
Procedural Generation of Rush Hour Levels

Gaspard de Batz de Trenquelleon1,2, Ahmed Choukarah1,3, Milo Roucairol1,
Maël Addoum4, and Tristan Cazenave1

1 LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France
2 École Polytechnique, Palaiseau, France

3 École Normale Supérieure - PSL, Paris, France
4 ISART Digital, Paris, France

Abstract. Procedural generation of puzzle games allows for more varied
and diverse levels, which provides a better gaming experience. However,
the generation based on deep-learning approaches is very challenging
with this genre of games due to their inherent complexity relative to
strict design rules and discrete components. In this work, we propose
a framework that is composed of three main modules: a solver and two
classifiers. Instances of Rush Hour are generated randomly and the solver
aims to assess the playability of the generated levels by classifying solv-
able and unsolvable levels and by evaluating the difficulty of solvable
levels. Two neural networks are used to improve the generation. One
network is trained to differentiate between solvable and unsolvable levels
and the other is trained to classify the difficulty of levels. The robustness
of the framework is examined on 6×6 and 7×7 grid dimensions. The
results obtained showed the effectiveness of our modules in generating
interesting and various levels with four degrees of difficulty for the Rush
Hour puzzle, where the classifier was able to quickly identify unsolvable
levels. Our framework could be easily adapted and extended for proce-
durally generating other game genres, such as Platformer or RogueLike.

Keywords: Procedural level generation, Deep Learning, Puzzle games.

1 Introduction

Rush Hour is a puzzle game, initially not a video game, in which the player has
to unblock a red car from a crowded parking lot. In the initial version, it takes
place on a 6x6 grid with only movable cars, but variants exist on larger grids or
with unmovable blocks.

We explored different methods to generate levels of Rush Hour by trying to
maximize the interest of a level according to the number of moves needed to
complete it, as well as to detect unsolvable levels.

Using Generative Adversarial Network (GAN) architecture proved to be an
inadequate solution. Hence, we attempted to create a discriminator that would
quickly classify solvable and unsolvable levels to generate then random levels
and ranking them according to their interesting degree.



2 Choukarah et al.

In order to provide unsolvable levels for our training set, we used a solver and
a random generator despite that is not the most efficient way. A neural network
was trained to recognize solvable from unsolvable levels. Since the preliminary
results are encouraging, the network is being examined to generate more complex
and larger grids for which generation could be computationally expensive with
the current solver.

The rest of the paper is structured as follows : Section 2 presents related
work and Section 3 describes the application of a solver algorithm to classify
solvable or unsolvable levels. Section 4 gives a more detailed insight into the
neural network architecture used for the random generator. Section 5 concludes
with our findings and proposes possible future work.

2 Related Work

PCG via Machine Learning (PCGML) is an emerging technology area that gen-
erates new game content using machine-learned models on existing content. Re-
cently, GAN has produced significant results as a new approach for PCG in the
computer vision field, such as video games.

2.1 PCG for Puzzles Games

Puzzle games are a specific type of game and there are several categories for
puzzles such as Sokoban-type, Sliding, Tile-Matching, Mazes, Path-building,
Physics-based and Narrative Puzzles [4]. PCGML techniques have mainly fo-
cused on Roguelike or Platformer game genres, because the generation of puz-
zles requires significant knowledge of specific design rules and constraints. Hence,
most PCG approaches to generating puzzle levels have mostly focused on search-
based methods or constructive algorithms such as the Markov chain. Sturtevant
et al. used a large-scale best-first search-based approach for analysis and con-
tent generation for Fling! (2013), a puzzle of Sokoban-type and tile-matching
[16]. Collette et al. generated hard configurations of the Rush hour puzzle using
a constructive method based on symbolic technique with binary decision dia-
grams that allows to iteratively compute reachable configuration from a set of
solvable initial levels for Rush Hour [2]. The constructive methods have shown
their robustness for Narrative puzzle generation [3][5][6]. Recently, Monte Carlo
Tree Search (MCTS) approach has been widely used to procedurally generate dif-
ferent game contents as an optimization problem. Kartal et al. used the MCTS
approach to automatically generate Sokoban levels that are guaranteed to be
solvable with varying sizes and difficulty [11].

