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Abstract. Regret minimization is important in both the Multi-Armed
Bandit problem and Monte-Carlo Tree Search (MCTS). Recently, sim-
ple regret, i.e., the regret of not recommending the best action, has been
proposed as an alternative to cumulative regret in MCTS, i.e., regret
accumulated over time. Each type of regret is appropriate in different
contexts. Although the majority of MCTS research applies the UCT
selection policy for minimizing cumulative regret in the tree, this pa-
per introduces a new MCTS variant, Hybrid MCTS (H-MCTS), which
minimizes both types of regret in different parts of the tree. H-MCTS
uses SHOT, a recursive version of Sequential Halving, to minimize sim-
ple regret near the root, and UCT when descending further down the
tree. We discuss the motivation for this new search technique, and show
the performance of H-MCTS in six distinct two-player games: Amazons,
AtariGo, Ataxx, Breakthrough, NoGo, and Pentalath.

1 Introduction

The Multi-Armed Bandit (MAB) problem is a decision making problem [3] where
an agent is faced with several options. On each time step, an agent selects one of
the options and observes a reward drawn from some distribution. This process is
then repeated for a number of time steps. Generally the problem is described as
choosing between the most rewarding arm of a multi-armed slot machine found
in casinos. The agent can explore by pulling an arm and observing the resulting
reward. The reward can be drawn from either a fixed or changing probability dis-
tribution. Each pull and the returned reward constitutes a sample. Algorithms
used in MAB research have been developed to minimize cumulative regret. Cu-
mulative regret is the expected regret of not having sampled the single best
option in hindsight. This type of regret is accumulated during execution of the
algorithm, each time a non-optimal arm is sampled the cumulative regret in-
creases. UCB1 [3] is a selection policy for the MAB problem, which minimizes
cumulative regret, converging to the empirically best arm. Once the best arm is
found by exploring the available options, UCB1 exploits it by repeatedly sam-
pling it, minimizing overall cumulative regret. This policy was adapted to be
used in Monte-Carlo Tree Search (MCTS) in the form of UCT [11].
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Recently, simple regret has been proposed as a new criterion for assessing the
performance of both MAB [2, 6] and MCTS [7, 9, 18] algorithms. Simple regret
is defined as the expected error between an algorithm’s recommendation, and
the optimal decision. It is a naturally fitting quantity to optimize in the MCTS
setting, because all simulations executed by MCTS are for the mere purpose
of learning good moves. Moreover, the final move chosen after all simulations
are performed, i.e., the recommendation, is the one that has real consequence.
Nonetheless, since the introduction of Monte-Carlo Tree Search (MCTS) [11]
and its subsequent adoption by games researchers UCT [11], or some variant
thereof, has become the “default” selection policy (cf. [5]).

In this paper we present a new, MCTS technique, named Hybrid MCTS
(H-MCTS) that utilizes both UCT and Sequential Halving [10]. As such, the
new technique uses both simple and cumulative regret minimizing policies to
their best effect. We test H-MCTS in six distinct two-player games: Amazons,
AtariGo, Ataxx, Breakthrough, NoGo, and Pentalath.

The paper is structured as follows, first MCTS and UCT are introduced in
Section 2. Section 3 explains the difference between cumulative and simple regret,
and how this applies to MCTS. Next, in Section 4 a recently introduced, simple
regret minimizing technique for the MAB problem, Sequential Halving [10], is
discussed. Sequential Halving is used recursively in SHOT [7], which is described
in detail in Section 5. Together, SHOT and UCT form the basis for the new, hy-
brid MCTS technique discussed in Section 6. This is followed by the experiments,
in Section 7 and finally by the conclusion and an outline of future research, in
Section 8.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method based on random
sampling by Monte-Carlo simulations of the state space of a domain [8, 11]. In
game play, this means that decisions are made based on the results of randomly
simulated play-outs. MCTS has been successfully applied to various turn-based
games such as Go [16], Lines of Action [20], and Hex [1]. Moreover, MCTS has
been used for agents playing real-time games such as the Physical Traveling
Salesman [14], real-time strategy games [4], and Ms Pac-Man [13], but also in
real-life domains such as optimization, scheduling, and security [5].

