
Neural Network for Volatility Surfaces under

Convex Constraint

Tristan Cazenave ∗ Carlo Sala †‡ Timothée Sohm-Quéron §

January 9, 2020

Abstract

This paper proposes a new data-driven machine learning-based approach to estimate

the volatility surface and infer the conditional Risk-Neutral Density (RND) from a cross-

section of daily option prices. In order to retrieve the RND from option prices, one need

to insure, among others, that the price of the options is convex with respect to the strike

price. By designing an optimal design of the neural network, our paper proposes two

new approaches to guarantee that the convexity constraint is always respected. The two

proposed approaches follow the same economic principles but use a different number of

layers in estimations. On top of the convexity constraints, the estimated measures are

arbitrage-free, time-varying, computationally simple and fast to retrieve. To empirically

demonstrate the properties of our approach, we recover the implied volatility and RND for

the S&P500 options over a period of almost 20 years.

Keywords: Risk-Neutral Density, Volatility Surface, Convex Constraints, Neural Network

JEL classification: C13; C14; G13.

∗Paris-Dauphine University, LAMSADE, Paris E-mail: cazenave@lamsade.dauphine.fr.
†Department of Financial Management and Control, ESADE Business School, Ramon LLull University,

Avenida de Torreblanca 59, 08172 Sant Cugat, Barcelona, Spain; E-mail: carlo.sala@esade.edu.
‡Financial support from the AGAUR - SGR 2017-640 grant is gratefully acknowledged.
§Paris-Dauphine University, LAMSADE, Paris and Bramham Gardens E-mail:

timothee@bramham-gardens.com.

1

cazenave@lamsade.dauphine.fr
mailto: carlo.sala@esade.edu
mailto: timothee@bramham-gardens.com

1 Introduction

The most accessible data, such as price history and accounting data, used in quantitative

finance applications tend to be backward-looking. Daily stock prices are not per-se backward-

looking, but their data structure make them not suitable to infer a density. At each point in

time, a stock price is in fact just a single scalar, out of which is not possible to infer a den-

sity. A common way out to obtain a density is to smooth an histogram of historical returns.

Unfortunately, the resulting density would be backward-looking and highly dependent on the

amount of historical returns used for the estimation. As such, even in the presence of a fully

transparent and efficient stock market the recovered density would be biased being only par-

tially informative. Differently, options market data give us a way to have some insight about

how investors see the future returns. Forward-looking densities can be naturally be inferred

from option market data, thanks to their richer data structure. At each point in time options

market data have a matrix structure, with different states of the world (strike prices) and time

horizons (time-to-maturity). Predictions are usually summarized into the Risk-Neutral Den-

sity (RND) which, in turns, summarizes the underlying option cross-section, for a particular

time horizons. Interestingly, the option cross-section encodes the investors’ beliefs about the

value of the underlying at different time horizons and states of the world. A large literature

focuses on how these expectations are able to predict different events, such as financial crises

(Birru and Figlewski (2012), Bates (1991) or Christoffersen et al. (2013)). While the theory

underpinning the estimation of the RND is well-known since Breeden and Litzenberger (1978),

there are several practical issues that makes the estimation of the RND not straightforward

(details follow). In this paper we propose a new arbitrage-free, machine-learning and data-

based approach that allows for the inference of the RND from the daily option cross-section.

As a main advantage with respect to the existing literature, the proposed approach is compu-

tationally fast, adaptive and does not violate the options convexity with respect to the strike

prices, a key feature to produce an economically valid RND.

Breeden and Litzenberger (1978) show that it is possible to extract the RND in presence

of a continuum of strike prices. Specifically, at each time and for each time-to-maturity, the

2

current RND relative to a future time T of a given financial asset ST , can be inferred from

the option cross-section by taking the second derivative of the European option price - e.g. a

European call option, C, with respect to the strike price, K (see appendix for the derivation):

f(ST) = erT
∂2C

∂K2
(1)

where r is the today value of a risk-free asset such that erT accounts for the time value of

money. This procedure gives a model-free estimates of the RND linked to the strike price

used in estimation. The main issue is that, even for heavily traded markets such as the S&P

500, there is rarely a continuum of strike prices, and some kind of interpolation is needed. In

addition of being sparse, option market data are often also noisy. A smooth interpolation is

then not always possible, above all into the tails of the distribution, where data are scarcer and

more prone to mispricing. Aside from being numerically tractable, and possibly even more im-

portantly, any models for the estimation of the RND has to obey basic no-arbitrage principles.

Such principles require the strict positivity for the RND and different shape constraints, e.g.

the convexity constraints. Finally, the obtained outputs must provide an accurate fit, both in-

and out-of-sample. In this paper we propose a novel approach that produces very good results,

both in- and out-of-sample and satisfies the no-arbitrage conditions.

Understanding the volatility surface is a key objective for both practitioners and academics

in the field of finance. Given its stochastic nature, fitting the volatility surface - which is the

collection of the implied volatilities of all strike prices for different maturities - is not an easy

task and, to date, there is still no definitive consensus on the approach to use. It is a known

fact, confirmed by many different empirical investigations that the volatility surface has a num-

ber of dynamic and static stylized facts. Generally, the volatility surface is steeper for short

maturity options, negatively skewed (again more strongly for short-date options and during

bad market times), mean reverting, and displays e negative correlation with the underlying

returns.1 In addition of capturing these complex behaviour, any model for the volatility surface

must be guided by no-arbitrage principles.

For ease of convenience, the many models present in the literature can all be classified in two

1 Rebonato (2013), among many others, a more comprehensive analysis of the properties of the volatility surface.

3

broad categories, parametric and non-parametric models. Parametric models try to fit the

parameters of the underlying process, and get the implied volatility using market data. As

common for all parametric models, these approaches are defined in closed form, fast and not

data intensive. Unfortunately, parametric models typically rely on unrealistic assumptions

which are hardly confirmed by market. Lacking of the necessary flexibility to fit real market

data the obtained final results are often misleading. Non-parametric models directly model

the implied volatility without any explicit assumption about the market dynamics of the un-

derlying. While more data intensive, the obtained results are usually better approximation

of the true values. Among many others, Skiadopulos (2001) and Christian (2008) provide a

large literature survey of the many different techniques that exist in the literature to fit the

volatility surface. From a more practical perspective Fengler (2011) shows the importance of

having a smooth and stable volatility surface for pricing and hedging exercises.