2.2 GAN for PCG

The GANs have shown their ability for platformer and Roguelike game genres.
Schubert et al. proposed TOAD-GAN (Token-based One-shot Arbitrary Dimen-
sion GAN) to generate Super Mario Bros 2D platform levels using a single



Procedural Generation of Rush Hour Levels 3

original level for training [14]. This approach is inspired by SinGan architec-
ture that allows learning from a single image [15]. Torrado et al. used a new
GAN called Conditional Embedding Self-attention GAN architecture to condi-
tion their generation process and obtain the targeted token distributions in the
generated levels [13]. Gutierrez et al. coupled GAN models to generate individ-
ual rooms of The Legend of Zelda with a graph grammar that combines these
rooms into a dungeon [7]. GANs have also been applied to generate content for
serious games, Park et al. used Deep Convolutional GAN (DCGAN) approach
to automatically generate levels for educational games that incorporate the de-
sired learning objectives with an adaptive gameplay [12]. A similar approach was
used to generate game scenarios and context images while taking specific features
into account to provide only plausible and enjoyable images for the game design
[10]. Concerning board games, there is little research documenting the ability
of the GAN approach to produce playable levels for puzzles. Hald et al. applied
GAN to generate puzzle levels for Lily’s Garden. While their GANs allow a good
map-shape to be generated, they were not able to produce the targeted token
distribution [8].

3 Rush Hour Solvers

Solving a Rush Hour grid is a non trivial problem as a single grid often has over
10 000 possible combinations, Figure. 1. The problem can be considered as a
graph where the nodes are the states of the grid. Each two nodes are related if
we can get from one to the other by moving a car one block away. We naively
started with a Breadth-First search algorithm that solved the puzzle. This is
a slow and inefficient algorithm as it explores irrelevant positions. It should be
noted that the entire graph was explored because no appropriate criteria were
identified to find the unsolvable levels. To improve our search, we use a heuristic
that determines whether a grid is close to the solution or not, see Fig. 2. It is
based on a score calculated by the algorithm 1.

As shown in Figure 2, the lower the score, the less the red car is blocked in
the parking lot and therefore the better the grid is (a zero score represents a
solved grid).

Using this score, the initial algorithm is modified into a Greedy-Best First
Search algorithm 2. This algorithm significantly improves the time required to
solve the solvable puzzles. However, it did not considerably improve the com-
plexity of the unsolvable puzzles, as the entire graph still to be explored.

Figures 3(a) and 3(b) show the times for solvable and unsolvable levels, re-
spectively. Expect for one outlier, the GBFS algorithm is much faster than the
breadth-first search algorithm, see Fig. 3(a). The time is directly correlated and
similar since all states are explored, and are sufficiently large to expect a signif-
icant improvement using an AI discriminator, see Fig. 3(b).



4 Choukarah et al.

(a) 6x6 board (2000 entries) (b) 7x7 board (750 entries)

Fig. 1: Distribution of state graph size

Fig. 2: Example of heuristic score evaluation

Algorithm 1 Heuristic score

1: BlockingCars = []
2: for each Car between RedCar and exit do
3: BlockingCars.add(Car)
4: end for
5: while BlockingCars changes do
6: for Car in BlockingCars do
7: for OtherCar in Board do
8: if OtherCar blocks Car and OtherCar not in BlockingCars then
9: BlockingCars.add(OtherCar)
10: end if
11: end for
12: end for
13: end while
14: Score = length(BlockingCars)
15: return Score



Procedural Generation of Rush Hour Levels 5

(a) Computation time for solvable lev-
els

(b) Computation time for unsolvable
levels

Fig. 3: comparison of the computational time for the two solving methods

Algorithm 2 Greedy best first search

ToExplore = [InitialState]
2: Explored = []

function GBFS(ToExplore, Explored)
4: if ToExplore = [] then

Return False
6: end if

ToExplore.sort(HeuristicScore)
8: State = ToExplore.pop()

Explored.add(State)
10: if State is Solution then

return True
12: end if

for Board in State.neighboors do
14: if Board not in ToExplore and Board not in Explored then

ToExplore.add(Board)
16: end if

end for
18: return GBFS(ToExplore, Explored)

end function



6 Choukarah et al.

4 Accelerating the Generation Using Neural Networks

While, with sufficient time and computing power, the most solvable levels of
the 6x6 Rush Hour grid can be found[1], any attempt to do so for bigger grids
requires excessive amounts of computations.

Our approach was to use transfer learning to obtain an estimator on the
solvability of random levels. To do so, we first used a database comprised of
solvable levels (see Fig. 4) and unsolvable levels (see Fig. 5) generated randomly
with a 50:50 distribution. We then use a Dense-Net [9] to learn to predict for
the 6x6 grids if a setting is solvable or not.

