

Hex was invented by P. Hein in 1942, and independently rediscovered
by John Nash in 1948. The rules are very simple, the initial board is
empty and each color (Red and Blue in this paper) alternatively colors
an empty hexagon. It is played on an hexagonal grid as shown in Figure
1. It is usually played on 11x11 or larger sizes, and the game is currently
solved until the size 7x7. The goal of the game is to connect two
opposite borders with hexagons of the same color, each border is given
a pre-defined color, and the player that has this color tries to connect
the two borders of his color. The players, Red and Blue, take turns
putting hexagons of their color on empty hexagons.

An interesting property of Hex is that it cannot end in a draw, because a
completely filled board always has two opposite borders connected.
This is a property which is not simple to demonstrate. In fact, David
Gale demonstrated that this result is equivalent to the Brouwer fixed-
point theorem for 2-dimensional squares [8]. It follows that there exist a
winning strategy either for the first or the second player. The strategy
stealing argument was used by John Nash, to deduce that Hex is a win
for the first player: if there were a winning strategy for the second
player, then the first player could play a meaningless first move and then
apply the strategy to win. The strategy stealing argument works in Hex
because the meaningless first move cannot be harmful: coloring an
hexagon can never be a disadvantage in Hex. This argument does not
work for Chess or Go because in these games, there are moves that
make the position worse.

4

Figure 1. A Hex board.

2.2 Go rules

Go was developed three to four millennia ago in China; it is the oldest
and one of the most popular board game in the world. Like chess, it is a
deterministic, perfect information, zero-sum game of strategy between
two players. In spite of the simplicity of its rules, playing the game of
Go is a very complex task. Go is very difficult to program and
Computer Go has been recognized as an interesting challenge for
Artificial Intelligence [12].

The Go board is made of 19 vertical lines and 19 horizontal lines and
therefore 361 intersections. At the beginning the board is empty. Each
player (Black or White) moves alternatively in adding one stone on an
empty intersection. Two adjacent stones of the same color are
connected and they are part of the same string. A string is a maximally
connected set of adjacent stones of the same color. Empty adjacent
intersections of a string are the liberties of the string. When a move fills
the last liberty of a string, this string is removed from the board. The
repetitions of positions are forbidden. According to the possibility of
being captured or not, the strings may be dead or alive. A player
controls an intersection either when he has an alive stone on it, either
when the intersection is empty but adjacent to alive stones. The aim of

the game is to control more intersections than the opponent. The game
ends when the two players pass.

A virtual connection is a configuration that enables to connect strings
whatever the opponent plays. The leftmost diagram of figure 2 gives an
example of a ‘Bamboo join’ . If the white player plays at A, black plays
at B and connects its stones. If white plays at B, then black at A
connects. The four stones are virtually connected.

BA
x

x

x

x

Figure 2. Connection and disconnection in Go.

Go players also reasons with groups. A group is a set of intersections
that are virtually connected.

2.3 Virtual connections in Hex

Hex has some similarities with the game of Go, virtual connections are
very important in both games, but Go is played on a grid and 4-
connectivity has mathematical properties that are different from 6-
connectivity. Two stones can be separated in Go by non-connected
stones as shown in the rightmost diagram of figure 2. Whereas
separation of two hexagons implies that the separating hexagons are
connected, for example, the two red hexagons of the second diagram of
figure 3 can be separated if two connected blue hexagons are played on
the two empty separating hexagons. The two blue hexagons that will
separate the red ones will be connected. The red hexagons in the figures
are marked with a capital R.

6

Figure 3. Virtual connections in Hex.

Making rotations and symmetries on patterns does not change their
properties, a virtual connection is still valid after applying a rotation or
a symmetry to a pattern. Applying rotations and symmetries, a pattern
can be made equivalent to 12 different patterns, as shown in Figure 4.