In MCTS, a tree is built incrementally over time, which maintains statis-
tics at each node corresponding to the rewards collected at those nodes and
number of times they have been visited. The root of this tree corresponds to
the current position. The basic version of MCTS consists of four steps, which
are performed iteratively until a computational threshold is reached, i.e., a set
number of simulations, an upper limit on memory usage, or a time constraint.

Each MCTS simulation consist of two main steps, 1) the selection step, where
moves are selected and played inside the tree according to the selection policy
until a leaf is expanded, and 2) the play-out, in which moves are played according
to a simulation policy, outside the tree. At the end of each play-out a terminal
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state is reached and the result is back-propagated along the selected path in the
tree from the expanded leaf to the root.

2.1 UCT

During the selection step, a policy is required to explore the tree to decide on
promising options. For this reason, the widely used Upper Confidence Bound
applied to Trees (UCT) [11] was derived from the UCB1 [3] policy. In UCT,
each node is treated as a bandit problem whose arms are the moves that lead to
different child nodes. UCT balances the exploitation of rewarding nodes whilst
allowing exploration of lesser visited nodes. Consider a node p with children I(p),
then the policy determining which child i to select is defined as:

i∗ = argmaxi∈I(p)

{
vi + C

√
lnnp
ni

}
, (1)

where vi is the score of the child i based on the average result of simulations
that visited it, np and ni are the visit counts of the current node and its child,
respectively. C is the exploration constant to tune. UCT is applied when the
visit count of p is above a threshold T , otherwise a child is selected at random.

Note that UCB1 and consequently UCT incorporate both exploitation and
exploration. After a number of trials, a node that is identified as the empirical
best is selected more often. In tree search, this has three consequences:

1. Whenever a promising move is found, less time is spent on suboptimal ones.
Since UCT is generally time-bounded, it is important to spend as much time
as possible exploiting the best moves. Due to the MinMax principle, which
states that an agent aims to maximize its minimum gain, on each ply we
expect a player to perform the best reply to its opponent’s move.

2. The valuation of any node in the tree is dependent on the values back-
propagated. Given that UCT spends less time on suboptimal moves, any
values back-propagated are based on increasingly improved simulations, be-
cause they are performed deeper in the tree. In fact, given infinite time, UCT
converges to almost exclusively selecting nodes with the highest estimates.

3. The current value of the node can be falsified by searching deeper. In UCT,
each simulation increases the depth of the search, and as such may reveal
moves as becoming worse over time due to an unpredicted turn of events.
If an expected good move is not reselected often, such “traps” [15] are not
revealed. More generally, when sampling a game-tree rewards are not neces-
sarily drawn from a fixed distribution.

3 Regret

In this section we discuss regret in both the MAB, and MCTS context. The
differences between cumulative and simple regret are explained in Subsection
3.1. Next, we discuss regret in the context of MCTS in Subsection 3.2.
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3.1 Cumulative and Simple Regret

Suppose a trial is set-up such that a forecaster (a player, or agent) has K actions,
which can be repeatedly sampled over n ∈ {1, 2, · · · , T} trials. Each arm has a
mean reward µi, and there exists a maximum mean reward µ∗. Suppose further
that the forecaster employs a selection policy I(n) that outputs some a to be
sampled at time n, and a recommendation policy J(n) that recommends the
best arm at time T .

Cumulative regret is defined as the regret of having not sampled the best
single action in hindsight,

Rn =

n∑
t=1

µ∗ − µI(t). (2)

In other words, the regret is accumulated over time, for each sample the fore-
caster takes.

