
Publi shed in Reflection 99, LNCS N° 1616

Metaprogramming domain specific metaprograms

Tristan Cazenave

Laboratoire d'Intelli gence Artificielle,
Département Informatique, Université Paris 8,

2 rue de la Liberté,
93526 Saint Denis, France.
cazenave@ai.univ-paris8.fr

Abstract. When a metaprogram automaticall y creates rules, some created
rules are useless because they can never apply. Some metarules, that we call
impossibilit y metarules, are used to remove useless rules. Some of these
metarules are general and apply to any generated program. Some are domain
specific metarules. In this paper, we show how dynamic metaprogramming
can be used to create domain specific impossibilit y metarules. Applying
metaprogramming to impossibilit y metaprogramming avoids writi ng specific
metaprogram for each domain metaprogramming is applied to. Our meta-
metaprograms have been used to write metaprograms that write search rules
for different games and planning domains. They write programs that write
selective and efficient search programs.

1 Introduction

Knowledge about the moves to try enables to select a small number of moves from a
possibly large set of possible moves. It is very important in complex games and
planning domains where search trees have a large branching factor. Knowing the
moves to try drasticall y cuts the search trees. Metaprogramming can be used to
automaticall y create the knowledge about interesting and forced moves, only given
the rules about the direct effects of the moves [4],[5]. Impossibilit y metaprograms
enable to remove useless rules from the set of unfolded rules. These metaprograms
can themselves be written by metametaprograms. From a more general point of
view, metaknowledge itself can be very useful for a wide range of applications [23],
and one of its fascinating characteristic is that it can be applied to itself to improve
itself. We try to experimentall y evaluate the benefits one can get from this special
property.

The second section describes metaprogramming and especiall y metaprogramming
in games. The third section uncovers how metametaprograms can be used to write
impossibilit y metaprograms. The fourth section gives experimental results.

Publi shed in Reflection 99, LNCS N° 1616

2 Metaprogramming in games and planning domains

Our metaprograms write programs that enable to safely cut search trees, therefore
enabling large speedups of search programs. In our applications to games, metarules
are used to create theorems that tell the interesting moves to try to achieve a tactical
goal (at OR nodes). They are also used to create rules that find the complete set of
forced moves that prevent the opponent to achieve a tactical goal (at AND nodes).
Metaprogramming in logic has already attracted some interest [11],[2],[9]. More
specificall y, speciali zation of logic program by fold/unfold transformations can be
traced back to [26], it has been well defined and related to Partial Evaluation in
[15], and successfull y applied to different domains [9]. The parallel between Partial
Evaluation and Explanation-Based Learning [21],[18],[6],[13],[24] is now well -
known [28],[7]. As Pitrat [23] points it, the abilit y for programs to reason on the
rules of a game so as to extract useful knowledge to play is a problem essential for
the future of AI. It is a step toward the reali zation of eff icient general problem
solvers.

In our system, two kinds of metarules are particularly important : impossibilit y
metarules and monovaluation metarules. Other metarules such as metarules remov-
ing useless conditions or ordering metarules are used to speed-up the generated
programs.

Impossibilit y metarules find which rules can never be applied because of some
properties of the game, or because of more general impossibiliti es. An example of a
metarule about a general impossibilit y is the following one :

impossible(ListAtoms):-
member(N=\=N1,ListAtoms), var(N), var(N1),N==N1.

This metarule tell s that if a rule created by the system contains the condition
'N=\=N1' and the metavariables N and N1 contain the same variable, then the
condition can never be fulfill ed. So the rule can never apply because it contains a
statement impossible to verify. These metarule is particularly simple, but this is the
kind of general knowledge a metasystem must have to be able to reason about rules
and to create rules given the definition of a game.

Some of the impossibilit y metarules are more domain specific. For example the
following rule is specific to the game of Go :

impossible(ListAtoms):-
member(color_string(B,C), ListAtoms), C==empty.