Figure 4. Possible rotations and symmetries of a pattern

With color reversal (switching Red and Blue), a pattern represents 24
different equivalent patterns. Patterns are a convenient and efficient way
to represent knowledge on connection. For example the leftmost pattern
of figure 3 concludes that the two red hexagons can be connected in on
move, the middle one that the two red hexagons are virtually connected,
and the right one that all the red hexagons in the pattern are virtually
connected. However, representing connection knowledge as programs
may also have some advantages as we shall see later.

R

R R

R

1
2

3
4

5
6 1

2

3
4

5
6

1
2

3
4

5
6

1
2

3

4
5
6 1

2
3

4
5

6

1
2

3

4
5

6

1
23

45
6 1

2 3
4 5

61
2

3
4

5
6

1
2

3

4

5

6
1

2

3
4

5
6

1

2

3

4

5

6

R

R

R
R

R
R

Other Hex programs are under study [1,14], but they do not use pattern
knowledge. We believe that pattern-based knowledge, and more
generally knowledge on connection can be very beneficial to Hex
programs. Figure 3 gives some very useful connection patterns in Hex
that are generated by retrograde analysis. They enable to assess directly
the connections between hexagons without any search.

The use of connection knowledge can improve a lot the level of Hex
programs. For example, a winning board where the borders are
connected through 4 connections that require respectively 2, 4, 5 and 6
moves to be proved. The depth of the Alpha-Beta search [11] to
establish that the board is a winning one is therefore 2+4+5+6=17
moves. On this board, the number of possible moves is 100. A naive and
brute force approach to solving the board would look at all the possible
moves, until two borders are connected. It would approximately need
10017=1034 nodes in its search tree to solve the problem. In other words,
no computer would ever have the time to solve it. Whereas a program
knowing how to deduce the different connections directly would see
that the board is winning without global Alpha-Beta search. In Hex, as
in the game of Go, the notion of decomposability of the whole game
into sub-games is essential, moreover knowledge plays a very important
role in the computation of the sub-games to reduce the search effort
tremendously.

3 Retrograde Analysis of patterns

3.1 Retrograde Analysis

Retrograde analysis consists in analyzing a game backwards. Starting at
the terminal positions and undoing moves so as to find positions won
many moves ahead. It is very popular for Chess programs [13].
Retrograde analysis has found positions containing six Chess pieces that
require up to 262 moves to win. It starts with positions where the king
can be captured, and alternatively un-play moves for White and for
Black. In Chess, all the 5-pieces endgames have been computed by
retrograde analysis, and researchers are now computing the 6-pieces
endgames.

8

3.2 Pattern Databases

A pattern database enumerates in a given game or problem all possible
configurations required by any solution, subject to constraints on the
pattern size. It is generated with retrograde analysis applied to a few
simply defined solutions to the problem. In single agent search , which is
related to finding the shortest solution path to a given problem, pattern
databases have been used successfully to reduce the total number of
nodes searched on a standard problem set of 100 15-puzzle positions by
over 1000-fold [7], and to find optimal solutions to Rubik's Cube [10].
Some patterns databases with external conditions (conditions on some
properties that are outside the pattern) have also been computed for the
game of Go, for the sub-goals of making eyes, making life, connecting
two strings and capturing strings [2,6].

3.3 Sub-goals subject to retrograde analysis

The most important sub-goal to analyze is the connection of two
hexagons. The hexagon chosen to represent one of the two parts of a
connection is taken for all the hexagons that are already connected to it.
For the sub-goal of connecting two hexagons, four kinds of patterns are
generated: patterns that conclude on virtual connection, virtual
connections in one move (i.e. the hexagons can be virtually connected if
Red plays one move as in the left pattern of figure 3), virtual
connections in two moves (hexagons can be virtually connected if Red
plays two moves in a row), and patterns associated to moves to prevent
a virtual connection in one move.

The other sub-goal of interest is the connection of empty hexagons: an
hexagon is virtually connected to an empty hexagon if they become
virtually connected when the player plays on the empty one. Other
interesting patterns to generate are the patterns concerning the virtual
connection of an empty hexagon in two moves. They are used to try the
moves in the search trees related to virtual connection to empty
hexagons in one move (see section 5.2 for details).