Now suppose that we change the experimental set-up, such that the actions
chosen on trials 1, 2, . . . , T − 1 are taken under some realistic “simulated envi-
ronment” that represents the true on-line decision problem but without com-
mitting to the actions. The only real decision is made after having played all
T simulations. In contrast, simple regret [6] quantifies only the regret for the
recommendation policy J at time T ,

rn = µ∗ − µJ(n), (3)

i.e., the regret of not having recommended the best action.
Given these definitions, a performance metric for a selection technique can

be described as the expected cumulative ERn or simple regret Ern over different
experiments. In their analysis of the links between simple and cumulative regret
in MABs, Bubeck et al. [6] found that upper bounds on ERn lead to lower
bounds on Ern, and that the smaller the upper bound on ERn, the higher the
lower bound on Ern, regardless of the recommendation policy, i.e., the smaller
the cumulative regret, the larger the simple regret. As such, no policy can give
an optimal guarantee on both simple and cumulative regret at the same time. In
the case of an MAB the strategy used depends on the context of the problem.

3.2 Regret in MCTS

Based on the analysis in Subsection 2.1, the minimization of cumulative regret
is naturally suitable to tree search, and the UCB1 selection policy can be used
nearly unaltered in this setting as UCT. However, there exist two contexts for
the MAB problem, also to be considered in MCTS. These are:

1. Each trial results in a direct reward for the agent. As such we want to
minimize the number of suboptimal arms pulled in order to achieve a rewards
as high as possible. This relates, for example, to slot machines in a casino.
Every choice made at each point in the algorithm has a direct effect on the
agent’s reward. In this case, the reward of the agent is related to the inverse
of its cumulative regret.
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2. The agent can perform a number of trials, without consequence, in a simu-
lated environment. The agent is allowed T trials in this fashion, after which
it must make a recommendation. Based on its recommendation, the agent
is rewarded. In this case, the performance of the agent is measured by the
simple regret of its recommendation. A low simple regret implies that the
recommendation is close to the actual best option.

In most MCTS literature, UCT is used as selection policy (cf. [5]), suggesting
that only the first context applies. However, the second context is a more natu-
ral fit when MCTS is used to play games, because the behavior of the agent in
the domain is based solely on its recommendations. Nevertheless, simple regret
minimization cannot replace UCT in this case without consideration. Unlike in
an MAB, sampling does have an immediate impact on performance in MCTS
because reward distributions are non-stationary. Spending more time on subop-
timal moves when descending the tree decreases the amount of time available
to explore nodes expected to have high rewards. Moreover, since all values are
back-propagated, we risk underestimating ancestors based on sampling descen-
dants that are known to be bad. This trade-off was also shown in [18] where the
authors use a measure based on the Value of Information (VOI) to determine
whether to exploit an expected good move, or continue exploring others. This
trade-off is also described as a “separation of exploratory concerns” in BRUE [9].

4 Regret Minimization

Non-exploiting selection policies have been proposed to decrease simple regret
at high rates. Given that UCB1 [3] has an optimal rate of cumulative regret
convergence, and the conflicting limits on the bounds on the regret types shown
in [6], policies that have a higher rate of exploration than UCB1 are expected
to have better bounds on simple regret. Sequential Halving (SH) [10] is a novel,
pure exploration technique developed for minimizing simple regret in the MAB
problem. In this section, both SH and its recursive definition SHOT [7] are
discussed.

4.1 Sequential Halving

In many problems there are only one or two good decisions to be identified, this
means that when using a pure exploration technique, a potentially large portion
of the allocated budget is spent sampling suboptimal arms. Therefore, an efficient
policy is required to ensure that inferior arms are not selected as often as arms
with a high reward. Successive Rejects [2] was the first algorithm to show a high
rate of decrease in simple regret. It works by dividing the total computational
budget into distinct rounds. After each round, the single worst arm is removed
from selection, and the algorithm is continued on the reduced subset of arms.
Sequential Halving (SH) [10], was later introduced as an alternative to Successive
Rejects, offering better performance in large-scale MAB problems.
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Algorithm 1: Sequential Halving [10].
Input: total budget T , K arms
Output: recommendation JT

1 S0 ← {1, . . . ,K}, B ← dlog2Ke − 1

2 for k=0 to B do

3 sample each arm i ∈ Sk, nk =

⌊
T

|Sk|dlog2 |S|e

⌋
times

4 update the average reward of each arm based on the rewards
5 Sk+1 ← the d|Sk|/2e arms from Sk with the best average
6 return the single element of SB

SH divides search time into distinct rounds, and during each round arms
are sampled uniformly. After each such round, the empirically worst half of the
remaining arms are removed until a single arm remains. The rounds are equally
distributed such that each round is allocated approximately the same number of
trials (budget), but with smaller subset of available arms to sample. Sequential
Halving is detailed in Algorithm 1.