It tell s that the color of a string can never be the color 'empty' .
The other important metarules in our metaprogramming system are the mono-

valuation metarules. They apply when two variables in the same rules always share
the same value. Monovaluation metarules unify such variables. They enable to sim-
pli fy the rules and to detect more impossible rules. An example of a monovaluation
metarule is :

Publi shed in Reflection 99, LNCS N° 1616

monovaluation(ListAtoms):-
member(color_string(B,C), ListAtoms),
member(color_string(B1,C1), ListAtoms),
B==B1,C\==C1,C=C1.

It tell s that a string can only have one color. So if the system finds two conditions
' color_string' in a rule such that the variables contained in the metavariables
'B ' and 'B1' are equals, and if the corresponding color variables contained in the
metavariables 'C' and 'C1' are not the same, it unifies C and C1 because they
always contain the same value.

Impossible and monovaluation metarules are vital rules of our metaprogramming
system. They enable to reduce significantly the number of rules created by the
system, eliminating many useless rules. For example, we tested the unfolding of six
rules with and without these metarules. Without the metarules, the system created
166 391 568 rules by regressing the 6 rules on only one move. Using basic mono-
valuation and impossible metarules shows that only 106 rules where valid and dif-
ferent from each other.

The experiments described here use the goal of taking enemy stones to create
rules for the game of Go. The game of Go is known to be the most diff icult game to
program [27],[1],[25]. Experiments in solving problems for the hardest game benefit
to other games, and to other planning domains, especiall y if these experiments use
general and widely applicable methods as it is the case for our metaprogramming
methods.

3 Programs that write programs that write programs

Works on writing programs that write programs that write programs often refer to
the third Futamura projection. Their goal is to speed up programs that write pro-
grams using self-application of Partial Evaluation. Self-applicable partial evaluators
such as Goëdel [11] usually use a ground representation to enable self-application (a
ground representation consists in representing variables in the programs by numbers,
a parallel can be made with the numbering technique used by the mathematician
Kurt Gödel to prove his famous theorem [10]). Our choice is rather to use general
non-ground metaprograms that find domain specific metaknowledge to write the
programs that write programs. On the contrary of fold/unfold/generali zation and
other program transformation techniques [20], our system only uses unfolding, and
simple metaprograms can be written to decide when to stop unfolding: typicall y
when generated rules have more condition than a pre-defined threshold.

Domain specific metarules in games and planning domains can be divided in dif-
ferent categories. We will focus on the 'board topology metarules' category in this
section. Other categories that are often used are 'move metarules' or 'object
metarules' for example.

Publi shed in Reflection 99, LNCS N° 1616

The essential property of a game board is that it never changes whatever the
moves are. The set of facts describing the board is always the same. Moreover it is a
complete set: no facts can be added or removed.

In this paper, we will use a fixed grid to give examples of metaprogram genera-
tion. Grids are used in planning domains, for example for a robot to plan a path
through a building, and in games such as Go or Go-Moku.

A

B

Fig. 1. A robot at point A has to choose a path on the grid to go to point B

The grid task consists in finding a path of length four between point A and point
B in the figure 1. This task is easier to understand than the game of Go which is our
principal application. A Go board is also a grid, and all the mechanisms described in
this paper also apply to the rules generated by our metaprogram for the game of Go.

3.1 Metaprogramming impossibility metarules

The figure 2 gives all the points that are at distance three of point A. After each new
instanciation of a variable containing a point, the rule verifies that the instanciated
point is different from any previously instanciated one.

A

Fig. 2. All the points at a distance three of point A are marked.

The rule that find all these points is generated as follows:

distance(X,W,3):-
connected (X,Y),connected(Y,Z),connected(Z,W).

This rule is generated unfolding the goal 'distance(X,W,3)' defined below:

distance(X,X,0).
distance(X,W,N1):-

N is N1-1,distance(X,Z,N),connected(Z,W).

Publi shed in Reflection 99, LNCS N° 1616

On a grid, all the points that are at a distance two of X are not at a distance three.
Moreover, when unfolding definitions in more complex domains, it often happens
that two variables are unified, there is only one variable left after unfolding. Un-
folding can lead to generate rules similar to this one:

distance(X,X,3):-
connected(X,Y),connected(Y,Z),connected(Z,X).

This rule has been correctly generated by a correct metaprogram on a correct
domain theory, but it is a rule that will never be applied, because no point on a grid
is at a distance three of itself.