Figure 5. Retrograde analysis of patterns.

Figure 5 shows how the middle pattern of figure 3 is generated using
retrograde analysis. Retrograde analysis begins with generating all the
patterns that contain connected hexagons. So it generates the two
patterns to the left of figure 5, where the red hexagons are connected.
Then it un-plays Red moves, leading to the middle patterns of figure 5,
which are patterns where Red can connect hexagons in one move. After
that, it un-play a Blue move, and verify that all the Blue moves in the
un-played pattern lead to pattern where Red can still connect the
hexagons. The Blue moves to verify the virtual connection are called the
check moves in figure 5. Retrograde analysis iterates this process until
no more new patterns can be found.

3.4 The pre-defined shapes for the generation of
patterns

The smallest interesting connections shapes are some of the shapes
constituted by 3 hexagons. Usually, in Go or in other problems, patterns
are represented by rectangular shapes because of the topology of the
problem. However the shapes of interesting patterns are more varied in
Hex than in Go, due to the hexagonal properties of Hex.

Figure 6 gives a lattice of dependencies between different interesting
connection shapes. Each shapes represents the different possible
rotations and symmetries that can be deduced from the original. An

R

R
R

B R

R
B

R

R
B

R

R

R
B

R

R

R unmove

R unmove

B unmove

B unmove

B check move

B check move

10

arrow between two shapes represent a dependency between the shapes:
the pointed shape has to be generated after the smaller shape.

Figure 6. Some shapes dependencies

These dependencies put a partial order on the computations of
databases. Small shape databases have to be computed before larger
ones. This ensures that many uninteresting large patterns will be
discarded. For example in Figure 7, the pattern on the left is more
general than the pattern on the right. If the four hexagons pattern
databases are computed before the five hexagons ones, then the pattern
on the left is discarded because the program can detect that it is a
special case of a smaller pattern: every virtual connection found by the
larger pattern is also found by the smaller pattern, therefore the larger
pattern is useless and can be discarded in order to save the space of
storing it and the time to match it.

Figure 7. The right pattern is a special case of the left one and is discarded.

In our system, we order the databases calculations by the size of the
shape. This ensures that all special rules are discarded, because they are
computed after the smaller and more general ones, and can be
recognized as special cases of the smaller ones.

R

R

R

R
R

Table 1. Number of possible patterns for each pattern size

Number of
Hexagons

Possible patterns Number of
Hexagons

Possible patterns

3 27 10 59 049

4 81 11 177 147

5 243 12 531 441

6 729 13 1 594 323

7 2 187 14 4 782 969

8 6 561 15 14 348 907

9 19 683 16 43 046 721

Table 1 gives the number of possible patterns for each number of
hexagon. However, out of all these possible patterns, only a few have
interesting connection properties that cannot be deduced by smaller
patterns. So that databases of large patterns can still fit in memory,
because only a few out of all the possible patterns are memorized.

3.5 The use of generated patterns

The main problems associated to the use of automatically generated
pattern databases is the cost of recognizing that a pattern is present on
the board (i.e. the match cost) and the memory sizes of databases. The
match cost is quite low, because generated patterns are sorted and the
pattern matching is performed by a binary search of the integer
representing the pattern in the array of integers representing a pattern
database. The difficult problem is rather the size of the databases that
exponentially grows with the number of hexagons.

4 Metaprogramming

 Introspect is a logic metaprogramming system that generates rules on
worthwhile moves in many games [3,4,5,12]. It writes programs that
write other programs that enable to safely cut search trees, therefore
enabling great speedups. It is mostly used for games having only two
possible outcomes : win or lost. The computation of these games is
performed with an AND/OR tree search algorithm. In Hex, the game of
connecting two hexagons is such a game. Two kinds of theorems are
generated: theorems about moves to reach a tactical goal (at OR nodes),

12

and theorems that find the complete set of forced moves that prevent the
opponent to reach a tactical goal (at AND nodes).