In the next section a recently introduced MCTS technique called SHOT, is
discussed which uses SH recursively. This technique is the basis for H-MCTS
discussed in Section 6.

5 Sequential Halving Applied to Trees

Sequential Halving applied to Trees (SHOT) [7] is a search technique that utilizes
Sequential Halving at every node of the search tree. A difference with regular
SHOT and Sequential Halving is that SHOT comes back to already visited nodes
with an increased budget. When the search returns to an already visited node,
instead of distributing the new budget as if it was a new node, SHOT takes into
account the budget already spent at the node and how it was spent. In order
to apply Sequential Halving, SHOT considers the overall budget as the already
spent budget plus the new budget to spend. It then calculates for each move
the budget per move using Sequential Halving with this overall budget. The
other difference with simple Sequential Halving is that each move already has
an associated number of play-outs coming from the previous visits to the node.
In order to take into account this already spent budget, SHOT only gives to
each move the difference between the new budget for the move and the budget
already spent for the move during previous visits. If the new budget is less or
equal to the already spent budget the move is not given any budget for the
current round.

SHOT has four beneficial properties: 1) it uses less memory than standard
UCT, whereas standard UCT creates a new node for each play-out SHOT only
creates a new entry in the transposition table when a node has more than one
play-out. In practice, for 19×19 NoGo for example, it means that SHOT uses fifty
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times less memory than standard UCT. 2) SHOT uses less time descending the
tree than UCT. Instead of descending the tree for each play-out, SHOT descends
in a child for a possibly large number of play-outs. In practice this means that for
the same number of play-outs SHOT was shown to be approximately twice as fast
as UCT in the game NoGo [7]. 3) SHOT allocates a possibly large number of play-
outs to the possible moves. This makes it easy to parallelize the search without
loss of information and without changing the behavior of the algorithm. 4) SHOT
is parameter free, contrary to UCT, which requires tuning its C constant. On
the negative side, in order to run SHOT the total number of play-outs has to
be known in advance. This is less convenient than UCT, which is an any-time
algorithm.

6 A Hybrid MCTS

Recall that in the MAB context, in which simple regret minimization is appro-
priate, only the final recommendation made by an algorithm has effect on the
agent’s reward. In game play, this holds for the nodes of the search tree at the
first ply. Only after running all the allocated simulations a recommendation is
made, which affects the state of the game being played. Nodes deeper in the tree
have an implicit effect on this decision. Because the shape of an MCTS tree is
directly related to the potential reward of internal nodes, promising nodes are
selected more often to grow the tree in their direction. This both enforces the
confidence of the reward of promising nodes, but also ensures that their reward
can be falsified based on results deeper in the tree.

Treating a game tree as a recursive MAB thus reveals different objectives
for the distinct plies of the tree. At the root, simple regret should be as low as
possible, since the recommendation of the algorithm is based on the first ply
of the tree. On deeper plies, we want to both sample efficiently, avoiding time
wasted on bad options, and back-propagate correct values from leafs to their
ancestors. Where the former can be achieved by using selection policies such as
Successive Rejects or Sequential Halving, the latter, as discussed in Section 2 is
inherently performed by UCT. Intuitively, this leads to the belief that we should
only minimize simple regret at the root, and use UCT throughout of the tree, as
suggested by [18]. However, considering that at any node, based on the MinMax
principle, we want to find the best reply to the action of the parent. It may also
be beneficial to ensure a lower simple regret on that particular move because
this could intrinsically lead to an improved evaluation of the parent.

