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Abstract

In this article we try different algorithms, namely Nested
Monte Carlo Search and Greedy Best First Search, on As-
traZeneca’s open source retrosynthetic tool : AiZynthFinder.
We compare these algorithms to AiZynthFinder’s base Monte
Carlo Tree Search on a benchmark selected from the Pub-
Chem database and by Bayer’s chemists.
We show that both Nested Monte Carlo Search and Greedy
Best First Search outperform AstraZeneca’s Monte Carlo
Tree Search, with a slight advantage for Nested Monte Carlo
Search while experimenting on a playout heuristic. We also
show how the search algorithms are bounded by the quality
of the policy network, in order to improve our results the next
step is to improve the policy network.

Introduction
Retrosynthesis is a domain of organic chemistry which con-
sist in finding a synthetic route (a sequence of reactions) for
a given molecule in order to synthesize it from a given set of
available precursor molecules (Lin, Tu, and Coley 2022). It
is an important part of organic chemistry molecule synthesis,
and can be used to produce newfound drugs. What we aim
for in this paper is to evaluate the strength and weaknesses
of two search algorithms by comparing them to AiZyn-
thFinder’s Monte Carlo Tree Search (MCTS) on a small
benchmark consisting of curated and complex molecules,
covering many reactions encountered by chemists.

The second section presents the AiZynthFinder retrosyn-
thesis tool, the third section describes the search algorithms
we compare, the fourth section details the benchmark used
to compare the search algorithms, the fifth section gives ex-
perimental results.

AiZynthFinder
AiZynthFinder (Genheden et al. 2020) is a retrosynthesis
tool made by AstraZeneca’s research and development. It
has the advantage of being open source, understandable and
well described.

AiZynthFinder uses a neural network trained on USPTO
50K, a set containing about 50 000 reactions from organic
chemistry patents (Lowe 2012). That neural network role
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is to select the best reactions among these 50 000 given a
molecule we want to synthesize, it also gives a value to each
move (the prior). Due to how the program works, it’s hard
to do without that neural network and the priors because it
would require finding another method to evaluate the reac-
tions available for a molecule. Thus, every algorithm pre-
sented here get their possible moves/reactions from the pol-
icy neural network. In this article we use AstraZeneca’s open
source pre-trained network. Training a network to predict
more accurately the reactions for molecule retrosynthesis is
another domain called ”one step retrosynthesis”, see (Lin,
Tu, and Coley 2022), it is not what we aim to explore here.

AiZynthFinder takes the SMILES: a string representation
of a molecule, as an input which makes the first state. A state
is a set of molecules, from each state the neural network pro-
poses some reactions producing a molecule from the state
from precursors. If a reaction is played the molecule is re-
moved from the state, and the precursors are added (a reac-
tion can also be a modification of the molecule’s shape only,
not removing any atom, we call these ”structural moves”).
Retrosynthesis often uses and/or trees, here the ”and” are
combined into a single state as it makes the search more sim-
ple.

The goal of retrosynthesis is to obtain a state only
made from molecules (precursors) that are in stock,
here we use the ZINC (Irwin and Shoichet 2005)
molecule database, a curated collection of commercially
available chemical compounds prepared especially for
virtual screening. Any state is evaluated by AiZyn-
thFinder’s base evaluation function which is 0.95 ∗
(fraction of molecules making the state in stock) +
0.05 ∗ (depth of the reaction tree). We don’t modify it
directly in this study but exploring different score functions
could be interesting in future works.

Algorithms
Our algorithms use common primitives:
• Mstate represents the moves available from state state.
• play(state, m) executes the move m on the state state

and returns a children state of state.
• score(state) evaluates a state with a float value.
• (state,m) when used in a function represents the new

state reached from state ny playing the move m, thus



visits(state,m) means visits(play(state,m)).