In the first section, we begin with describing the abstract concepts that
are used by the generated programs, then, in the second section, we
focus on the generation of programs and we detail the kinds of
metaprograms used to generate programs.

4.1 Generated programs use abstract concepts

As Introspect generates programs, the generated knowledge can be
more abstract and is more flexible than pattern based knowledge.
Particularly, abstraction of the board and high level concepts can be
easily used. In order to improve generated program efficiency, we now
define abstract concepts that have some interest in Hex, and that are
used in the generated programs.

Figure 8. A Red string at Hex. Figure 9. A Red group at Hex.

Figure 8 shows a red string. A string is a maximally connected set of
hexagons of the same color. As a parallel to strings in the game of Go,
we also define the number of liberties of a string as the number of empty
hexagons adjacent to a string. The liberties of the red string in Figure 8
are numbered from 1 to 10. Figure 9 gives an example of a group at
Hex: all the red hexagons are independently connected, they form a
group.

R R

R
R

B

RR

R

R
R

R
B

1
2

3
4

5
6

7
8

9
1
0

Figure 10. Complicated patterns can be represented as simple programs.

The first pattern of Figure 10 is deduced by the same rule as the second
pattern of Figure 3:

connected(1,S1,S2,Color):-
string(S1,Color),string(S2,Color),S1=\=S2
liberty(H1,S1),liberty(H1,S2),
liberty(H2,S1),H1=\=H2,liberty(H2,S2).

This rule concludes that the strings S1 and S2 of color Color are
connected. It verifies that S1 is different from S2, then look at the
liberties H1 of S1. It verifies that H1 is also a liberty of S2. When it is
the case, it looks at another liberty of S1, named H2, which is different
from H1 and which is also a liberty of S2. When it succeeds in finding
two such liberties, it can safely conclude that S1 and S2 are connected.

The second pattern of Figure 10 is deduced by a similar generated rule
that uses groups instead of strings:

same_group(1,G1,G2,Color):-
group(G1,Color),group(G2,Color),G1=\=G2
liberty(G1,S1),liberty(G1,S2),
liberty(G2,S1),H1=\=H2,liberty(G2,S2),
dependency(G1,Dep1), not_member([H1,H2],Dep1),
dependency(G2,Dep2), not_member([H1,H2],Dep2).

This rules verifies similar things, but it also verifies that the two
connecting liberties are not part of the dependencies sets of the groups
G1 and G2, in order to avoid interference between the virtual

R R

R
R

R
RB

B
B
RR

R R

R
R

R
RB

B
B
R

B
R

R

R
R

14

connections used to build the groups and the connection of the groups.
A dependency set is the set of all the empty hexagons that have been
tested to establish a virtual connection.

In Hex, as well as in Go, some virtual connections are difficult to
capture in a pattern but can be well represented by a program using
abstract representations, as shown with the generated rules that apply in
figure 10.

4.2 Metaknowledge used for program generation

One of the most important choice in the design of a system that
automatically generates programs to solve problems is the
representation of the problem. The logic program that represent the
problem and the possible actions that can be performed is usually named
the domain theory.

Figure 11. The generality of the generated programs.

Figure 11 shows three different patterns concluding on the possibility of
connecting a red hexagon to the others. All these three patterns and
many others are represented by only one rule. This is due to the choice
to represent all the neighbors of an hexagon by only one predicate in the
domain theory: neighbor(H1,H2) is true if H1 and H2 are adjacent
hexagons. The rule corresponding to the patterns in Figure 11 is:

connected(2,S1,S3,Color):-
string(S1,Color),string(S2,Color),S1=\=S2,
liberty(H1,S1),liberty(H1,S2),
liberty(H2,S1),H1=\=H2,liberty(H2,S2),
liberty(H3,S2),H3=\=H1,H3=\=H2,
liberty(H3,S3),S3=\=S1,S3=\=S2.

R

R

R

R

R
R

R

R

R

with the following definition for liberty:

liberty(H,S):-
member(H1,S),neighbor(H,H1),empty(H).