The same parametric/nonparametric classification can also be applied for the different

models present in the literature aiming to estimate the RND. Jackwerth (1999), Bondarenko

(2003) and Birru and Figlewski (2012) provide a comprehensive literature review of the topic

and conclude that, as of today, no methods is clearly superior. The parametric approaches

can be further classified in i) models that directly estimate the RND, ii) models that first

invert the estimated volatility smile and then estimate the RND following Breeden and Litzen-

berger (1978), and iii) models for the stochastic process. Among the parametric models for

the RND there are i) the expansion approaches of Jarrow and Rudd (1982), Madan and Milne

(1994), Longstaff (2015) which approximate the RND by correcting known distributions; ii)

the mixture model approaches of Ritchey (1990), and Giacomini et al. (2008) which approx-

imate the RND by mixing different parametric distributions; iii) the generalized distribution

approach of Rosenberg (1998) which approximate the RND by interpolating flexible multi-

variate RND inferred by different asset prices with the aim of adding additional parameters

that may capture possibly key features, e.g.: the higher moments of the distribution. Among

the models for the volatility smile Shimko (1993), Malz (1997), Birru and Figlewski (2012)

and Laurini (2011) first fit implied volatilities using functional forms of different kind, and

then follows Breeden and Litzenberger (1978) to extract the RND from the fitted prices. Fi-

4

nally, among the models for the stochastic process we have Black and Scholes (1973), Hull and

White (1987), Heston (1993), Bates (1996). As for the volatility surface parametric approaches

also the RND parametric models produce parsimonious and tractable but often misspecified

final outputs.

The nonparametric approaches can be further classified in i) Implied trees, ii) Smoothing

techniques, iii) Maximum entropy iv) Neural networks (details follow). The implied trees

model of Derman and Kani (1994), Dupire (1994) and Rubinstein (1994) infer the risk-neutral

probabilities from observed European option prices and use them to infer a consistent and

recombining unique binomial tree. Smoothing techniques can be applied for the estimation of

the RND, e.g.: Jackwerth and Rubinstein (1996); for the estimation of the volatility surface,

e.g.: Campa et al. (1998)2, Bliss and Panigirtzoglou (2004) and Jackwerth (2000); or with dif-

ferent kernel approaches which outputs are then used to estimate the RND following Breeden

and Litzenberger (1978) as in Äit-Sahalia and Lo (1998) and Äit-Sahalia and Duarte (2003).

The maximum entropy approaches of Stutzer (1996) and Buchen and Kelly (1996) minimize

the cross-entropy to a prior distribution to find the optimal RND given observations.

As common for all nonparametric approaches, these models produce a good fit with real

market data but are very unstable and produce unreliable final output if fed with small sam-

ples. Along the same line, and common to all cited models that rely on Equation (1) for the

estimation of the RND, the estimation is numerically very delicate, being prone to the curse

of differentiation. Being the RND computed as a ratio, small errors due to data sparsity or

noise are easily propagated and amplified possibly leading to very biased and unstable final

outcomes.

For 25 years, machine learning proposed interesting alternatives to the above approaches,

mainly using neural networks (see e.g. Malliaris and Salchenberger (1993) or Andreou et al.

(2008) and reference therein). Some papers try to infer the parameters of the dynamics of the

underlying for the sake of rapidity, such as in Pironneau (2019) who fits the parameters of the

Heston model using a neural network. Mostafa et al. (2015) propose a way to better taking

into account the different characteristics of the option cross-section (e.g.: options moneyness)

by partitioning the volatility surface and then building a particular neural network model for

2More precisely, the paper of Campa et al. (1998) compares 3 smoothing techniques with an implied binomial
tree technique and a mixture of lognormal distributions on a novel dataset of OTC options.

5

each specific characteristic. Other authors achieve apparently impressive results, but the out-

comes are often difficult to interpret economically, being heavily guided by the ”black-box”

characteristic of neural networks, e.g.: Yu Zheng and Chen (2019). Good performances have

also been achieved through “less” common machine learning approaches, e.g. the random

forests of Crespo (2018). Once more, the improved performances arising from using more

complex approaches usually comes at a price, as these methods might not to be easy to used

by practitioners, being too ”black-box”.

Overall while the finance approaches are usually economically rigorous but often of impractical

use whenever the underlying cross-section of option prices is not liquid enough, the machine

learning approaches usually provides good quality results, but without having a robust eco-

nomic interpretation. In this paper we will join the two stream of literature proposing an

economically-grounded, machine learning approach to extract the volatility surface and the

RND. Ludwig (2015) also provides economically-grounded machine learning approach, but

with different economic constraints.

The remainder of our paper is organized as follows. Section 2 presents more formally

the problems encountered in the machine learning literature for the estimation of the RND.

Section 3 review the basic elements of the neural network technology. Section 4 show how to

include the convexity constraints into the neural network approach.

2 Problem

We see major issues in the new methods. First, most of the applications of neural networks

(whatever its deepness) only take two inputs to fit the volatility surface: the maturity and

the level of moneyness. This means that the output of the network is extremely static from

one day to the next and does not take into account what happens in markets, as the change

in predictions can only be obtained through a re-estimation of the network on another time

window. Second, the use of different networks to direct different regions of the volatility surface

means that the networks are not connected with one another. Obviously, it would lead to an

improvement in terms of fit, but would also introduce major discontinuities in terms of second

6

derivative of the option prices with respect to the strike.

Generally, the target assigned to the neural network (see next part) is to minimize the error

between actual option prices and prices predicted by the network. This is not enough as it does

not emphasize the connectivity between adjacent points. Yu Zheng and Chen (2019) provided

an elegant way to take into account the non-arbitrage conditions, generating pseudo-data from

the network and penalizing the loss if non-arbitrage conditions are verified. However, this

approach might be very long and not suitable for practical use (taking one month to backtest

5116 trading days on a single PC, even with parallel programming on a GPU), and still has the

issue of the limited number of inputs. In the meantime, traditional approaches also struggle.

Derived methods suffer from the need to specify a particular dynamics for the underlying

asset. Direct methods (such as splines with a convexity constraint) suffer from the lack of

traded options to calibrate the models, even for heavily traded markets such as the S&P 500.

Moreover, the question of extrapolation is complex with such methods, as we are limited by

the lowest and highest traded strikes. This is an issue, in particular for OTM calls, which are

not as heavily traded as OTM puts.

We propose here another way to solve these issues. Defining an optimal network design, we

insure that:

• our results respond on a daily basis to changes in the market conditions.

• the second derivative of the predictions is always positive.

• we can construct a volatility surface even if certain maturities are not traded, which

enables us for example to construct time series of features of the RND for specific fixed

maturities (e.g. 30 trading days).