Using a selection policy based on both SHOT and UCT, Hybrid MCTS (H-
MCTS) combines simple and cumulative regret minimization in a tunable al-
gorithm. The rationale is based on the results in [6], which show that given a
low sampling budget, UCB empirically realizes lower simple regret. The proposed
technique switches from Sequential Halving to UCT whenever the computational
budget is below the budget limit B. Consequently, the search tree is composed
of a simple regret tree at the root, and UCT trees rooted at the leafs of the sim-
ple regret tree. As shown in Figure 1, initially the simple regret tree is shallow



8

Fig. 1. Example progression of H-MCTS. In the top part of the tree (SR), simple regret
is minimized using SHOT. Deeper in the tree, UCT minimizes cumulative regret. The
round-numbers represent the Sequential Halving round at the root.

because the computational budget per node is small. Later, when the budget
per node increases due to nodes being removed from selection as per Sequential
Halving, the simple regret tree grows deeper. Note that since the root’s children
are sorted in descending order, the left part of the simple regret and UCT tree
is always the deepest, since it its root is selected the most.

H-MCTS is outlined in Algorithm 2. Similar to UCT and SHOT, on line 4
terminal conditions are handled, followed by the main feature of the algorithm
on line 7 where the initial simulation budget b for each child of the current
node is computed. Based on b, a decision is made whether to progress into the
UCT tree if b < B or, if b ≥ B to continue with SHOT. Note that the b < B
check is overridden at the root, since only one cycle is initiated there. Assuming
the allocated budget is sufficiently large, at the root simple regret minimization
is preferred over cumulative regret minimization. From line 16 the algorithm
is similar to the Sequential Halving portion of SHOT. As in SHOT, because
multiple play-outs are back-propagated in a single descent from root to leaf,
the algorithm returns a tuple tp, which contains: 1) the number of visits v, and
2) the number of wins per player w1 and w2. On line 23, the budget used bu
is incremented by v from the results returned by the recursion. Moreover, the
current node’s statistics are updated, alongside the cumulative tuple tp, which
are returned to the node’s parent. UCT also maintains a tuple of statistics such
that it can return the same tp to the simple regret tree. For the UCT tree, any
implementation can be used, as long as it is adapted to return tp and update
the budgetSpent value alongside the usual node’s visit count because any UCT
node in the tree can be “converted” to a simple regret node at any time, when
b > B on line 7.

Whenever a UCT node is included in the simple regret tree, all its values are
maintained. As such, Sequential Halving has an initial estimate of the values of
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Algorithm 2: Hybrid Monte-Carlo Tree Search (H-MCTS).
Input: node p, allocated budget budget
Output: tp: number of play-outs, p1 and p2 wins

1 h-mcts(node p, budget):
2 if isLeaf(p) then S ← expand(p)
3 tp ← 〈0, 0, 0〉
4 if isTerminal(p) then
5 update tp, with budget wins for the appropriate player, and

budget visits
6 return tp

7 b← max

(
1,

⌊
p.budgetSpent+budget

s×dlog2|S|e

⌋)
8 if not isRoot(p) and b < B then
9 for i=0 to budget do

10 〈v, w1, w2〉i ← uct(p)
11 update p, tp with 〈v, w1, w2〉i
12 return tp

13 bu, k ← 0

14 S0 ← S

15 s← |S|
16 repeat
17 for i=1 to s do
18 ni ← node n at rank i of Sk

19 if b > ni.visits then
20 bi ← b− ni.visits
21 if i = 0 and s = 2 then

bi ← max (bi, budget− bu − (b− n1.visits))
22 bi ← min (bi, budget− bu)
23 〈v, w1, w2〉i ← h-mcts(ni, bi)
24 update p, bu, and tp with 〈v, w1, w2〉i
25 break if bu ≥ budget
26 k ← k + 1

27 Sk ← Sk−1, with the first s elements sorted in descending order
28 s← ds/2e

29 b← b+max

(
1,

⌊
p.budgetSpent+budget

s×dlog2|S|e

⌋)
30 until bu ≥ budget or s < 2

31 update p.budgetSpent with bu
32 return tp
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the nodes. Based on the budgeting method of SHOT [7], budget is reallocated
such that it adheres to Sequential Halving’s allocation.