If each of the six possible directions is explicitly taken into account
when designing the domain theory, then the number of generated rules is
multiplied by 6n, n being the number of predicates containing a direction
in a generated rule. So for our example, their are 66=46 656 different
rules to represent only our example rule, the predicate 'neighbor' being
replaced by six different predicates, each one corresponding to a
different direction, and the predicate 'liberty' being replaced with its
definition by unfolding. Naive choices in the design of the domain
theory, such as explicitly naming directions, can lead to disastrous
metaprogram behaviors.

The basic mechanism of Introspect is unfolding, that is the replacement
of some predicates by their possible definitions, taking into account
unifications1. After each unfolding it uses impossibili ty and
monovaluation metaknowledge. Impossibili ty metaknowledge is
concerned with the removal of generated rules that can never apply. For
example if a rule contains the condition '2=\=2', it can be removed
because it will never succeed. Monovaluation metaknowledge performs
domain dependent unification. For example if a rule contains the
conditions 'numberofliberties(S,N)' and 'numberofliberties(S,N1)', it
unifies N with N1 because a given string can only have a single number
of liberties, its number of liberties is monovaluated.

Another important kind of metaknowledge is the ordering
metaknowledge. It finds a good order to verify the conditions of the
generated rules. As rules are declarative, their conditions can be
matched in any order. However the order in which they are matched has
a large influence on the total time used to match the rule. The ordering
metaknowledge can be automatically generated by computing statistics

1 Unification: in a logic program, the simplest form of unification is the equivalence made

between two variables. Practicall y, one of the variables is replaced with the other in the
rule. Unifications can also be performed between compound terms.

16

on the number of some predicates in the set of facts representing a game
position.

Metaprograms to generate programs about forced move are also given
to Introspect. Forced moves are associated to situation where Red can
make a virtual connection in one move. In such situation, the Blue
moves that prevent Red from connecting are called forced moves. It is
particularly important to find all the forced moves, because forgetting to
consider a forced move can lead to false search results.

In Hex this metaprogram is particularly simple, it consists in finding the
empty hexagons involved in a generated program concluding on a one-
move connection, and append them in the conclusion on forced moves.
Some tricks used to metaprogram Hex are very similar to the ones used
in Go. For example, in the domain theory, it would be very inefficient to
describe all the ways to increase or decrease the number of liberties of a
string. A much more convenient knowledge representation is to use the
recursive concept liberty_if_move (Liberty,String,MovesList). This
hides the complexity of the calculation of liberties in a program that is
not unfolded by Introspect, leading to shorter generated programs.

5 Using the generated knowledge

5.1 Dependencies sets

Each object is associated to a dependency set, constituted by a set of
hexagons that enable to construct the object. For example, a tree search
is associated to the set of hexagons that have been tested during the
search, if an unrelated move is played by the opponent and none of the
dependency set hexagons has been changed, it ensures that the result of
the search is still valid. Dependency sets are associated to objects such
as virtual connections and groups. Two objects are independent if there
is no common empty hexagon in their dependencies sets.

Figure 12. Composition of patterns.

If two patterns do not share empty intersections and both conclude that
the same virtual connection can be achieved in one move, then the
connection is won. Figure 12 gives an example illustrating this rule. The
dependency sets of objects are simple to compute because in Hex,
moves are simple and are not dependent on abstract and recursive
concepts as in Go for example.

5.2 Tree search with generated knowledge

Two-moves knowledge (either pattern knowledge or generated program
knowledge) is used to find the moves at OR nodes, and forced moves
knowledge is used at AND nodes. The dependencies of each piece of
knowledge used are memorized, and the result of a search is itself
associated to a dependency set. Figure 13 gives an example of a search
tree in Hex, similar to a ladder in Go. Even numbers are associated to
Red moves at the OR nodes of the search tree (Red is trying to reach
the goal), and odd numbers to Blue moves at the AND nodes of the tree
(Blue is trying to prevent Red from reaching the goal).