More formally, let first define the price of a European call option with maturity τ = T − t:

C = erτ
∫ ∞
K

(ST −K, 0)+f(ST)dST (2)

Following Merton (1973) we place generic pricing upper and lower bounds:

Ste
−qτ > C > (Ste

−qτ −Ke−rτ , 0)+ (3)

7

where q is the continuously compounded dividend rate. Moreover, we impose constraints on

strike and butterfly spread.

e−rτ 6
∂C

∂K
6 0 and

∂2C

∂K2
> 0 (4)

We are particularly interested in the butterfly non-arbitrage condition. To understand it, let

us consider a classical long butterfly strategy:

CTK1
− 2CTK2

+ CTK3
> 0

in a no-arbitrage and competitive economy, if the strike prices are increasing K1 < K2 < K3

and equidistant K2 = (K1 + K3)/2 the price of this strategy needs to be strictly positive.

Indeed, the payoff of the strategy is always non-negative (strictly positive when ST ∈]K1;K3[,

null elsewhere). This butterfly condition is actually intimately linked with the convexity of

option prices with respect to the strike. It means that both the second derivative of the price

of calls and puts with respect of the strike must be positive From Equation (1) this second

derivative expresses the RND, once adjusted for the time value of money. As this density is

equal to the second derivative of the price of the option with respect to the strike price, we

need this derivative to be positive. Therefore, to optimally design our neural network to fit

the volatility surface and construct the RND, we need to take into account these features.

3 Basics of Neural Networks

One of the biggest explanation for the popularity of neural networks relates to the universal

approximation theorem of Hornik et al. (1989). According to this theorem, under specific

conditions regarding the activation function (notably being continuous and non-constant), a

neural network is able to approximate continuous functions. Cybenko (1989) notably proved

this result for the special case of the sigmoid activation function. However, this quality of

approximation might need an explosive number parameters to deliver results. The constant

increase in the performance of computing power and number of data were key elements to

explain the impressive results achieved by neural networks in a large range of tasks, such as

8

image classification.

Figure 1: Example: Basic Neural Network with 1 Hidden Layer

An Artificial Neural Network (ANN) consists in one input layer, a flexible number of hidden

layers (1 in the example of Figure 1, but can be null), and one output layer. The result of each

node in the hidden layers/output layer is a simple linear combination of the previous layers,

plus a bias, with an activation function. Taking the previous network, we can easily compute

the value of each value in the hidden layer, and the final prediction:

hl1 = σ1

(3∑
i=1

w1
i,1xi + b1,1

)

9

hl2 = σ1

(3∑
i=1

w1
i,2xi + b1,2

)

pred = F (X) = σ2

(2∑
i=1

w2
i,1hli + b2

)
With σi the activation function applied to the ith layer. The range of shapes for this activation

function is very wide. It is extremely useful to introduce some nice properties in the neural

network. First, because it can introduce some non-linearity. Second, because we can force the

output of the network to be positive, or be convex with respect to one particular input, as in

this paper.

The task of the model is to minimize some loss function, which is defined by the user. In this

case, we choose to use a simple Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

|yi − F (Xi)|
yi

With F (Xi) the result outputted by the neural network, and yi the true value to be fitted.

While this choice might be unorthodox, it is motivated by the fact that classical loss functions

such as Mean Squared Error tend to overweight outliers. In addition, the fact that the gradient

of the MAPE function only takes into account the sign of the error is not an issue as our neural

network is very simple, with few parameters and a large amount of training data.

In the process of constructing the right model for a dedicated task, we should always have

in mind the bias-variance dilemma. On one side, having too few parameters might prevent

the model from learning interesting relationships between the input and the output, which

would eventually lead to under-fitting. This is called the bias. On the other side, adding

too many parameters in the model (which could be the case with deep learning techniques if

regularization is not properly implemented) would lead to overfitting, meaning that the model

would not be able to properly generalized to new data. This is called the variance.

The bias can be estimated using the value of the loss. To test the capacity to generalize to

new data, we split our data in two categories: train and validation. As indicated by its name,

the train set is used to optimize the weights of the model to minimize the loss. On the other

side, the validation set is used to test the generalization capacity of the model, once all of

10

the weights are fixed. A huge discrepancy in the loss between the train and validation sets is

most likely to indicate overfitting. When working with classical machine learning tasks, such

as classifying pictures, one can easily separate all the data between train and validation set,

and can even shuffle all of the data and do the separation a several times. When working with

time series, as it is most of the time the case in financial tasks, we can’t reproduce the same

methodology, as we can’t feed the model with future data. We choose another strategy:

Figure 2: Train/Validation split with time series

Under this set-up, the model never sees any future data. A new model is retrained every

quarter, with an expanding window. Then, the validation set is the next quarter.

Every quarter, the model is trained using back-propagation. The basic idea of this approach

is to compute the gradient of the loss with respect to each individual weight, using the chain

rule, one at a time. In particular, we use the RMSprop algorithm Tieleman and Hinton (2012)

to avoid the vanishing gradient problem Hochreiter (1998), by dividing the gradient by the

average of its recent magnitude.

4 Introducing the Convexity Constraint in the Neural Network

Dataset and training of the model We now propose our solution to the problem stated in

Part 2. In the same spirit of Laurini (2011), we want to introduce five conditions on the fitted

volatility surface. First, we want the volatility surface to not be static from one day to the

next. This means introducing other input than the moneyness and the maturity. Second, we

want to constraint the monotonicity of the implied volatility with respect to the moneyness.

11

Third, we want to introduce this convexity constraint, still with respect to the moneyness.

Fourth, we do not want to introduce discontinuities by fitting some locations (such as deep

OTM puts for example) of the surface. Finally, we want our method to be quick to run.

We define the moneyness m as the ratio between the strike K and the spot price of the

underlying S0:

m =
K

S0
(5)

The output of the neural network is the implied volatility of the option. The advantage in

this database is that all of the implied volatilities are comprised between 0 and 1, which helps

the gradient to converge. Second, using implied volatilities, we can compare all of the options

of the database, no matter the price of the underlying S0. We defined all the input of the

network:

• m, the moneyness defined in (5)

• τ , the number of years before expiration (which in bounded between 0 and 1)

• V , the VIX index, which is normalized between 0 and 1

• rf , the risk-free rate, calculated using the LIBOR USD

• µ7d1 , the average return during the last 7 days

• µ7d2 , the standard deviation of the returns during the last 7 days

• µ30d1 , the average return during the last 30 days

• µ30d2 , the standard deviation of the returns during the last 30 days

• µ30d3 , the skewness of the returns during the last 30 days

• µ30d4 , the kurtosis of the returns during the last 30 days

We use the options from the OptionMetrics dataset, from 1999 to 2017. We apply some

filters to the data, which are very similar in spirit to most of the studies of the RND, such as

in Birru and Figlewski (2012). The idea behind these filters is straight-forward. First, even

for the most liquid underlyings such as the S&P 500, many of the options do not trade heavily

12

at all maturities and strikes. Thus, we need to be careful when using end-of-day prices. This

low-volume activity is particularly true for in-the-money (ITM) options.