We can detect that this rule cannot be fired because we have access to the com-
plete set of facts representing the topology of the board in this domain. In the gener-
ated rules, we only select the conditions that are related to the topology of the board
(the connected predicates and the test that are done on the variables representing
intersections of the grid). Then we fire this set of conditions on the complete set of
facts. If the set of conditions never matches, we are confident that the system has
generated an impossible set of conditions. In order to find the minimal set of impos-
sible conditions, the system tries to remove the conditions one by one until each
removed condition leads to a possible set of conditions. We now have a minimal set
of conditions representing a subset of the initial rule that is impossible to match. In
our simple example of the distance three goal, it is composed of the three conditions
of the rule.

Once this subset is created, it is used to generate a new impossibilit y metarule.
Impossibilit y metarules match generated rules to find subsets of impossible condi-
tions. If an impossibilit y metarule succeeds, the generated rule is removed. The
impossibility metarule generated in our example is:

impossible(ListAtoms):-
member(connected(X,Y) , ListAtoms),
var(X), var(Y),X\==Y,
member(connected(A,Z), ListAtoms),
A==Y,var(A), var(Z),A\==Z,
member(connected(B,C), ListAtoms),
B==Z,var(B), var(C),B\==C,C==X.

The generation of impossibilit y metarules is useful in almost all the planning do-
mains we have studied. Here is another example of its usefulness for the game of
Abalone.

Publi shed in Reflection 99, LNCS N° 1616

Fig. 3. An abalone board at the beginning of the game

The figure 3 represents an Abalone board, on this board, each position has six
neighbors instead of four for the grid board. Each neighbor is associated to one of
the six directions represented by numbers ranging from 1 to 6.

1

3

2

6

5 4

Fig. 4. The directions a stone can be moved to are marked, ranging from one to six.

In the rules of the game and therefore in the rules generated by our metaprogram,
the connected predicates contain a slot for the direction. Here is an example of an
impossible set of conditions in the game of Abalone :

 connected(X,Y,Direction),connected(Y,X,Direction),

The corresponding impossibilit y metarule for the game of Abalone is:

impossible(ListAtoms):-
member(connected(X,Y,D), ListAtoms),
member(connected(A,B,C), ListAtoms),
A==Y,B==X,C==D.

It is also generated using our metametaprogram that generate impossibilit y
metarules.

3.2 Metaprogramming simplifying metarules

The system sometimes generates some rules that contain useless conditions. We
give below a rule that finds a path of length four to go from one point of a grid to
another one without going twice through the same point. After each new instancia-

Publi shed in Reflection 99, LNCS N° 1616

tion of a variable in the conditions, the rule verifies that the instanciated point is
different from any previously instanciated one.

After each condition in the rule, we give the number of times the condition has
been verified when matching the rule once on a set of facts.

 distance(X,D,4):-
connected(X,Y), 4
X=\=Y, 4
connected(Y,Z), 16
Z=\=X, 12
Z=\=Y, 12
connected(Z,W), 48
W=\=X, 48
W=\=Y, 36
W=\=Z, 36
connected(W,D). 144

However, in some cases, it is useless to verify that some points are different due
to the topology of the grid. For example, two connected points are always different.
We can use a metarule that tell s to remove the condition 'X=\=Y' if the condition
'co nnected(X,Y)' is also present in the rule:

useless(X=\=Y,ListAtoms):-
member(connected(X,Y),ListAtoms),
member(A=\=B,ListAtoms),A==X,B==Y.

Another metarule, given below, removes the condition 'X=\=Y' when there is a
path of length three between the two points contained in X and Y, this is a conse-
quence of the figure 2 that shows all the points that are at a three step path from
point A: A is not at a three step path of itself.

useless(X=\=Z,ListAtoms):-
member(connected(X,Y),ListAtoms),
var(X), var(Y),X\==Y,
member(connected(Y,Z), ListAtoms),
var(Y), var(Z),Y\==Z,
member(connected(Z,A), ListAtoms),
var(Z), var(A),Z\==Y,A==X.