(a) A solvable level in 17 moves (b) A solvable level in 38 moves

Fig. 4: Examples of solvable levels

(a) An example of an unsolvable level (b) Another example of an unsolvable level

Fig. 5: Examples of unsolvable levels

This specific network can have two different uses. It is known that the search
algorithms become very computationally expensive as the grid sizes increase,
especially for unsolvable levels. Our goal is to use transfer learning to avoid these
scenarios and adapt the network to learn the solvability of higher dimension grids
with few examples, as these tend to be very costly to generate. By using a neural
network to dismiss all the unsolvable levels, we can speed up the generation
process.

The other use for this network is to generate levels through a GAN’s archi-
tecture, where our network would be the discriminator, but this still has to be
explored.



Procedural Generation of Rush Hour Levels 7

4.1 Architecture Choice

After testing multiple architectures, it seemed that most deep networks had
trouble with the task. We deduced that the added padding would dilute the
information too much, as our grid size of 6x6 was too small. However, the Dense-
net model allows that each layer receives a concatenation of every input each
previous layer has received, thus leading for a constant flow of information and
avoiding information loss between each layer.

4.2 Database

The number of solvable and unsolvable levels must be in the same order of mag-
nitude. In our database, there are 2,577,412 puzzle obtained from the Fogleman
database. Figures 4(a) and 4(b) represent two examples of solvable levels with 17
and 38 moves, respectively. However, no source for unsolvable levels was avail-
able. To address this issue, we synthesized a number of non solvable puzzles,
both easy (Fig. 5(a)) and hard (Fig. 5(b)). We then randomly select from the
solvable database to construct our final database.

4.3 Experimental Results

Solvability Tests - 6x6 Using the 6x6 database limited to 100 000 levels
randomly selected from the initial database. This database is divided into 80%
train and 20% test. For our hyperparameters, we have a learning rate of 5e−3 ,
cosine scheduling and weight decay with a factor of 1e−3. The algorithm quickly
converge towards a 100% accuracy on both train and test set. Moreover, our
approach was tested with levels including black boxes, and the accuracy rate
reaches 99.9% using the same parameters. Figure 6 shows three examples of
generated levels.

Fig. 6: Three examples of generated levels.

Solvability Tests - 7x7 - Transfer Learning We do not have a real database
of 7x7 levels, so we opted to generate a database of levels with the Heuristic
methods. With that, we generated a total of about 2300 examples, with 1800
solvable and 500 unsolvable levels. Unfortunately, this database is unable to



8 Choukarah et al.

provide efficient training. Nevertheless, we can use our results from the 6x6
results using transfer learning as a support for the 7x7. Using this method with
hyperparameters similar to the ones above, the results are obtained with 88.6%
of accuracy rate.

Learning of difficulty levels 6x6 The created database of Rush Hour also in-
cluded the minimum number of moves necessary to solve each level. This number
is used as an indicator of difficulty for each level and train a model on 5 different
categories of levels : Unsolvable - Easy - Medium - Hard - Very Hard.

The idea being to have better control over our generation, as most of the
levels generated can be quite simplistic.

For similar hyperparameters, the obtained accuracy reaches 87.5%. This can
be explained with the confusion matrix depicted in Figure 7 where most of the
misclassifications are edge cases, as difficulty can be a complicated concept to
reduce to only four categories.

Fig. 7: Confusion Matrix of the results



Procedural Generation of Rush Hour Levels 9

4.4 Discussion

While we first tried approaches such as GAN, the network had difficulty grasping
the importance of certain concepts in puzzles, such as puzzle complexity and
form. Using our approach that is a more restricted concept gave us a better
control over the generator, thus avoiding such issues. This approach also allows
these results to be adapted to other games such as Sokoban, or other video
games such as Angry Birds or Mario with a more restricted generation protocol.
However, it is important to note that the availability of a complete database for
the 6x6 and the ability to generate a small but sufficient one for 7x7 grid are
what gave convincing results. Similarly, as grids become larger, computational
power becomes a limiting factor for generating learning databases.

5 Conclusion

We defined a general approach to level generation that works well for the Rush
Hour puzzle. We have designed a neural network able to discriminate very effi-
ciently between solvable and unsolvable levels of Rush Hour. We have shown that
a solver with Greedy Best First Search is considerably more efficient for solvable
levels than a naive Breadth First Search, but that both algorithms take a lot of
time to detect that a level is unsolvable. This property led us to design a neural
network that detects unsolvable levels faster. Using a dense network trained on
a dataset including unsolvable levels randomly generated and detected by our
solver, we reached 100% accuracy on the detection of unsolvable levels for size
6× 6. We also tested on size 7× 7, and experimented with transfer learning and
the automatic classification of the difficulty of generated levels.