• minimum volume of 40 contracts exchanged on a given date

• minimum maturity of 7 days

• maximum maturity of 1 year

• minimum price of 0.05$

• Out-of-the-money (OTM) and at-the-money (ATM) options. For calls, we only keep

options with a moneyness above 97%, and below 103% for puts

First model: shape and constraints We first present the basic model to include the

convexity constraints into the neural network architeture. We stress the fact that this kind of

models are easily generalizable to other input, as long as it does not depends on the moneyness.

The basic model can be graphically summarized as follows:

Figure 3: First model: no hidden layer

13

We note b as the bias. The weight applied to the ith variable is denoted αi. To compute

the implied volatility (denoted ξ), we apply an activation function noted σ(x). We note:

ξ = σ(b+α1m+α2τ +α3V +α4rf +α5µ
7d
1 +α6µ

7d
2 +α7µ

30d
1 +α8µ

30d
2 +α9µ

30d
3 +α10µ

30d
4) (6)

Introducing the notation f :

f = b+ α1m+ α2τ + α3V + α4rf + α5µ
7d
1 + α6µ

7d
2 + α7µ

30d
1 + α8µ

30d
2 + α9µ

30d
3 + α10µ

30d
4 (7)

We can compute the first derivative of ξ with respect to the moneyness m:

∂ξ

∂m
= α1σ

′(f)

And the second derivative:
∂2ξ

∂m2
= α2

1σ
′′(f) (8)

So the necessary condition to get a convex implied volatility with respect to the moneyness

m is that σ′′(f) > 0. We now introduce the softplus activation function, which has one major

advantage: the output of the function is always positive, as we want a positive IV.

softplus = σ(x) = log(1 + ex)

We compute the first derivative of the softplus activation function with respect to m:

σ(f) = log(1 + eb+α1m+α2τ+α3V+α4rf+α5µ7d1 +α6µ7d2 +α7µ30d1 +α8µ30d2 +α9µ30d3 +α10µ30d4) (9)

For the sake of clarity, we introduce a new variable θ:

θ = b+ α2τ + α3V + α4rf + α5µ
7d
1 + α6µ

7d
2 + α7µ

30d
1 + α8µ

30d
2 + α9µ

30d
3 + α10µ

30d
4

(9) now becomes:

σ(f) = log(1 + eθ+α1m) (10)

14

The first derivative becomes:

σ′(f) = α1
eθ+α1m

1 + eθ+α1m

We now compute the second derivative:

σ′′(f) = α1
α1e

θ+α1m(1 + eθ+α1m)− eθ+α1mα1e
θ+α1m

(1 + eθ+α1m)2

⇔ σ′′(f) =
α2
1e
θ+α1m

(1 + eθ+α1m)2
> 0 (11)

For this first model, the use of the softplus activation function ensures an IV ξ convex with

respect to the moneyness.

Second model: shape and constraints The first model is extremely simple and has some

interesting properties. However it suffers from two drawbacks, which are linked. First, with

no hidden layer, the predictive performance of the model might be poor (even if it could be

increased by the use of other inputs). Second, using a softplus activation function with no

hidden layer is actually quite similar to implementing a logistic regression. We now propose

another model, this time with the use of a hidden layer.

We present the results in the case of two nodes in the hidden layer. However, these results

are easily generalizable to any number of nodes. The notations stay the same, with the same

initial inputs and σ the first activation function. However, we now introduce a second activation

function φ, which maps the hidden layer to the final output ξ. The bias at the input level is

denoted b0 and the one at the hidden layer level b1. The neural network becomes:

15

Figure 4: Second model: one hidden layer

The weight applied to the ith feature for the Nth node in the hidden layer is denoted αNi.

The weight applied to the nodes in the hidden layer to predict the standardized price ξ are

denoted γN .

General case We introduce the output of the neural network with one hidden layer, ξ:

xi = φ(b1 + γ1σ(θ1 + α1,1m) + γ2σ(θ2 + α2,1m)) (12)

We take the first derivative of ξ with respect to the moneyness m:

∂ξ

∂m
=

[
γ1α1,1σ

′(θ1 +α1,1m)+γ2α2,1σ
′(θ2 +α2,1m)

]
φ′(b1 +γ1σ(θ1 +α1,1m)+γ2σ(θ2 +α2,1m))

(13)

16

And the second derivative:

∂2ξ

∂m2
=

[
γ1α

2
1,1σ

′′(θ1 + α1,1m) + γ2α
2
2,1σ

′′(θ2 + α2,1m)

]
φ′
(
b1 + γ1σ(θ1 + α1,1m)

+ γ2σ(θ2 + α2,1m)

)
+

[
γ1α1,1σ

′(θ1 + α1,1m) + γ2α2,1σ
′(θ2 + α2,1m)

]2
φ′′
(
b1 + γ1σ(θ1 + α1,1m) + γ2σ(θ2 + α2,1m)

)

Softplus activation function We now suppose that both φ and σ are softplus activation

functions. We have:

φ

(
b1 + γ1σ(θ1 + α1,1m) + γ2σ(θ2 + α2,1m)

)
= log(1 + eb1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m))

Its first derivative is:

∂φ

∂m
=

(
γ1α1,1e

θ1+α1,1m

1+eθ1+α1,1m
+

γ2α2,1e
θ2+α2,1m

1+eθ2+α2,1m

)
eb1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m)

1 + eb1+γ1log(1+e
θ1+α1,1m)+γ2log(1+e

θ2+α2,1m)

The sign of the derivative is only determined by γ1α1,1 and γ2α2,1. Chollet et al. (2015)

show that by constraining the weights, we can make sure that ∂φ
∂m < 0 for calls, and ∂φ

∂m > 0

for puts.

Now the second derivative:

∂2φ

∂m2
= eb1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m)(

− γ1α2
1,1e

2(θ1+α1,1m)

(1+eθ1+α1,1m)2
+

γ1α2
1,1e

θ1+α1,1m

1+eθ1+α1,1m
− γ2α2

2,1e
2(θ2+α2,1m)

(1+eθ2+α2,1m)2
+

γ2α2
2,1e

θ2+α2,1m

1+eθ2+α2,1m

)
1 + eb1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m)

+

(
γ1α1,1e

θ1+α1,1m

1+eθ1+α1,1m
+

γ2α2,1e
θ2+α2,1m

1+eθ2+α2,1m

)2
eb1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m)

1 + eb1+γ1log(1+e
θ1+α1,1m)+γ2log(1+e

θ2+α2,1m)

−

(
γ1α1,1e

θ1+α1,1m

1+eθ1+α1,1m
+

γ2α2,1e
θ2+α2,1m

1+eθ2+α2,1m

)2
e2(b1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m))(

1 + eb1+γ1log(1+e
θ1+α1,1m)+γ2log(1+e

θ2+α2,1m)
)2

We need ∂2φ
∂m2 > 0. Let’s decompose this expression (assuming that both γ1 and γ2 are set