AizynthFinder’s MCTS
AiZynthFinder uses a MCTS algorithm with priors very
similar to PUCT. PUCT stands for ”Prior Upper Confidence
bounds applied to Trees”, it is a generalisation of the UCT
algorithm (Kocsis and Szepesvári 2006) using priors for
each state of the problem (the prior is the policy at the output
of the neural network here), see (Rosin 2011a) for the origi-
nal version of PUCT. PUCT has been used in AlphaGo (Sil-
ver et al. 2016) and Alpha Zero (Silver et al. 2018). Just like
PUCT, this MCTS algorithm explores the tree using play-
outs: selecting the best move to play according to its eval-
uation, until it reaches a state not explored yet or reaches
a terminal state. That state is added to the transposition ta-
ble (containing the number of visits for that state, for each
children and the evaluations), then the score of that newly
explored state is retro-propagated to update the parent states.

AiZynthFinder’s MCTS in Algorithm 1 differs from stan-
dard PUCT (Rosin 2011a) in how the bandit value is de-
termined. In all our experiments the c hyper-parameter is
AstraZeneca’s base one of 1.4.

Algorithm 1: The MCTS algorithm
1: function MCTS(state)
2: if terminal(state) then return score(state)
3: end if
4: if state is not in the transposition table then
5: add state to the transposition table
6: return score(state)
7: else
8: best-score← −∞
9: mean← prior(state,m)

10: if visits(state) > 0 then
11: mean← sumEvals(state)+prior(state,m)

visits(state)+1

12: end if
13: for each m in Mstate do
14: µ← mean
15: if visits(s,m) > 0 then
16: µ← sumEval(state,m)+prior(state,m)

visits(state,m)+1

17: end if
18: bandit← µ+ c×

√
2×(visits(state)+1)
(visits(state,m)+1)

19: if bandit > best− score then
20: best-score← bandit
21: best-move← m
22: end if
23: end for
24: res← MCTS(play(state, best-move)
25: update the transposition table
26: return res
27: end if
28: end function

When AiZynthFinder’s creators compared it to ASKCOS,
the MIT and DARPA’s retrosynthetic solver (Coley et al.
2017), it showed similar performances (Genheden et al.
2020).

Nested Monte Carlo Search

Monte Carlo Tree Search (MCTS) has been successfully ap-
plied to many games and problems (Browne et al. 2012).

Nested Monte Carlo Search (NMCS) (Cazenave 2009)
is an algorithm that works well for puzzles and optimiza-
tion problems. It biases its playouts using lower level play-
outs. At level zero NMCS adopts a uniform random play-
out policy. Online learning of playout strategies combined
with NMCS has given good results on optimization prob-
lems (Rimmel, Teytaud, and Cazenave 2011). Other appli-
cations of NMCS include Single Player General Game Play-
ing (Méhat and Cazenave 2010), Cooperative Pathfinding
(Bouzy 2013), Software testing (Poulding and Feldt 2014),
heuristic Model-Checking (Poulding and Feldt 2015), the
Pancake problem (Bouzy 2016), Games (Cazenave et al.
2016) and the RNA inverse folding problem (Portela 2018).

Online learning of a playout policy in the context of
nested searches has been further developed for puzzles
and optimization with Nested Rollout Policy Adaptation
(NRPA) (Rosin 2011b). NRPA has found new world records
in Morpion Solitaire and crosswords puzzles. NRPA has
been applied to multiple problems: the Traveling Salesman
with Time Windows (TSPTW) problem (Cazenave and Tey-
taud 2012; Edelkamp et al. 2013), 3D Packing with Object
Orientation (Edelkamp, Gath, and Rohde 2014), the physical
traveling salesman problem (Edelkamp and Greulich 2014),
the Multiple Sequence Alignment problem (Edelkamp and
Tang 2015) or Logistics (Edelkamp et al. 2016). The princi-
ple of NRPA is to adapt the playout policy so as to learn the
best sequence of moves found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree Search
dates back to the general game player Cadia Player and its
MAST playout policy (Finnsson and Björnsson 2008).