In the scheme presented, a limit on the available budget determines whether
to continue in the simple regret tree. However, other methods such as a fixed
depth limit for the simple regret tree, or a time-partitioned method, can be
viable. Based on the simple regret theory in MABs, pure exploration methods
only provide empirically better simple regret than UCB, given a sufficiently
large budget. To minimize simple regret given a small budget, UCB with a
properly tuned constant should be preferred [6]. Directly applying this result to
MCTS means that whenever the available budget is low, UCT with a properly
tuned constant should be preferred as selection policy. Therefore, whenever a
Sequential Halving round can be initiated with a budget per child higher than
B, we continue in the simple regret tree. Otherwise the budget is assigned to
UCT, which runs b simulations, and returns the result of their play-outs. Play-
outs are only ever initiated in the UCT tree, because UCT immediately takes
advantage of the values stored at nodes, whereas Sequential Halving selects all
children b times in the first round regardless of their prospects.

As with MCTS, H-MCTS can be separated in four discrete steps:

1. Budgeting: A budget is determined for each child. Based on the budget,
we enter the UCT tree, or remain in the simple regret tree. If we enter the
UCT tree, the four basic MCTS steps apply.

2. Selection: In the simple regret tree, nodes are sampled based on Sequential
Halving. Nodes in the simple regret tree are assigned a budget, to be spent
in their rooted UCT tree, in which play-outs are initiated.

3. Removal: Based on the results obtained, children are removed from selec-
tion. A new Sequential Halving round starts with half of the best children
from the previous round. If the budget is spent, the currently accumulated
results are back-propagated.

4. Back-propagation: Since H-MCTS is performed depth-first, the final result
is only available after all budget is spent. This results in simultaneous back-
propagation of numerous results in the simple regret tree.

In this case Sequential Halving is presented as the simple regret algorithm. How-
ever, it is certainly possible to replace it with any other algorithm such as Suc-
cessive Rejects, or any other form of sequential reduction.

H-MCTS shares its disadvantage of not being able to return a recommen-
dation at any-time with SHOT. It must know its exact computational budget
beforehand. However, it does make use of the fact that UCT is any-time. Sup-
pose a node was selected and expanded by H-MCTS, then at each time in the
simple regret tree, nodes have an appropriate value based on the results back-
propagated by UCT. Thus, when SHOT finishes a round by sorting the nodes
by their accumulated values on line 27, UCT’s any-time property ensures nodes
have a representative value.

To a lesser extent, H-MCTS also shares the speed benefit of SHOT. However,
because a part of the search is spent in the UCT tree, H-MCTS still spends more
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time in the tree than SHOT overall. Given a lower budget limit B, H-MCTS can
be tuned to run faster by decreasing time spend in the UCT tree.

In the form presented in Algorithm 2, H-MCTS cannot solve proven wins
or losses in the simple regret tree. Although we can employ the MCTS-Solver
proposed by Winands et al. [19] in the UCT tree, this solver is to be adapted
to SHOT to be able to solve nodes in the simple regret tree. Such a mechanism
has been developed and is presented in [12].

7 Experiments and Results

In this section we show the results of the experiments performed on six two-
player games. H-MCTS and the games were implemented in two different engines.
Amazons, Breakthrough, NoGo and Pentalath are implemented in a Java based
engine. Ataxx and AtariGo are implemented in a C++ based engine.

– Amazons is played on an 8×8 board. Players each have four Amazons that
move as queens in chess. Moves consist of two parts: movement, and blocking
a square on the board. The last player to move wins the game.

– AtariGo, or first-capture Go, is a variant of Go where the first player to
capture any stones wins. Experiments are performed on a 9×9 board.

– Ataxx is a game similar to Reversi. Played on a square board, players start
with two stones each placed in an opposite corner. Captures are performed
by moving a stone alongside an opponent’s on the board. In the variant used
in this paper, jumps are not allowed. The game ends when all squares are
filled, or when a player has no remaining stones. The player with the most
stones wins. Experiments are performed on a 7×7 board.

– Breakthrough is played on an 8×8 board. Players start with 16 pawns. The
goal is to move one of them to the opponent’s side.