17

to be positive):

(
−
γ1α

2
1,1e

2(θ1+α1,1m)

(1 + eθ1+α1,1m)2
+
γ1α

2
1,1e

θ1+α1,1m

1 + eθ1+α1,1m
−
γ2α

2
2,1e

2(θ2+α2,1m)

(1 + eθ2+α2,1m)2
+
γ2α

2
2,1e

θ2+α2,1m

1 + eθ2+α2,1m

)

⇔ γ1α
2
1,1

(eθ1+α1,1m

1 + eθ1+α1,1m
− eθ1+α1,1m

(1 + eθ1+α1,1m)2

)
+γ2α

2
2,1

(eθ2+α2,1m

1 + eθ2+α2,1m
− eθ2+α2,1m

(1 + eθ2+α2,1m)2

)
(14)

As 1 + eθ1+α1,1m > 1, 1 + eθ1+α1,1m < (1 + eθ2+α2,1m)2. Thus, (14) is always positive.

Now focusing on the other side of the expression:

(
γ1α1,1e

θ1+α1,1m

1+eθ1+α1,1m
+

γ2α2,1e
θ2+α2,1m

1+eθ2+α2,1m

)2
eb1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m)

1 + eb1+γ1log(1+e
θ1+α1,1m)+γ2log(1+e

θ2+α2,1m)

−

(
γ1α1,1e

θ1+α1,1m

1+eθ1+α1,1m
+

γ2α2,1e
θ2+α2,1m

1+eθ2+α2,1m

)2
e2(b1+γ1log(1+e

θ1+α1,1m)+γ2log(1+e
θ2+α2,1m))(

1 + eb1+γ1log(1+e
θ1+α1,1m)+γ2log(1+e

θ2+α2,1m)
)2

First noting x such as:

x = b1 + γ1log(1 + eθ1+α1,1m) + γ2log(1 + eθ2+α2,1m)

Factorizing, the expression becomes:

(
γ1α1,1e

θ1+α1,1m

1+eθ1+α1,1m
+

γ2α2,1e
θ2+α2,1m

1+eθ2+α2,1m

)2
1 + ex

(
ex − e2x

1 + ex

)
Which is strictly positive. In conclusion, assuming both γ1 and γ2 are positive, the second

derivative is strictly positive.

5 Practical Implementation: Volatility Surface

Now that we have established how to introduce the convexity in the output of the neural

network with respect to the level of moneyness, to get a free of butterfly arbitrage volatility

surface, we present the results of the model. We start by establishing some descriptive statistics:

Table 1: Descriptive Statistics

18

YEAR CALLS PUTS

1999 8 855 13 984

2000 8 698 10 843

2001 8 532 11 334

2002 8 963 12 806

2003 10 236 14 491

2004 11 147 17 274

2005 12 406 17 922

2006 14 144 21 344

2007 16 648 26 117

2008 23 236 30 489

2009 22 061 31 153

2010 23 215 36 388

2011 25 730 40 127

2012 30 350 47 480

2013 39 246 61 589

2014 44 799 82 903

2015 56 700 104 529

2016 73 169 127 905

2017 84 539 164 588

Total 523 604 873 266

Average IV 13.92% 24.37%

St.Dev. IV 7.49% 21.40%

The first thing to notice is that the number of options heavily increases with the years.

Thus, when computing the final loss statistics (MSE, MAE or MAPE), as we train a new

model every quarter, we will weight the results by the number of options, to put more weight

on periods with more options. We start with a set of hyperparameters we tested. As the

procedure is relatively quick, we were able to test every possible combination (= 384) for the

hyperparameters.

Table 2: List of Possible Hyperparameters

19

Hyperparameters Options

Number of neurons in the hidden layer [3 ; 4; 5; 6]

Initialization [normal ; uniform ; lecun normal ; lecun uniform]

Optimizer [SGD ; RMSprop]

Number of epochs [30 ; 40; 50 ; 60]

Batch Size [128 ; 256 ; 512]

For each train/validation set pair, we compute three common loss measures, the Mean-

Absolute-Error (MAE), the Mean-Absolute-Percentage-Error (MAPE) and the Mean-Squared-

Error (MSE), which are defined as:

MAPE =
1

N

N∑
i=1

|yi − F (Xi)|
yi

MAE =
1

N

N∑
i=1

∣∣∣yi − F (Xi)
∣∣∣

MSE =
1

N

N∑
i=1

(
yi − F (Xi)

)2
We then weight each loss value by the number of options of the period, to compute two

final statistics (MAE and MAPE) per model. Obviously, we choose the model with the lowest

loss value, checking that there is no overfitting. The hyperparameters of the best model are

found to be:

Table 3: List of Hyperparameters

Hyperparameters Options

Number of neurons in the hidden layer 3

Initialization lecun normal

Optimizer RMSprop

Number of epochs 50

Batch Size 128

As said above, the computation time is quite quick. For a basic configuration, such as a

Intel(R) Core(TM) i3-7100 CPU with a RAM memory of 16Go, the whole process (one neural

20

network per quarter, from 1999 to 2017, with one hidden layer) takes approximately 55 minutes

for calls and 85 minutes for puts. Under the same setup, training the longer model (training

period = 1999 Q1 to 2017 Q3) takes approximately 4 minutes for calls and 6.5 minutes for puts.

The results of our approach are difficult to benchmark for several reasons. First, we are

able to study any maturity/level of moneyness, at any date, whereas cubic splines with a

convexity constraint are quite limited by the number of options that are actively traded. This

limitation is common to other techniques, such as SVI. We compare our approach anyway to

the standard benchmark defined in ?, where the implied volatility is modeled using quadratic

polynomials (m being the moneyness and τ the maturity):

IV = β0 + β1m+ β2m
2 + β1τ + β1τ

2 + β1mτ

In addition, to the best of our knowledge, our approach is the only one to use a neural network

and add theoretical insurance that the resulted implied volatility will be convex with respect

to the level of moneyness. This approach does not allow us to add a infinite number of hidden

layers, or to use some common activation functions such as ReLU, which tend to have better

results in terms of minimization of the loss, but do not give satisfaction in terms of conditions

of smoothness for the obtained volatility surface.