NMCS (Cazenave 2009) recursively calls lower level
NMCS on children states of the current state in order to
decide which move to play next, the lowest level of NMCS
being a random playout, selecting uniformly the move to
execute among the possible moves. A heuristic can be added
to the playout choices.

Here we used an heuristic to penalize the structural moves
(when nothing is added or removed from the molecule, it
only changes shape) because these moves often occupied
most of the limited depth of search, even looping to a
previous state sometimes. We use the score of the children
(between 0 and 1), to which we add 1 if the largest molecule
weight in the state is smaller than its parent largest molecule
weight, that value is then the chance to select that move,
over the sum of every other move’s values. The modified
score function for the heuristic and the heuristic are de-
scibed in algorithm 3.

While we did not use softmax to harden the heuristic, nor
tuned the parameters, that simple heuristic allowed us to di-
minish the structural moves problem, giving them less than
half the chance of being selected in playouts than before,
and led to better results.



Algorithm 2: The NMCS algorithm.
1: function NMCS(c-st, lv)
2: if lv = 0 then ▷ Playout if lv = 0
3: ply ← 0
4: seq ← {}
5: while not terminal(c-st) do
6: we use this line for random playouts
7: move← randomChoice(Mc-st) ▷ by

default we use random playouts
8: move← HEURICHOICE(Mc-st) ▷ when

possible, using an heuristic can lead to better results
9: c-st← play(c-st,move)

10: seq[ply]← move
11: ply+ = 1
12: end while
13: return (score (c-st), seq)
14: else
15: best-score← −∞
16: best-sequence← []
17: ply ← 0
18: while c-st is not terminal do
19: for each move in Mc-st do
20: n-st← play(c-st,move)
21: (score, seq)←NMCS(n-st, level − 1)
22: if score ≥ best-score then
23: best-score← score
24: best-sequence[ply..]← move+seq
25: end if
26: end for
27: next-move← best-sequence[ply]
28: ply ← ply + 1
29: c-state← play(ct-st, next-move)
30: end while
31: return (best-score, best-sequence)
32: end if
33: end function

Greedy Best First Search
GBFS stands for Greedy Best-First Search. It is a simple al-
gorithm which consists in opening (and removing) the best
node from a list of nodes sorted by their scores, evaluat-
ing all its children and inserting them in the sorted list of
nodes, and then repeat the operation by opening the new best
node (Doran and Michie 1966). The evaluation function can
use playouts to make the algorithm closer to a Monte Carlo
Search algorithm. Like MCTS, that algorithm can lock it-
self in a local minimum, but is faster (and less accurate) as
it skips the playout and the associated calculations between
each node discovery. Both lack the forced progress in depth
of NMCS. We describe GBFS in Algorithm 4.

The function insert(open-states, score, new-state) in-
serts new-state in the sorted list open-states given the
score value.

We modified the evaluation function similarly to the
NMCS playout one : if the children’s biggest molecule is
smaller than the parent’s then add 1 to the score. That modi-
fication allows to avoid structural moves, multiplying states

Algorithm 3: The modified score function and heuristic
choice.

1: function VAL(s1, s2)
2: val (s1, s2) :
3: if biggest molecule from s1 is smaller than biggest

molecule from s2 then
4: return score(s1) + 1
5: end if
6: return score(s1)
7: end function
8: function HEURICHOICE(moves)
9: weights← [val(play(st,m), st) for m in Mst]

10: su← 0
11: rd← randomRange(0, sum(weights))
12: ind← 0
13: for w in weights do
14: su← su+ w
15: if su ≥ rd then return ind
16: end if
17: ind← ind+ 1
18: end for
19: return ind
20: end function

with high scores, but also prevents structural moves that are
sometimes necessary to the resolution of a molecule, finding
an alternative solution would greatly help this algorithm.