– NoGo is a combinatorial game based on Go. Captures are forbidden and the
first player unable to play due to this rule, loses. Experiments are performed
on a 9×9 board.

– Pentalath is a connection game played on a hexagonal board. The goal is
to place 5 pieces in a row. Pieces can be captured by fully surrounding an
opponent’s group.

A uniform random selection policy is used during the play-outs, unless oth-
erwise stated. The C constant, used by UCT (Equation 1) was tuned in each
game and was not re-optimized for H-MCTS, both UCT and H-MCTS use the
same C constant in the experiments. The budget limit B which determines the
switching point between the simple regret and UCT tree, was optimized for each
game independently using a range between 10 and 110, with an interval of 20.

7.1 Results

For each table, the results are shown with respect to the first algorithm men-
tioned in the captions, along with a 95% confidence interval. For each experiment,
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the players’ seats were swapped such that 50% of the games are played as the
first player, and 50% as the second, to ensure no first-player or second-player
bias. Because H-MCTS cannot be terminated any-time we present only results
for a fixed number of simulations. In each experiment, both players are allocated
a budget of both 10,000 and 25,000 play-outs.

Table 1 shows results of the matches played by H-MCTS against a standard
UCT player. H-MCTS performs best in Amazons, AtariGo, Ataxx, and Penta-
lath. For Amazons this is in part due to the high branching factor of approxi-
mately 1, 200 moves at the start of the match. Since UCT cannot explore and
exploit all options in time, Sequential Halving ensures that only a limited subset
of the large action-space is under consideration. For NoGo and Breakthrough we
see no significant improvement over UCT. This may be due to the fact that these
games are more tactical and have narrow winning-lines, and a more exploiting
algorithm applies better by identifying good moves and exploiting them fast.

To determine the effect of UCT in H-MCTS, the results of matches played
against SHOT are shown in Table 2. H-MCTS shows significant improvement
in 10 of the 12 cases. No use is made of the speed benefits of either technique
in these experiments. These results give evidence for the claim that H-MCTS
makes use of UCT’s any-time property to provide better reward estimates in the
simple regret tree. Values back-propagated and averaged by using UCT may be
more effective than those back-propagated by SHOT. As a benchmark, SHOT
played 1,000 matches against UCT per game in Table 3. The results for NoGo
differ from those presented in [7], because our experiment is performed using a
fixed budget of play-outs for both players, whereas in [7], results are based on
time-based experiments. SHOT performs best against H-MCTS and UCT in the
games with the highest branching factors, Amazons and AtariGo. This reinforces
the evidence that Sequential Halving is best applied in games with high branch-
ing factors. In the games with narrow winning-lines such as Breakthrough and
Pentalath, SHOT’s performance declines against UCT. However, given SHOT’s
speed improvement over UCT, it is possible that the technique performs better
in a time-based experiment.

10,000 25,000
Game B play-outs play-outs

Amazons 8×8 50 65.2 ± 3.0 62.0 ± 3.0
AtariGo 9×9 30 60.6 ± 3.1 60.6 ± 3.1
Ataxx 7×7 30 52.4 ± 3.1 47.2 ± 3.0

Breakthrough 8×8 70 53.2 ± 3.1 50.4 ± 3.1
NoGo 9×9 30 52.4 ± 3.1 48.8 ± 3.1
Pentalath 30 46.7 ± 3.1 54.7 ± 3.1

Table 1. H-MCTS vs. UCT with random play-outs, 1,000 games
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10,000 25,000
Game B play-outs play-outs

Amazons 8×8 50 51.2 ± 3.1 55.4 ± 3.1
AtariGo 9×9 30 50.0 ± 3.1 57.5 ± 3.1
Ataxx 7×7 30 54.5 ± 3.1 56.0 ± 3.1

Breakthrough 8×8 70 68.4 ± 2.9 84.0 ± 2.3
NoGo 9×9 30 56.3 ± 3.1 55.5 ± 3.1
Pentalath 30 62.1 ± 3.0 78.3 ± 2.6