Table 4: Loss: All of the data - Puts (hl = hidden layer)

LOSS TRAIN TRAIN VALIDATION VALIDATION

HL no yes no yes

MSE 4.68 x 10−03 1.83 x 10−03 5.20 x 10−03 1.77 x 10−03

MAE 3.51 x 10−02 1.90 x 10−02 3.84 x 10−02 2.08 x 10−02

MAPE 1.22 x 10−01 6.72 x 10−02 1.49 x 10−01 7.74 x 10−02

Table 5: Loss: All of the data - Calls (hl = hidden layer)

21

LOSS TRAIN TRAIN VALIDATION VALIDATION

HL no yes no yes

MSE 2.34 x 10−03 1.46 x 10−03 4.51 x 10−03 1.04 x 10−03

MAE 2.13 x 10−02 1.54 x 10−02 2.23 x 10−02 1.51 x 10−02

MAPE 1.13 x 10−01 8.73 x 10−02 1.45 x 10−01 1.10 x 10−01

Table 6: Loss: All of the data - Benchmark (Quadratic Polynomials)

LOSS TRAIN TRAIN VALIDATION VALIDATION

Type calls puts calls puts

MSE 3.97 x 10−03 4.86 x 10−03 3.87 x 10−03 4.73 x 10−03

MAE 4.70 x 10−02 5.17 x 10−02 4.95 x 10−02 5.03 x 10−02

MAPE 3.19 x 10−01 2.17 x 10−01 4.52 x 10−01 2.65 x 10−01

The first thing to notice is that globally, the performance of the validation set is a little less

good than the train set, which is normal. However, the discrepancy is quite small, meaning

that our model seems to be quite good at generalizing to new data. So, we avoided overfitting.

Second, both for calls and puts, adding a hidden layer seems to significantly increase the

performance, which is also normal, as adding parameters decrease the bias. Third, it seems

that the model, after the fine tuning of hyperparameters, performs better for puts than for calls.

We then perform an analysis to get a clearer idea of which kind of options weight negatively on

the global loss in the models. Finally, we tend to largely over-perform the standard quadratic

polynomials benchmark, for both calls and puts.

We define three kinds of maturities: short-term (maturity 6 30 days), mid-term (30 days <

maturity 6 180 days), and long-term (maturity > 180 days). We also consider two kinds

of level of moneyness: at-the-money (ATM, moneyness > 0.9 for puts, moneyness < 1.1 for

calls), and out-of-the-money (OTM, moneyness 6 0.9 for puts, moneyness > 1.1 for calls).

We emphasise that the definition of ATM/OTM options is quite large, but as we only work

with OTM options (as defined previously), we want a strong distinction between the levels of

moneyness. We do not need to present the results of the train set, as it is exactly the same

neural network as presented in the last two tables.

Table 7: Loss: Long-term & ATM (hl = hidden layer, bench = benchmark)

22

LOSS PUTS PUTS PUTS (bench) CALLS CALLS CALLS (bench)

HL no yes / no yes /

MSE 3.07 x 10−03 1.21 x 10−03 3.80 x 10−03 4.17 x 10−03 3.73 x 10−04 2.81 x 10−03

MAE 2.98 x 10−02 2.02 x 10−02 4.92 x 10−02 1.79 x 10−02 1.14 x 10−02 4.46 x 10−02

MAPE 1.29 x 10−01 8.85 x 10−02 2.45 x 10−01 9.32 x 10−02 7.68 x 10−02 3.42 x 10−01

Table 8: Loss: Long-term & OTM (hl = hidden layer, bench = benchmark)

LOSS PUTS PUTS PUTS (bench) CALLS CALLS CALLS (bench)

HL no yes / no yes /

MSE 1.06 x 10−02 1.41 x 10−03 3.79 x 10−03 1.04 x 10−02 6.78 x 10−03 3.54 x 10−03

MAE 4.95 x 10−02 2.33 x 10−02 4.38 x 10−02 3.28 x 10−02 1.70 x 10−02 4.70 x 10−02

MAPE 1.32 x 10−01 7.06 x 10−02 1.45 x 10−01 1.58 x 10−01 1.11 x 10−01 3.47 x 10−01

Table 9: Loss: Mid-term & ATM (hl = hidden layer, bench = benchmark)

LOSS PUTS PUTS PUTS (bench) CALLS CALLS CALLS (bench)

HL no yes / no yes /

MSE 2.12 x 10−03 1.10 x 10−03 3.60 x 10−03 3.00 x 10−03 5.01 x 10−04 3.72 x 10−03

MAE 1.86 x 10−02 1.24 x 10−02 4.69 x 10−02 1.69 x 10−02 1.11 x 10−02 4.99 x 10−02

MAPE 9.98 x 10−02 5.88 x 10−02 2.78 x 10−01 1.16 x 10−01 8.76 x 10−02 4.65 x 10−01

Table 10: Loss: Mid-term & OTM (hl = hidden layer, bench = benchmark)

LOSS PUTS PUTS PUTS (bench) CALLS CALLS CALLS (bench)

HL no yes / no yes /

MSE 5.99 x 10−03 1.78 x 10−03 5.59 x 10−03 2.18 x 10−02 2.75 x 10−03 5.55 x 10−03

MAE 3.82 x 10−02 2.25 x 10−02 6.11 x 10−02 6.28 x 10−02 3.08 x 10−02 5.61 x 10−02

MAPE 1.00 x 10−01 5.94 x 10−02 1.97 x 10−01 2.31 x 10−01 1.55 x 10−01 3.33 x 10−01

Table 11: Loss: Short-term & ATM (hl = hidden layer, bench = benchmark)

23

LOSS PUTS PUTS PUTS (bench) CALLS CALLS CALLS (bench)

HL no yes / no yes /

MSE 1.96 x 10−03 1.11 x 10−03 3.98 x 10−03 2.38 x 10−03 1.11 x 10−03 3.43 x 10−03

MAE 2.82 x 10−02 1.63 x 10−02 5.29 x 10−02 2.00 x 10−02 1.58 x 10−02 4.77 x 10−02

MAPE 1.82 x 10−01 9.00 x 10−02 3.64 x 10−01 1.66 x 10−01 1.28 x 10−01 4.84 x 10−01

Table 12: Loss: Short-term & OTM (hl = hidden layer, bench = benchmark)

LOSS PUTS PUTS PUTS (bench) CALLS CALLS CALLS (bench)

HL no yes / no yes /

MSE 1.90 x 10−02 5.52 x 10−03 8.40 x 10−03 3.88 x 10−02 1.13 x 10−02 1.80 x 10−02

MAE 1.13 x 10−01 4.99 x 10−02 5.88 x 10−02 1.01 x 10−01 6.15 x 10−02 8.40 x 10−02

MAPE 2.77 x 10−01 1.17 x 10−01 1.36 x 10−01 2.88 x 10−01 1.91 x 10−01 2.36 x 10−01

We find similar patterns for both Calls and Puts. Once again, our approach tend to largely

over-perform the traditional quadratic polynomial benchmark. Globally, we find that the re-

sults are less good for OTM options compared to ATM. In the meantime, the longer the

maturity, the better the results. These results are not surprising and can be easily explained.