The initial rule makes 361 instanciations and tests. After firing the metarule of
deletion on the initial rule, we obtain the rule below that only makes 261 instancia-
tions or tests with the same results.

distance(X,D,4):-
connected(X,Y), 4
connected(Y,Z), 16
Z=\=X, 12
connected(Z,W), 48

Publi shed in Reflection 99, LNCS N° 1616

W=\=Y, 36
connected(W,D). 144

The simpli fying metarules described here can also be generated using a complete
set of facts representing the board topology.

For example, if our system analyzes a rule containing the conditions:

connected(X,Y), X=\=Y,

in this order. It observes that the condition 'X=\=Y' is always fulfill ed. So it
tries to remove all the conditions of the rule one by one, provided the condition
'X=\=Y' is always fulfill ed when matching the set of remaining conditions. At the
end of this process, the final set of conditions only contains the two above condi-
tions, and the condition 'X=\=Y' is always fulfill ed for all the complete set of facts
in the working memory. As the set of fact representing the topology of the board is
complete, it can generate a new simpli fying metarule that will apply to all the gen-
erated rules of this domain. This simpli fying metarule is the one given above.

This method works in all planning domains where a complete set of facts can be
isolated, such as the topology of the board, for games where the topology cannot be
changed by the moves.

3.3 Metaprogramming ordering metarules

Related Work
P. Laird [14] uses statistics on some runs of a program to reorder and to unfold
clauses of this program. T. Ishida [12] also dynamicall y uses some simple heuristics
to find a good ordering of conditions for a production system. Our approach is
somewhat different, it takes examples of working memories to create metarules that
will be used to reorder the clauses. What we do, is automaticall y creating a metap-
rogram that is used to reorder the clauses, and not dynamicall y reordering conditions
of the rules. One advantage is that we can create this metaprogram independently.
Moreover, once the metaprogram is created, running it to reorder learned rules is
faster than dynamicall y optimizing the learned rules. This feature is important for
systems that use a large number of generated rules. The creation of the metaprogram
is also fast.

We rely on the assumption that domain-dependent information can enhance
problem solving [16]. This assumption is given experimental evidence on constraint
satisfaction problems by S. Minton [17]. On the contrary of Minton, we do not spe-
ciali ze heuristics on specific problems instances, we rather create metaprograms
according to specific distributions of working memories.

Reordering conditions
Reordering conditions is very important for the performance of generated rules. The
two following rules are simple examples that show the importance of a good order

Publi shed in Reflection 99, LNCS N° 1616

of conditions. The two rules give the same results but do not have the same eff icacy
when X is known and Y unknown:

sisterinlaw(X,Y):-brother(X,X1),married(X1,Y),woman(Y).
sisterinlaw(X,Y):-woman(Y),brother(X,X1),married(X1,Y).

Reordering based only on the number of free variables in a condition does not
work for the example above. In the constraint literature, constraints are reordered
according to two heuristics concerning the variables to bind [17] : the range of val-
ues of the variables and the number of other variables it is linked to. These heuris-
tics dynamicall y choose the order of constraints. But to do so, they have to keep the
number of possible bindings for each variable, and to lose time when dynamicall y
choosing the variable. It is justified in the domain of constraints solving because the
range of value of a variable, affects a lot eff iciency, and can change a lot from one
problem to another. It is not justified in some other domains where the range of
value a variable can take is more stable. We have chosen to order conditions, and
thus variables, staticall y by reordering once for all and not dynamicall y at each
match because it saves more time in the domains in which we have tested our ap-
proach.

Reordering optimally the conditions in a given rule is an NP-complete problem.
To reorder conditions in our generated rules, we use a simple and eff icient algo-
rithm. It is based on the estimated number of following nodes the firing of a condi-
tion will create in the semi-unification tree. Here are two metarules used to reorder
conditions of generated rules in the game of Go:

branching(ListAtoms,ListBindVariables,
connected(X,Y),3.76):-
member(connected(X,Y), ListAtoms),
member_term(X,ListBindVariables),
non_member_term(Y,ListBindVariables).

branching(ListAtoms,ListBindVariables,
elementstring(X,Y),94.8):-
member(elementstring(X,Y), ListAtoms),
non_member_term(X,ListBindVariables),
non_member_term(Y,ListBindVariables).