Table 2. H-MCTS vs. SHOT with random play-outs, 1,000 games

10,000 25,000
Game play-outs play-outs

Amazons 8×8 60.2 ± 3.0 55.2 ± 3.1
AtariGo 9×9 53.8 ± 3.1 55.7 ± 3.1
Ataxx 7×7 46.7 ± 3.1 40.8 ± 3.1

Breakthrough 8×8 31.2 ± 3.1 16.4 ± 2.3
NoGo 9×9 44.7 ± 3.1 41.4 ± 3.1
Pentalath 33.7 ± 3.0 22.8 ± 2.6

Table 3. SHOT vs. UCT with random play-outs, 1,000 games

In Table 4, an informed play-out policy is used to select moves for Break-
through. A capture move is four times more likely to be selected than a non-
capture one, and a defensive capture (near the winning line) is five times more
likely to be selected and (anti-)decisive [17] moves are always played when avail-
able. UCT with this play-out policy enabled wins approximately 78% of the
games played against UCT with random play-outs. H-MCTS benefits more from
the informed play-outs than UCT in Breakthrough, winning up to 56.6% of the
games against UCT.

The second part of Table 4 shows results for matches played between the H-
MCTS Solver presented in [12] and the MCTS-Solver. Breakthrough employs the
heuristic play-out policy, for which we see a significant boost in performance pro-
portional to the allocated budget. Overall, the results show some improvement
over Table 1 in Pentalath and NoGo with 25,000 play-outs, although the differ-
ence is not sufficient to conclude that the Solver performs better in H-MCTS
than in UCT in these games with the same C constant.

8 Conclusion and Future Research

In this paper an MCTS technique is presented based on the results of research in
regret theory. The conclusions of the research performed in [6] were interpreted
into the form of a Hybrid MCTS technique (H-MCTS). Based on minimizing
simple regret near the root, where the overall budget is high, and cumulative
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10,000 25,000
Game B play-outs play-outs

Heuristic play-outs (no solver)
Breakthrough 8×8 70 50.4 ± 3.1 56.6 ± 3.1

H-MCTS Solver
Amazons 8×8 50 65.2 ± 3.0 64.0 ± 3.0

Breakthrough 8×8 70 56.7 ± 3.1 61.3 ± 3.0
NoGo 9×9 30 50.5 ± 3.1 50.6 ± 3.1
Pentalath 70 53.6 ± 3.1 55.6 ± 3.1

Table 4. H-MCTS vs. UCT with heuristic play-outs, with/without solver, 1,000 games

regret deeper in the tree [18]. Depending on the available budget during search
H-MCTS’ simple regret tree can expand deeper to provide better bounds on
simple regret on the best replies of its rooted subtrees. The simple regret tree
is traversed using SHOT [7]. H-MCTS requires beforehand knowledge of the
available play-out budget and therefore cannot be terminated at any time to
provide a recommendation. In tournament-play, when search time is strictly
limited, an approximation of the number of simulations per second can be used
to determine the available play-out budget.

H-MCTS performed better against SHOT given the same allocation of play-
outs in 10 out of 12 experiments. Moreover, results show that in different two-
player games, H-MCTS performs either better, or on par with UCT. In Amazons,
AtariGo, and Pentalath H-MCTS outperforms UCT by up to 65.2%. In Break-
through using an informed play-out policy H-MCTS outperformed UCT by up
to 61.3% using the solver technique.

Although the hybrid technique is founded on theoretical work in both the
MAB context and MCTS, we have not shown that it provides better bounds on
simple regret compared to other techniques. This is work for future research. In
order to show that H-MCTS exhibits lower simple regret in practice, it should
be validated in smaller, proven games for which the game-theoretic value of each
action is known. Moreover, investigation is required regarding the effects of the
budget limit B in relation to the total allocated number of play-outs, and the
interrelation between H-MCTS’ B, and UCT’s C constant. In the experiments
presented in this paper, both were fixed per game, rather than per experiment.
Finally, the speed benefits of H-MCTS, combined with parallelization is open to
investigation. H-MCTS can be parallelized efficiently by dividing budgets in the
simple regret tree over multiple threads [7].
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