Indeed, if we look at the standard deviation of the implied volatility for the different locations

in the volatility surface, we find an enormous discrepancies. For example, in the case of Calls,

the standard deviation of OTM options is 30% higher compared to ATM options in the case

of mid-term, and 64% higher for long-term options. In the same fashion, the implied volatility

is 4.3 time higher for short-term options compared with long-term ones.

Aggregating losses at different time horizons, all results presented so far are unconditional.

While unconditional results are good to provide a broad overview of the analysis, we now focus

on the time series to identify periods of higher/lower accuracy. Figure 5 depicts the time series

of realized and predicted average IV extracted from European Call options. Divided vertically,

the left (right) panel presents the predicted IV estimated without (with) the hidden layer. The

same holds for Figure 6, but for European Put options.

24

Figure 5: Time series of realized (in blue) and predicted (in orange) average IV from Call
options. The left (right) panels depicts the predicted average IV estimated without (with)
hidden layer.

Figure 6: Time series of realized (in blue) and predicted (in orange) average IV from Put
options. The left (right) panels depicts the predicted average IV estimated without (with)
hidden layer.

Once again, the pattern are extremely similar between Calls and Puts. We have the con-

firmation that adding a hidden layer is necessary to increase the quality of the fit. We also see

that the results for the 2008 period are not good. This is quite understandable, as this kind

of movements in the volatility surface were outstandingly new. What is reassuring is how the

different new spikes in the volatility in the past few years (2011, 2015 and 2016) were properly

fitted.

25

6 Practical Implementation: RND Estimation

Now that we established how to fit the volatility surface, we can focus on the estimation of the

RND. Each quarter, a new neural network is trained and its weights are fixed. We are able

to fit a complete volatility surface by changing two of the inputs of the network (the maturity

and the level of moneyness). All other inputs (notably the VIX and the different moments of

the past returns) are common to all of the options, and are variable from one day to the next.

We are able to focus on any maturity on the volatility surface. We choose to focus in particular

on the 30-day maturity. Once all of the implied volatility are fitted (still for a fixed maturity),

we can deduce the price of the corresponding options using Black and Scholes (1973) to get

a continuum in the moneyness-price space. Finally, as we use two separate neural networks

(for calls and puts), we might have an issue of discontinuities for a level of moneyness of 1. To

tackle this issue, we take advantage of the put-call parity:

C(t, T,K)− P (t, T,K) = St −Ke−rT (15)

where C(t, T,K) and P (t, T,K) are the price of a European Call and Put option at time t,

for a maturity of T and with a strike price of K, respectiveli, St is the current price of the

underlying and r the risk-free rate.

Thus, we are able to fit the complete volatility surface for both Puts and Calls, and translate

the price of Calls to Puts, and the ones of Puts to Calls through Equation (15). We then use

a simple rule to derive the final RND. For levels of moneyness equal or below 1, we simply

take the average of the price of Puts derived from the dedicated neural network, and the price

of Puts derived from Calls using (15). For levels of moneyness above 1, we take the average

of the price of calls derived from the dedicated neural network, and the price of Calls derived

from Puts using (15). Thanks to this method, we have a smoothness in the second derivative.

We finally use the equation of the RND as defined in the Appendix. Also, we only focus on

the neural networks using a hidden layer, as it tends to have far better results.

26

Figure 7: Average RND (maturity = 30 days)

We present here the evolution of the RND from 2003 to 2017. The idea is also to show

that we are able to fit it everyday, without any discontinuity. Unfortunately, we had to only

display one density per month (in orange): plotting 3716 densities in the same plot tend to

be murky. We also plot the average RND over the whole period (in red). We see in Figure 7

that depending on the date, we can find very different shapes for the Risk-Neutral Densities.

In particular, we find that the kurtosis moves over time.

7 Conclusion

When ones tries to construct robust estimations of the RND for a constant volatility, the

main problem comes from the incapacity of typical methods to deal with the lack of data. For

example, the use of cubic splines with a convexity constraint is a nice way to fit all of the points,

but the different techniques of extrapolation (for example the use of clamped splines) fail to

deliver proper results. With the large increase of popularity in machine learning techniques

such as neural networks, we saw a new trend in research to get non-parametric estimations

of the volatility surface. Unfortunately, the main interest has been on increasing as much

as possible the accuracy of the fit, neglecting other parameters such as the non-arbitrage

conditions. In particular, computing the RND requires a strict convexity of the price of the

options with respect to the moneyness. Our approach tackles this issue. Moreover, using the

27

put-call parity, we are able to avoid any discontinuity between calls and puts for a level of

moneyness of 1.

28

8 Bibliography

Äit-Sahalia, Y. and J. Duarte (2003). Non-parametric option pricing under shape restrictions. Journal

of Econometrics 116, 9–47.

Äit-Sahalia, Y. and A. W. Lo (1998). Non-parametric estimation of state-price densities implicit in

financial asset prices. The Journal of Finance 53 (2), 499–457.

Andreou, P. C., C. Charalambous, and S. H. Martzoukos (2008). Pricing and trading european options

by combining artificial neural networks and parametric models with implied parameters. European

Journal of Operational Research 185, 1415–1433.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark

options. The Review of Financial Studies 9 (1), 69–107.

Bates, D. S. (Jul 1991). The crash of ’87: was it expected? the evidence from options markets. The

Journal of Finance 46, 1009–1044.

Birru, J. and S. Figlewski (May 2012). Anatomy of a meltdown: the risk neutral density for the s&p500

in the fall of 2008. Journal of Financial Markets 15, 151–180.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political

Economy 81, 637–654.

Bliss, R. and N. Panigirtzoglou (2004). Option-implied risk aversion estimates. Journal of Finance 59,

407–446.

Bondarenko, O. (2003). Estimation of risk-neutral densities using positive convolution approximation.

Journal of Econometrics 116 (1), 85 – 112. Frontiers of financial econometrics and financial engineer-

ing.

Breeden, D. T. and R. H. Litzenberger (1978). Prices of state-contingent claims implicit in option

prices. The Journal of Business 51, 621–651.

Buchen, P. and M. Kelly (1996). The maximum entropy distribution of an asset inferred from option

prices. Journal of Finance 31, 143–159.

Campa, J. M., K. Chang, and R. Reider (1998). Implied exchange rate distributions: Evidence from

otc option markets. Journal of International Money and Finance 17, 117–160.

Chollet, F. et al. (2015). Keras.

29

Christian, H. (2008). Implied volatility surface: construction methodologies and characteristics. 185,

1415–1433.

Christoffersen, P., K. Jacobs, and B. Y. Chang (2013). Forecasting with option-implied information.

Handbook of Economic Forecasting 2, 581–656.

Crespo, P. (2018). A random forest model averaging solution for implied volatility interpolation under

small data sets.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control,

Signals and Systems 2, 303–314.