The general intent of this research is to improve the gameplay by increas-
ing the variability of the games using levels of varying difficulties. It is also to
improve the reliability of the generating algorithm detecting unsolvable levels.
It is important for the game industry since it provides a richer universe to the
players.

Future work may include the use of our framework for other puzzles such
as Sokoban, Angry Birds and Professor Layton and for video games such as
platformers and roguelike.

References

1. https://www.michaelfogleman.com/rush/
2. Collette, S., Raskin, J.F., Servais, F.: On the symbolic computation of the hardest

configurations of the rush hour game. In: van den Herik, H.J., Ciancarini, P.,
Donkers, H.H.L.M.J. (eds.) Computers and Games. pp. 220–233. Springer Berlin
Heidelberg, Berlin, Heidelberg (2007)

3. Dart, I., Nelson, M.J.: Smart terrain causality chains for adventure-game puzzle
generation. In: 2012 IEEE Conference on Computational Intelligence and Games
(CIG). pp. 328–334 (2012). https://doi.org/10.1109/CIG.2012.6374173



10 Choukarah et al.

4. De Kegel, B., Haahr, M.: Procedural puzzle generation: A survey. IEEE Transac-
tions on Games 12(1), 21–40 (2020). https://doi.org/10.1109/TG.2019.2917792

5. Doran, J., Parberry, I.: A prototype quest generator based on a structural
analysis of quests from four mmorpgs. In: Proceedings of the 2nd Inter-
national Workshop on Procedural Content Generation in Games. PCGames
’11, Association for Computing Machinery, New York, NY, USA (2011).
https://doi.org/10.1145/2000919.2000920

6. Fernández-Vara, C., Thomson, A.: Procedural generation of narrative puz-
zles in adventure games: The puzzle-dice system. In: Proceedings of the
The Third Workshop on Procedural Content Generation in Games. p. 1–6.
PCG’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2538528.2538538

7. Gutierrez, J., Schrum, J.: Generative adversarial network rooms in gen-
erative graph grammar dungeons for the legend of zelda. In: 2020
IEEE Congress on Evolutionary Computation (CEC). pp. 1–8 (2020).
https://doi.org/10.1109/CEC48606.2020.9185631

8. Hald, A., Hansen, J.S., Kristensen, J., Burelli, P.: Procedural content gen-
eration of puzzle games using conditional generative adversarial networks.
In: International Conference on the Foundations of Digital Games. FDG
’20, Association for Computing Machinery, New York, NY, USA (2020),
https://doi.org/10.1145/3402942.3409601

9. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
CoRR abs/1608.06993 (2016), http://arxiv.org/abs/1608.06993

10. Jiang, M., Zhang, L.: An interactive evolution strategy based deep convolutional
generative adversarial network for 2d video game level procedural content genera-
tion. In: 2021 International Joint Conference on Neural Networks (IJCNN). pp. 1–6
(2021). https://doi.org/10.1109/IJCNN52387.2021.9533847

11. Kartal, B., Sohre, N., Guy, S.J.: Generating sokoban puzzle game levels with monte
carlo tree search. In: The IJCAI-16 Workshop on General Game Playing. p. 47
(2016)

12. Park, K., Mott, B.W., Min, W., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Gener-
ating educational game levels with multistep deep convolutional generative ad-
versarial networks. In: 2019 IEEE Conference on Games (CoG). pp. 1–8 (2019).
https://doi.org/10.1109/CIG.2019.8848085

13. Rodriguez Torrado, R., Khalifa, A., Cerny Green, M., Justesen, N., Risi,
S., Togelius, J.: Bootstrapping conditional gans for video game level gen-
eration. In: 2020 IEEE Conference on Games (CoG). pp. 41–48 (2020).
https://doi.org/10.1109/CoG47356.2020.9231576

14. Schubert, F., Awiszus, M., Rosenhahn, B.: Toad-gan: A flexible framework for few-
shot level generation in token-based games. IEEE Transactions on Games 14(2),
284–293 (2022). https://doi.org/10.1109/TG.2021.3069833

15. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: Learning a generative model from a
single natural image. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 4569–4579 (2019). https://doi.org/10.1109/ICCV.2019.00467

16. Sturtevant, N.: An argument for large-scale breadth-first search for game design
and content generation via a case study of fling! Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment 9(3), 28–33
(Jun 2021), https://ojs.aaai.org/index.php/AIIDE/article/view/12594