A metarule evaluates the branching factor of a condition based on the estimated
mean number of facts matching the condition in the working memory. Metarules are
fired each time the system has to give a branching estimation for all the conditions
left to be ordered. When reordering a rule containing N conditions, the metarule will
be fired N times: the first time to choose the condition to put at first in the rule, and
at time number T to choose the condition to put in the Tth place. In the first reorder-
ing metarule above, the variable X is already present in some of the conditions pre-
ceding the condition to be chosen. The variable Y is not present in the preceding
conditions. The condition 'connected(X,Y)' is therefore estimated to have a
branching factor of 3.76 (this is the mean number of neighbor intersections of an

Publi shed in Reflection 99, LNCS N° 1616

intersection on a 19*19 grid, this number can vary from 2 to 4), this is the mean
number of bindings of Y.

The branching factors of all the conditions to reorder are compared and the con-
dition with the lowest branching factor is chosen. The algorithm is very eff icient, it
orders rules better than humans do and it runs fast even for rules containing more
than 200 conditions.

Generating ordering metarules
For each predicate in the domain theory that has an arity less or equal than three.
Each variable of the predicate free or not, leading to 23=8 possibiliti es for the three
variables. So, for each predicate, we create between 1 and 8 metarules.

For predicates of arity greater than three, we only create the metarules that corre-
sponds to the bindings of all but one of the variables of the predicate.

All the metarules are tested on some working memories. This enables to conclude
on the priority to give to the metarule. The priority is the mean number of bindings
the condition will create. The lower the priority, the sooner the condition is to be
matched. When all the variables of a condition are instanciated, it is a test and it has
a priority between zero and one, whereas predicates containing free variables have,
most of the time, a priority greater than one.

4 Results

This section gives the results and the analysis of some experiments in generating
metaprograms. We used a Pentium 133 with SWI-Prolog for testing.

4.1 Metaprogramming impossibility metarules

In the figure 5, the horizontal axis represents the number of rules unfolded by our
metaprogram on one move. This experiment was reali zed using the game of Go
domain theory associated to the subgoal of taking stones of the opponent. There are
six unfolded rules, it means that six rules concluding on a won subgoal of taking
stones where randomly chosen out of the total number of such rules created by our
system. Each of these six rules has been unfolded using the rules of the game of Go,
without the cuts of impossibilit y and monovaluation metarules. All of the six rules
to unfold, match Go boards where the friend color can take the opponent string in
less than two moves, whatever the opponent plays. The goal of the unfolding was to
find all the rules that find a move that lead to match one of the six rules concluding
on a won state. The vertical axis of the figure 5 represents the cumulated number of
rules that have been created for each of the six rules. We did not match the impossi-
ble and monovaluation metarules on the resulting rules because it would have been
to time consuming.

Publi shed in Reflection 99, LNCS N° 1616

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

1 2 3 4 5 6

of unfolded rules

of
resulting
rules

Fig. 5. Number of rules generated when unfolding six simple rules without impossibilit y and
monovaluation metarules.

Instead of unfolding all the rules one move ahead and then destroying useless
rules, we matched the monovaluation and impossibilit y metarules after each un-
folding step (an unfolding step is the replacement of a predicate by one of its defini-
tions). Each unfolding step is considered as a node in the unfolding tree.

0

20

40

60

80

100

120

1 2 3 4 5 6

of unfolded rules

of
resulting
rules

Fig. 6. Number of rules generated when unfolding six simple rules with impossibilit y and
monovaluation metarules

This resulted in a very significant improvement of the speciali zation program, it
was much faster and completely unfolding the six rules only gave 106 resulting rules
concluding on winning moves to take stones 3 moves in advance. The results are
shown in the figure 6, and can be compared with the results of the figure 5. It is
important to see that among all the resulting rules of the figure 5, only the 106 re-
sulting rules of the figure 6 are valid and different from each other.

This experiment also stresses the importance of the impossibilit y metarules.
Without them, unfolding a goal on a domain theory is not practicall y feasible.
Therefore impossibilit y metarules are necessary for such programs, and automati-
call y generating them is a step further in the automatisation of planning programs
development.