Benchmark
To compare our algorithms to AstraZeneca’s MCTS, we use
a small curated subset containing 40 SMILES representa-
tion of drugs from the PübChem database selected by (Ertl
and Schuffenhauer 2009) (C) and 20 SMILES representa-
tion of molecules selected by Bayer’s chemists (A). The
40 molecules selected from PubChem by the authors of the
benchmark were obtained randomly in such a way to cover
small to large molecules, the original goal of this benchmark
was to test the prediction of difficulty of retrosynthesis of
these molecules, thus these 40 molecules feature some of
the hardest to synthetize according to some chemists (Ertl
and Schuffenhauer 2009).

Generally, one step retrosynthesis uses USPTO-50K as a
benchmark. However here we are not trying to benchmark
the reaction propositions of our neural network, but how
our algorithm solve the retrosynthesis problem. Thus our
benchmark provides a few advantages : proposing harder
molecules to synthetize, reducing the benchmark size allow-
ing us to focus more on each molecule and giving a fixed
benchmark to compare with others. That is why we think
this benchmark is the most appropriate.

You can find the SMILES representation of this bench-
mark in table 3 in the appendix.

Results
These experiences were made on a 3.50GHz intel core i5-
6600K on windows 10 with 32 Gb of RAM. We used the
same common parameters for every algorithm:



Algorithm 4: The GBFS algorithm.
1: function GBFS(ini-state, max-iter)
2: open-states← [ini-state]
3: state← ini-state
4: iter ← 0
5: best-state← ini-state
6: best-score← score(ini-state)
7: while not optimal(state) and open-states ̸= [] and

iter < max-iter do
8: iter ← iter + 1
9: state← pop( open-states, 0)

10: for each move in Mstate do
11: new-state← play(state, move)
12: score← score(new-state)
13: insert(open-states, score, new-state)
14: if score ≥ best-score then
15: best-state← state
16: best-score← score
17: end if
18: end for
19: end while
20: return best-state
21: end function

• Max step for substrates (how many reactions we can
make from a substrate to the target molecule) : 15

• Policy cutoff cumulative : 0.995
• Policy cutoff number (maximum number of possible

moves returned on a molecule) : 50
• Filter cutoff : 0.05

MCTS
To compare our algorithms, we ran AiZynthFinder MCTS
at least 2 times on each of the 60 molecules of the bench-
mark with the base settings, C= 1.4. Running it a few times
only is not problematic because the MCTS results were ob-
served to be very stable (mostly deterministic) on the few
molecules we ran it multiple times on, also our goal is not to
measure the exact solving times as they heavily depend on
the implementation, the language and the hardware, but see
how many molecules of the benchmark a given algorithm
can find a synthetic route for. The times specified in the re-
sults are not the main part of the results and are here only to
give an idea of the differences of performance between the
algorithms. The main part of the result is wether a molecule
was solved by an algorithm or not.

First we ran the MCTS (Table 1) with a timeout of 2 min-
utes an maximum number of iteration of 100 (”MCTS 2mn
100it”), the C molecules (from PubChem) were mostly ei-
ther solved instantly ( < 200ms) or not solved in 2 minutes,
on the contrary the molecules selected by Bayer’s chemists
took generally more time to be solved if they were. In addi-
tion, a bigger proportion of molecules from A were solved
than from C, which can be explained by their sizes and the
presence of distinctive atoms (like fluor). We then launched
the MCTS with a time limit of 20 minutes, solving few more
molecules, and finally, we launched a MCTS of 2h on some

Table 1: AiZynthFinder’s MCTS results

Solved
instanta
-neously

Solved by
MCTS 2mn
100it

Solved
by MCTS
20mn

Not
solved

C1 (0.167),
C3 (0.130),
C5 (0.080),
C8 (0.125),
C13 (0.061),
C14 (0.060),
C21 (0.061),
C23 (0.149),
C25 (0.064),
C26 (0.071),
C31 (0.063),
C34 (0.063),
C40 (0.066),
A11 (0.120)

C20(22.088),
C36(41.294),
A1 (5.225),
A2 (12.948),
A4 (0.821),
A7 (84.585),
A9 (0.743),
A14 (0.792),
A16
(12.490),
A17 (2.564),
A18
(15.447),
A19 (0.343)

C19
(310.966),
C22
(425.647),
A5
(1086.547),
A15
(587.830)

C2, C4,
C6, C7,
C9, C10,
C11, C12,
C15, C16,
C17, C18,
C24, C27,
C28, C29,
C30, C32,
C33, C35,
C37*,
C38, C39,
A0, A3,
A6, A8,
A10, A12,
A13

of the remaining ones : C2, C35, C37, C38. Only C37 got
solved in 5236.093 seconds.