Derman, E. and I. Kani (1994). The volatility smile and its implied tree. Quantitative Strategies

Research Notes (Goldman Sachs, New York).

Dupire, B. (1994). Pricing with a smile. Risk 7, 18–20.

Fengler, M. R. (2011, Jul). Option data and modeling bsm implied volatility. Handbook of Computational

Finance, 117–142.

Giacomini, R., A. Gottschling, C. Haefke, and H. White (2008). Mixtures of t-distributions for finance

and forecasting. Journal of Econometrics 144, 175–192.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to

bond and currency options. The Review of Financial Studies 6 (2), 327–343.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem

solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6, 107–116.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal

approximators. Neural Networks 2, 359–366.

Hull, J. and A. White (1987). The pricing of options on assets with stochastic volatilities. Journal of

Finance 42 (2), 281–300.

Jackwerth, J. (1999). Option-implied risk-neutral distributions and implied binomial trees. The Journal

of Derivatives 7 (2), 66–82.

Jackwerth, J. (2000). Recovering risk aversion from option prices and realized returns. The Review of

Financial Studies 13, 433–451.

30

Jackwerth, J. and M. Rubinstein (1996). Recovering probability distributions from option prices. Jour-

nal of Finance 51 (5), 1611–1631.

Jarrow, R. and A. Rudd (1982). Approximate option valuation for arbitrary stochastic processes.

Journal of Financial Economics 10 (3), 347 – 369.

Laurini, M. P. (2011). Imposing no-arbitrage conditions in implied volatilities using constrained smooth-

ing splines. Applied Stochastic Models in Business and Industry 27, 649–659.

Longstaff, F. (2015). Option pricing and the martingale restriction. The Review of Financial Stud-

ies 8 (4), 1091–1124.

Ludwig, M. (2015). Robust estimation of shape-constrained state price density surfaces. The Journal

of Derivatives 22 (3), 56–72.

Madan, D. B. and F. Milne (1994). Contingent claims valued and hedged by pricing and investing in a

basis. Mathematical Finance 4 (3), 223–245.

Malliaris, M. and L. Salchenberger (1993). A neutal network model for estimating option prices. Applied

Intelligence 3, 193–206.

Malz, A. (1997). Estimating the probability distribution of the future exchange rate from option prices.

The Journal of Derivatives 5 (2), 18–36.

Mostafa, F., T. Dillon, and E. Chang (2015). Computational intelligence approach to capturing the im-

plied volatility. Proc. IFIP International Conference on Artificial Intelligence in Theory and Practice,

85–97.

Pironneau, O. (2019). Calibration of heston model with keras.

Rebonato, R. (2013). Volatility and Correlation: The Perfect Hedger and the Fox. While Online Library.

Ritchey, R. (1990). Call option valuation for discrete normal mixtures. The journal of financial re-

searcg 13 (4), 2850296.

Rosenberg, J. V. (1998). Pricing multivariate contingent claims using estimated risk–neutral density

functions. Journal of International Money and Finance 17 (2), 229 – 247.

Rubinstein, M. (1994). Implied binomial trees. Journal of Finance 49 (3), 771–818.

Shimko, D. (1993). Bounds of probability. Risk 6, 33–37.

31

Skiadopulos, G. (2001, Jun). Volatility smile consistent option models: A survey. International Journal

of Theoretical and Applied Finance 04 (03), 403–437.

Stutzer, M. (1996). A simple nonparametric approach to derivative security valuation. Journal of

Finance 51, 1633–1652.

Tieleman, T. and G. Hinton (2012). Lecture 6-5: Rmsprop, divide the gradient by a running average

of its recent magnitude.

Yu Zheng, Y. Y. and B. Chen (2019). Gated deep neural networks for implied volatility surfaces.

9 Appendix

We start with the definition of the Leibniz integral rule. As a reminder, this rule is used to

derive an integral with a parameter as limit. We first define our integral:

∫ b(x)

a(x)
h(x, t)dt (16)

Then the Leibniz integral rule states that:

∂

∂x

(∫ b(x)

a(x)
h(x, t)dt

)
= h(x, b(x))

∂

∂x
b(x)− h(x, a(x))

∂

∂x
a(x) +

∫ b(x)

a(x)

∂

∂x
h(x, t)dt (17)

We use the Risk-Neutral pricing of a call option:

C = e−rT
∫ +∞

K
(ST −K)f(ST)dST (18)

With r the risk-free rate, T the remaining time until maturity, K the strike, ST the price

of the underlying at time T , and f(ST) the probability density for the terminal value of the

underlying, known as the risk neutral density. Using the notation of the (16), we define:

h(K,ST) = (ST −K)f(ST) (19)

Now we can have our first derivative of the call price, with respect to the strike K:

∂C

∂K
=

∂

∂K
e−rT

∫ +∞

K
(ST −K)f(ST)dST

32

e−rT does not depends on K:

∂C

∂K
= e−rT

∂

∂K

∫ +∞

K
(ST −K)f(ST)dST

We now can use the Leibniz rule (17) and our defined function (19):

∂C

∂K
= e−rT

[
h(K,+∞) ∗ 0− h(K,K) ∗ 1 +

∫ +∞

K

∂

∂K
h(K,ST)dST

]
Leading to:

∂C

∂K
= e−rT

[
− (K −K)f(K) +

∫ +∞

K
−f(ST)dST

]
Finally:

∂C

∂K
= −e−rT

∫ +∞

K
f(ST)dST (20)

For the second derivative, we begin by rearranging our last expression (20), since f(ST) is

the RND, and its integral between 0 and +∞ is equal to 1:

∂C

∂K
= −e−rT

(
1−

∫ K

0
f(ST)dST

)
And:

−erT ∂C
∂K
− 1 = −

∫ K

0
f(ST)dST

Finally:

erT
∂C

∂K
+ 1 =

∫ K

0
f(ST)dST (21)

Let’s work with those two expressions, and derive them with respect to the strike. Let’s start

with the right part: ∫ K

0
f(ST)dST (22)

We easily can apply again the Leibniz integral rule:

∂

∂K

∫ K

0
f(ST)dST = f(ST)

∂

∂K
K − 0 +

∫ K

0

∂

∂K
f(ST)dST = f(ST) (23)

Now we work on the left side (21):

∂

∂K

(
erT

∂C

∂K
+ 1
)

= erT
∂2C

∂K2
(24)

33

We get our final expression of the RND:

f(ST) = erT
∂2C

∂K2
(25)

The same result holds for puts.

34

	Introduction
	Problem
	Basics of Neural Networks
	Introducing the Convexity Constraint in the Neural Network
	Practical Implementation: Volatility Surface
	Practical Implementation: RND Estimation
	Conclusion
	Bibliography
	Appendix