Publi shed in Reflection 99, LNCS N° 1616

4.2 Metaprogramming ordering metarules

When no metarule concludes on the priority of the conditions left to be ordered,
simple reordering heuristics are used. For example, the condition containing the less
variables is chosen.

Following are two equivalent rules. The first one is ordered without metarules,
and the second one is ordered using the learned metarules :

threattoconnect(C,B,B1,I):-
colorintersection(I1,empty), 55
connected(I,I1), 208
connected(I1,I2), 796
I=\=I2, 588
liberty(I2,B1), 306
colorblock(B1,C), 140
liberty(I,B), 84
colorblock(B,C), 36
color(C). 36
 2249

threattoconnect(C,B,B1,I):- 1
color(C), 2
colorblock(B,C), 14
liberty(I,B), 68
connected(I,I1), 240
colorintersection(I1,empty), 96
connected(I1,I2), 350
I=\=I2, 254
liberty(I2,B1), 84
colorblock(B1,C). 36
 1145

Each condition is followed by the number of time it has been accessed during the
matching of the rule. In this example, when choosing the first condition, a classic
order gives ' colorintersection(I,empty)' in the first rule. In the second
rule, the two following metarules where matched among others to assign priorities
to conditions :

branching(ListAtoms,ListBindVariables,
colorintersection(I,C),240.8):-
member(colorintersection(I,C), ListAtoms),
C==empty,
non_member_term(I,ListBindVariables).

branching(ListAtoms,ListBindVariables,color(C),2):-
member(color(C), ListAtoms),
non_member_term(C,ListBindVariables).

Publi shed in Reflection 99, LNCS N° 1616

Therefore, the condition 'color(C)' has been chosen because it has the lowest
branching factor.

The two rules given in the example are simple rules. Speedups are more impor-
tant with rules containing more conditions.

Number of
metarules

Match time (sec)

10 20 30 40 50 60 70 80

5

10

15
20

25

30
35

Fig. 7. The match time of generated rules decreases when more ordering metarules are gen-
erated and used.

The figure 7 gives the evolution of the matching time of a set of generated rules
with the number of metarules generated. The evolution is computed on a test set of
50 problems. Problems in the test set are different from the problems used to gener-
ate the metarules.

5 Conclusion

Metaprogramming games and planning domains is considered as an interesting
challenge for AI [19],[23]. Moreover it has advantages over traditional approaches:
metaprograms automaticall y create the rules that otherwise take a lot of time to
create, and the results of the search trees developed using the generated programs
are more reliable than the results of the search trees developed using traditional
heuristic and hand-coded rules.

The Go program that uses the rules resulting of the metaprogramming has good
results in international competitions (6 out of 40 in 1997 FOST cup [8], 6 out of 17
in 1998 world computer Go championship). The metaprogramming methods pre-
sented here can be applied in many games and in other domains than games. They
have been applied to other games li ke Abalone and Go-Moku, and to planning
problems [3]. Using metaprogramming this way is particularly suited to automati-
call y create complex, eff icient and reliable programs in domains that are complex
enough to require a lot of knowledge to cut search trees.

However metaprogramming large programs can be itself time consuming. We
have proposed and evaluated methods to apply metaprogramming to itself so as to

Publi shed in Reflection 99, LNCS N° 1616

make it more eff icient. These methods gave successful results. Moreover they tend
to give even better results when generated programs become more complex.

6 References

1. Alli s, L. V.: Searching for Solutions in Games an Artificial Intelli gence. Ph.D. diss., Vrije
Universitat Amsterdam, Maastricht 1994.

2. Barklund J. : Metaprogramming in Logic. UPMAIL Technical Report N° 80, Uppsala,
Sweden, 1994.

3. Cazenave, T.: Système d’Apprentissage par Auto-Observation. Appli cation au Jeu de Go.
Ph.D. diss., Université Paris 6, 1996.