The values next to the molecule id on Table 1 is the time
in seconds it took to find the solution.

As you can see on Table 1, increasing the MCTS search
time doesn’t help much, the molecules are either solved in-
stantaneously ( < 200ms) or very quickly. The instantaneous
solving is due to the neural network (one-step retrosynthe-
sis) which immediately proposes the right solution in 1 or
2 reactions for small molecules, meaning that the quality of
the search algorithm doesn’t matter on these molecules, and
is solved equally as fast with the MCTS, the NMCS, the
GBFS, and even a NMCS without playout. These molecules
are not useful to our research so we remove them from the
set for further experiences.

Other Algorithms
Every molecule solved by the MCTS was also solved by
NMCS and GBFS, even if they may be slower than MCTS
for easy states (the GBFS has to instancy 50 childs per
opened state even if it uses only one or two). Thus, we are
going to focus on molecules not solved by AizynthFinder
base MCTS and those that took at least a minute to solve.

For the NMCS, we first perform a level 1 NMCS using
only the 5 best moves from each state, instead of the 50 best
given by the Policy cutoff number, if that NMCS (usually
shorter than 1 minute) fails we perform a much longer level
1 NMCS using all the 50 moves. If even that fails, we launch
the level 2 NMCS. The level 2 NMCS is very slow, but is
able to solve molecules unsolved by both MCTS and GBFS.

The GBFS was only launched once on each molecule be-
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Figure 1: Distribution of the numbers of molecules solved
with times in seconds

cause the algorithm is deterministic, it was launched with
a time limit of 20 minutes, molecules not solved by then
are considered unsolved. Given enough time, the GBFS ex-
plores the entire tree.

First, we can notice on figure1 that NMCS and GBFS out-
perform astrazeneca’s MCTS in the long run, but as the y-
axis is starting at 15, they sligthly underperform on trivial
molecules. In fact for the most trivial molecules (solved by
1 or 2 steps in less than 1s), they take about 0.6s compared
to about 0.1s for MCTS, this is because they don’t open
the most promising node according to the neural network
first. It is observed that GBFS offers a better start than both
NMCS and GBFS, but reaches its potential before both of
them, NMCS find retrosynthesis routes slower but can find
more of them. MCTS (or any algorithm opening the reac-
tion greedily according to the neural network) is better for
very short experiments (< 1s), GBFS is better for medium
length experiments (< 60s) and NMCS appears to be better
for longer experiments and more complex molecules.

Here we will focus our attention to the molecules that took
more than 2 minutes to solve or were not solved, as all the
other molecules were solved by any algorithm:

C19, C20, C22, C37, A0, A3, A5, A6, A8, A12, A13 and
A15

Table 2: Comparison of algorithms

Molecule MCTS GBFS NMCS

C19 310.966 3.765 81.267
C20 119.230 X 46.166
C22 425.647 50.800 4.255
C37 5236.093 2.836 8.919

Continued on next page

Table 2: Comparison of algorithms (Continued)

A0 X 4.569 84.582
A3 X 2.075 176.445
A5 1086.547 2.145 60.000
A6 X 29.604 1075.222
A8 X 95.365* X
A12 X 47.78 431.095
A13 X X 518.727
A15 587.830 3.587 37.178