Figure 13. A ladder in Hex

R

R
R

R

R

R

R

R
R =+

R

R

R
R

R
R

B
B

1

R

R
R

R

7
5

3

6
4

2

R

R

R
R

R
R

B
B

R

R
R

R

18

The result of the ladder computation is that the upper right Red hexagon
can be virtually connected to the lower border in one move.

5.3 Computing distances and evaluating a board

A stone that is virtually connected to a border is at distance 0 of the
border. We also have knowledge on virtual connection to empty
hexagons. An empty hexagon that is virtually connected to a string has
at most the value of the distance of the string plus one. Given the
knowledge on the Red and the Blue distance of all our hexagons, we
can compute an evaluation function: Evaluation = Distance between the
Friend borders -Distance between the Opponent borders. Of course,
whether at a node the distance between two borders equals zero, the
evaluation function returns +∞ or -∞ depending on the friendly color
and stops searching at this node.

6 Future Work and Conclusion

A promising area of research is the use of partition search [9] to speed-
up tree search. As dependencies are easy to compute and maintain in
Hex, partition search has good chances to give nice results by recalling
already computed properties of some pieces of Hex boards. Therefore
saving search time by not computing them again and again.

Another interesting research subject is the compression of the generated
pattern databases so as to be able to use even larger shapes and make
the program play more accurately, and possibly solving the game for
larger sizes.

The use of pattern generated knowledge is not very harmful as large
patterns can find connections many moves ahead and as their match cost
is quite low. On the contrary generated programs are more time
consuming to match as they use abstract concepts, but they enable to
recognize better non local connections. So our current choice is to use
both form of knowledge so as to be able to get the advantages of the
two approaches.

We have shown two methods to automatically generate knowledge for
the game of Hex, as well as how the generated knowledge is used in a
Hex program. Each method has different properties and they both
enable to reduce very significantly the search. These two approaches are
based on similar concepts and they are complementary. The knowledge
generated by metaprogramming can replace some of the pattern
knowledge but at some matching cost, however generated programs
perform better in some situations.

References

[1] Anselevich V. (2000), The Game of Hex: An Automatic Theorem
Proving Approach to Game Programming. AAA I 2000.

[2] Cazenave T. (1993), Apprentissage de la résolution de problèmes
de vie et de mort au jeu de Go. Rapport du DEA d'Intelli gence
Artificelle de l'Université Paris 6.

[3] Cazenave T. (1996), Système d’Apprentissage par Auto-
Observation. Application au Jeu de Go. Ph.D. diss., University
Paris 6.

[4] Cazenave T. (1998), Metaprogramming Forced Moves.
Proceedings ECAI98, pp 645-649, Brigthon.

[5] Cazenave T. (1998), Controlled Partial Deduction of Declarative
Logic Programs. ACM Computing Surveys, vol. 30, no 3es.

[6] Cazenave T. (2000), Generation of Patterns with External
Conditions for the Game of Go. Advances in Conputer Games 9.

[7] Culberson J.C., Schaeffer J. (1998), Pattern Databases.
Computational Intelli gence.

[8] Gale D.(1986), The Game of Hex and the Brouwer fixed-point
theorem. American Mathematical Monthly, pp. 818-827.

[9] Ginsberg M. L. (1996), Partition Search. AAA I-96.

20

[10] Korf, R. (1997), Finding optimal solutions to Rubik's Cube using
pattern databases. AAA I-97, pp. 700-705.

[11] Marsland T. A., Björnsson Y. (2000), From Minimax to
Manhattan. Games in AI Research, pp. 5-17. Edited by H.J. van
den Herik and H. Iida, Universiteit Maastricht. ISBN 90-621-
6416-1.

[12] Pitrat, J. (1998), Games: The Next Challenge. ICCA journal, vol.
21, No. 3, September 1998, pp.147-156.

[13] Thompson, K. (1996), 6-Piece Endgames. ICCA Journal
December 1996, pp. 215-226.

[14] van Rijswijck, J. (2000), Are Bees Better Than Fruitflies ?
Experiments with a Hex Playing Program. Canadian conference
on AI, 2000.