4. Cazenave T.: Metaprogramming Forced Moves. Proceedings ECAI98, Brigthon, 1998.
5. Cazenave T.: Controlled Partial Deduction of Declarative Logic Programs. ACM Com-

puting Surveys, Special issue on Partial Evaluation, 1998.
6. Dejong, G. and Mooney, R.: Explanation Based Learning : an alternative view. Machine

Learning 1 (2), 1986.
7. Etzioni, O.: A structural theory of explanation-based learning. Artificial Intelli gence 60

(1), pp. 93-139, 1993.
8. Fotland D. and Yoshikawa A.: The 3rd fost-cup world-open computer-go championship.

ICCA Journal 20 (4):276-278, 1997.
9. Gallagher J.: Speciali zation of Logic Programs. Proceedings of the ACM SIGPLAN

Symposium on PEPM’93, Ed. David Schmidt, ACM Press, Copenhagen, Danemark,
1993.

10. Gödel K.: 'Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I', Monatsh. Math. Phys. 38, 173-98, 1931.

11. Hill P. M. and Lloyd J. W.: The Gödel Programming Language. MIT Press, Cambridge,
Mass., 1994.

12. Ishida T.: Optimizing Rules in Production System Programs, AAA I 1988, pp 699-704,
1988.

13. Laird, J.; Rosenbloom, P. and Newell A. Chunking in SOAR : An Anatomy of a General
Learning Mechanism. Machine Learning 1 (1), 1986.

14. Laird P.: Dynamic Optimization. ICML-92, pp. 263-272, 1992.
15. Lloyd J. W. and Shepherdson J. C.: Partial Evaluation in Logic Programming. J. Logic

Programming, 11 :217-242., 1991.
16. Minton S.: Is There Any Need for Domain-Dependent Control Information : A Reply.

AAA I-96, 1990.
17. S. Minton. Automaticall y Configuring Constraints Satisfaction Programs : A Case Study.

Constraints, Volume 1, Number 1, 1996.
18. Mitchell , T. M.; Keller, R. M. and Kedar-Kabelli S. T.: Explanation-based Generali za-

tion : A unifying view. Machine Learning 1 (1), 1986.
19. Pell B.: A Strategic Metagame Player for General Chess-Like Games. Proceedings of

AAA I'94, pp. 1378-1385, 1994. ISBN 0-262-61102-3.
20. Pettorossi, A. and Proietti, M.: A Comparative Revisitation of Some Program Transfor-

mation Techniques. Partial Evaluation, International Seminar, Dagstuhl Castle, Germany
LNCS 1110, pp. 355-385, Springer 1996.

Publi shed in Reflection 99, LNCS N° 1616

21. Pitrat J.: Reali zation of a Program Learning to Find Combinations at Chess. Computer
Oriented Learning Processes, J. C. Simon editor. NATO Advanced Study Institutes Series.
Series E: Applied Science - N° 14. Noordhoff , Leyden, 1976.

22. Pitrat, J.: Métaconnaissance - Futur de l’I ntelli gence Artificielle. Hermès, Paris, 1990.
23. Pitrat, J.: Games: The Next Challenge. ICCA journal, vol. 21, No. 3, September 1998,

pp.147-156, 1998.
24. Ram, A. and Leake, D.: Goal-Driven Learning. Cambridge, MA, MIT Press/Bradford

Books, 1995.
25. Selman, B.; Brooks, R. A.; Dean, T.; Horvitz, E.; Mitchell , T. M.; Nil sson, N. J.: Chal-

lenge Problems for Artificial Intelli gence. In Proceedings AAA I-96, 1340-1345, 1996.
26. Tamaki H. and Sato T.: Unfold/Fold Transformations of Logic Programs. Proc. 2nd Intl.

Logic Programming Conf., Uppsala Univ., 1984.
27. Van den Herik, H. J.; Alli s, L. V.; Herschberg, I. S.: Which Games Will Survive ? Heu-

ristic Programming in Artificial Intelli gence 2, the Second Computer Olympiad (eds. D.
N. L. Levy and D. F. Beal), pp. 232-243. Elli s Horwood. ISBN 0-13-382615-5. 1991.

28. Van Harmelen F. and Bundy A.: Explanation based generali sation = partial evaluation.
Artificial Intelli gence 36:401-412, 1988.