The result on A8 were obtained by opening the 200 best
nodes given by the neural network and not the 50 best, in
addition to only searching up to a depth of 5 instead of
15. NMCS and MCTS were unable to solve the molecule
with the same parameters. The reactions required to solve
A8 were not present in the 50 best proposals from the neu-
ral network, but in the 200 best. On the other hand, a top 5
level 1 NMCS was enough to solve 30 of the 60 molecules,
meaning the NN was very accurate in these cases. It put
the emphases on how much results depend on the accuracy
of the NN, again the one we used was trained by AiZyn-
thFinder’s team on the public USPTO 50K reaction dataset
(Lowe 2012), which does not feature many reactions present
in licensed datasets such as Reaxys or Pistachio (Thakkar
et al. 2020).

Our GBFS was unable to solve C20, despite being solved
by the MCTS and the NMCS, we think it was because
our search heuristic favors the non structural moves when
a structural move is required here to cut the carbon cycle.
Overall, molecules with long carbon cycles posed problems
to be solved to all the algorithms and C20 was the smallest
and most simple of them from the benchmark.

Like with MCTS, running the other algorithms longer did
not yield much improvement. It is because the neural net-
work doesn’t always proposes the best reactions. Some re-
action patterns are not present in the USPTO-50K, the free
dataset on which our neural network was trained on by As-
traZeneca. Obtaining a better network, possibly trained on
more complete dataset (Thakkar et al. 2020) could improve
our results greatly.

To put our results in perspective, out of the 60 molecules
of our benchmark we managed to solve 35 molecules with
GBFS, and 36 with NMCS, while (Franz et al. 2022) man-
aged to solve 38 molecules with a MCTS and 41 with a
DFPN (AizynthFinder’s DFPN does not yield such results).
We hope we will be able to try with a more complete dataset
and the according NN in the future. Bigger molecule would
still be a challenge given all the moves (reactions) they of-
fer, but we think it could help with the few unsolved small
molecules: C4, C6, C7, C10, C12, C35, C38 and A10.

Conclusion
While MCTS solves 31 molecules out of 60 from this bench-
mark, GBFS solves 35 in reasonable time and NMCS solves



36. We showed that GBFS and NMCS could provide a satis-
fying improvement in performances, especially since GBFS
and NMCS are much simpler and don’t use the neural net-
work as a search policy beyond the reaction proposition, un-
like MCTS. We believe that a more accurate neural network
trained on a bigger dataset, and a more complete template
set would improve the performances.

Future Works
Retrosynthesis is a vast topic, and much remains to be done,
we only scratched the surface of AiZynthFinder here. It
would be interesting to experiment on more algorithms, in-
cluding the canonical UCT and applying the prior to the al-
gorithms we used here, use other score functions or train and
use another neural network. These research would require a
lot of time, and we can only encourage other computer sci-
entists to try their algorithms and score functions on AiZyn-
thFinder.
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Table 3: Benchmark

Mol SMILES

C1 COc4ccc3nc(NC(=O)CSc2nnc
(c1ccccc1C)[nH]2)sc3c4

C2
OC8Cc7c(O)c(C2C(O)C(c1ccc(O)c(O)c1)
Oc3cc(O)ccc23)c(O)c(C5C(O)C(c4ccc(O)

c(O)c4)Oc6cc(O)ccc56)c7OC8c9ccc(O)c(O)c9

C3 NC(=O)Nc1nsnc1C(=O)Nc2ccccc2

C4 C=CCn5c(=O)[nH]c(=O)c(=C4CC
(c2ccc1OCOc1c2)N(c3ccccc3)N4)c5=O

C5 Oc1c(Cl)cc(Cl)cc1CNc2cccc3cn[nH]c23

C6 CC(C)C(C)C=CC(C)C1CCC3C1(C)
CCC4C2(C)CCC(O)CC25CCC34OO5

C7 CC45CC(O)C1C(CC=C2CC3(CCC12)
OCCO3)C4CCC56OCCO6

C8 CCc2ccc(c1ccccc1)cc2

C9 CC5C4C(CC3C2CC=C1CC(OC(C)=O)C(O)
C(O)C1(C)C2CC(O)C34C)OC56CCC(=C)CO6

C10 CSc2ncnc3cn(C1OC(CO)C(O)C1O)nc23

Continued on next page

Table 3: Benchmark (Continued)

C11
CCc1c(C)c2cc5nc(nc4[nH]c(cc3nc

(cc1[nH]2)C(=O)C3(C)CC)c(CCC(=O)OC)
c4C)C(C)(O)C5(O)CCC(=O)OC

C12 CN(COC(C)=O)c1nc(N(C)COC(C)=O)
nc(N(C)COC(C)=O)n1

C13 CSc2ccc(OCC(=O)Nc1ccc(C(C)C)cc1)cc2

C14 Cc2ccc(C(=O)Nc1ccccc1)cc2

C15
CC5CC(C)C(O)(CC4CC3OC2(CCC1

(OC(C=CCCC(O)=O)CC=C1)O2)
C(C)CC3O4)OC5C(Br)=C

C16
COc8ccc(C27C(CC1C5C(CC=C1C2c3cc(OC)

ccc3O)C(=O)N(c4cccc(C(O)=O)c4)C5=O)
C(=O)N(Nc6ccc(Cl)cc6Cl)C7=O)cc8

C17
CC=CC(O)CC=CCC(C)C(O)CC(=O)NCC
(O)C(C)C(=O)NCCCC2OC1(CCCC(CCC

(CC=C(C)C(C)O)O1)CCC2C

C18 CCC(C)=CC(=O)OC1C(C)CC3OC1(O)
C(O)C2(C)CCC(O2)C(C)(C)C=CC(C)C3=O

C19 CCC(CO)NC(=O)c2cccc
(S(=O)(=O)N1CCCCCC1)c2

C20 CCCCCC1OC(=O)CCCCCCCCC=CC1=O

C21 COc1ccc(Cl)cc1

C22 CC(C)(C)C(Br)C(=O)NC(C)(C)
C1CCC(C)(NC(=O)C(Br)C(C)(C)C)CC1

C23 COc2cc(CNc1ccccc1)ccc
2OCC(=O)Nc3ccc(Cl)cc3

C24
COC4C=C(C)CC(C=CC=CC#CC1CC1Cl)

OC(=O)CC3(O)CC(OC2OC(C)C(O)
C(C)(O)C2OC)C(C)C(O3)C4C

C25 CCc2ccc(OC(=O)c1ccccc1Cl)cc2

C26 COc1ccccc1c2ccccc2

C27
CCCC(NC(=O)C1CC2CN1C(=O)C(C(C)(C)C)
NC(=O)Cc3cccc(OCCCO2)c3)C(=O)C(=O)NC
C(=O)NC(C(O)=O)c4ccc(NS(N)(=O)=O)cc4

C28
COC4C(O)C(C)OC(OCC3C=CC=CC(=O)

C(C)CC(C)C(OC2OC(C)CC1(OC(=O)OC1C)
C2O)C(C)C=CC(=O)OC3C)C4OC

C29 CC(C)(C)c4ccc(C(=O)Nc3nc2C(CC(=O)
NCC#C)C1(C)CCC(O)C(C)(CO)C1Cc2s3)cc4

C30
CCC7(C4OC(C3OC2(COC(c1ccc(OC)cc1)O2)

C(C)CC3C)CC4C)CCC(C6(C)CCC5(CC(OCC=
C)C(C)C(C(C)C(OC)C(C)C(O)=O)O5)O6)O7

C31 O=C(OCc1ccccc1)c2ccccc2

C32

CC(C)CC(NC(=O)C(CC(=O)NC2OC(CO)C
(OC1OC(CO)C(O)C(O)C1NC(C)=O)C(O)C2

NC(C)=O)NC(=O)c3ccccc3)C(=O)NC(C(C)O)
C(N)=O

Continued on next page



Table 3: Benchmark (Continued)

C33
CCCC5OC(=O)C(C)C(=O)C(C)C(OC1OC(C)
CC(N(C)C)C1O)C(C)(OCC=Cc3cnc2ccc(OC)
cc2c3)CC(C)C4=NCCN6C(C4C)C5(C)OC6=O

C34 COC(=O)c1ccccc1NC
(=O)CC(c2ccccc2)c3ccccc3

C35 Cc4onc5c1ncc(Cl)cc1n(C3CCCC
(CNC(=O)OCc2ccccc2)C3)c(=O)c45

C36 CC(C)OCCCNC(=O)c3cc2c
(=O)n(C)c1ccccc1c2n3C

C37 COC(=O)N4CCCC(N3CCC(n1c(=O)n(S(C)
(=O)=O)c2ccccc12)CC3)C4

C38 Cc5c(C=NN3C(=O)C2C1CC(C=C1)C2C3=O)
c4ccccc4n5Cc6ccc(N(=O)=O)cc6

C39
CCC5OC(=O)C(C)C(=O)C(C)C(OC1OC(C)CC
(N(C)C)C1O)C(C)(OCC#Cc4cc(c3ccc2ccccc2
n3)no4)CC(C)C(=O)C(C)C6NC(=O)OC56C

C40 CC(=O)Nc1ccccc1NC(=O)COc2ccccc2

A0 COC(=O)c1cccc2c(C(=O)
OC(C)C)c(nn12)c3cccc(Cl)c3

A1 CCOC(=O)C1=C(C)N(C)C(=O)NC1c2ccncc2

A2 Cn1c(nc2ccccc12)c3ncc
(cc3N4CCCC4=O)c5ccccc5

A3 CC1(COc2ccccc2)CCN1C(=O)c3ccccc3

A4 Cc1cc(nn1CC(=O)N2CCC(CC2)c3nc(cs3)
C4=NOC(C4)c5ccccc5OCC#C)C(F)(F)F

A5 CCC1(CC1)c2ccc(C)cc2CN(C3CC3)
C(=O)c4c(F)n(C)nc4C(F)F

A6 CC1CCC(CN1C(=O)c2ccnc(NS(=O)(=O)
c3cccc(Cl)c3)n2)c4cncc(c4)c5cnn(c5)C(=O)C

A7 Cc1cccc(C)c1c2csc(n2)C(=O)
NCCC3=CC(=CC(=O)N3)Oc4ccccc4Cl

A8 COc1ccc(cc1)N2CC(CC2C(=O)NCc3
ccc4CCCCc4n3)NCC(F)(F)F

A9 FC(F)(F)Oc1cc(Cl)cc(c1)n2cnc3
ccc(cc23)S(=O)(=O)NC4COC4

A10 COc1cc2c3CC(NC(=O)C)C(Oc3ccc2
cc1C#N)c4ccc(F)c(F)c4

A11 FC(F)(F)c1ccc(Nc2ncc(C(=O)NCC3CCC
(F)(F)CC3)c(n2)C(F)(F)F)c(Cl)c1

A12 Fc1cnc(Nc2ccc(cc2)C(=O)N3CCN(CC3)
C4COC4)nc1c5cnc(n5C6CCCCC6)C(F)(F)F

A13 Cc1ccc(C2=NC(O)C(=O)
Nc3cc(C)c(Cl)cc23)c(Cl)c1

A14 CC1(C)CN(C(C(=O)NC2CCCCC2)
c3cccc(c3)C(F)(F)F)C(=O)C1

Continued on next page

Table 3: Benchmark (Continued)

A15 CC(=O)Nc1ccc(cc1)S(=O)(=O)
c2ccc(cc2)C3CCN(C3)c4ccccc4

A16 Cc1cnc(C(=O)O)c(OC(F)F)c1

A17 FC(F)(F)c1nnc2CNCCn12

A18 CNCCC(Oc1cccc2ncncc12)c3cncs3

A19 FC(F)(F)c1nnc2CN(CCn12)c3cccc(I)c3


