
Sequential Halving Using Scores

Nicolas Fabiano1 and Tristan Cazenave2

1 DI ENS, ENS Paris
2 LAMSADE, Université Paris-Dauphine, CNRS, Paris ; PSL, France

nicolabiano22@yahoo.fr ; Tristan.Cazenave@dauphine.psl.eu

Abstract. We study the multi-armed bandit problem, where the aim is to mini-
mize the simple regret with a fixed budget. The Sequential Halving algorithm is
known to tackle it efficiently. We present a more elaborate version of this algo-
rithm to integrate some exterior knowledge or ”scores”, that can for instance be
provided by a neural network or a heuristic such as all-moves-as-first (AMAF) in
the context of a Monte-Carlo Tree Search. We provide both theoretical justifica-
tions and experiments.

1 Introduction

Since it was introduced in [6, 11], the Monte Carlo Tree Seach (MCTS) algorithm has
known a great success in AI, especially in turn-based games like Go, and some of its
refinements are state of the art for most games.

The general idea of this algorithm is the following: from the root configuration, it
picks a move, and generates a random playout from it. If the player to move wins, this
means that the move was probably good, and if they lose, it was probably bad. Then
the algorithm continues by picking more moves, deeper and deeper in the game tree,
respecting a fixed amount of playout (or time) budget.

One of the key elements for MCTS to be efficient is the choice of what moves to
investigate, with the usual search for the optimal exploration-exploitation trade-off. To
perform this, one typically uses the Upper Confidence Bound (UCB) bandit algorithm,
which has good properties in terms of cumulative regret. This means that, for every
investigated configuration, the moves tested were mostly good ones.

However, in the context of games, the success of simulations does not matter in
itself. The only goal is that the final output of the algorithm is as good a move as
possible. This means that, instead of cumulative regret, a more relevant quantification
is the expected simple regret (see Fig. 1 for a precise definition).

In [10], a new bandit algorithm named Sequential Halving (SH) was introduced. It is
proven to have a small expected simple regret 0-1 (see Fig. 1) and is also shown to have
a small expected simple regret through numerical experimentation. It has successfully
been used as an alternative to UCB in MCTS, in particular as a replacement in the root
node with UCB used in the rest of the tree [12], in Partially Observable Games [13] or
even in the whole tree with SHOT [3].

However, for most games, the unmodified UCB is not state of the art. For many
games such as Go, moves typically commute, so the RAVE algorithm, which uses the
all-moves-as-first (AMAF) heuristic [1], was introduced [9]. For some games, once

2 Nicolas Fabiano and Tristan Cazenave

again including Go [14], Neural Networks (NN) can provide an algorithm with reliable
priors, which are incorporated in the PUCT algorithm [14].

The aim of this paper will be to incorporate exterior knowledge like AMAF or NN
to the SH algorithm, and to compare the result both to the simple SH and to the state of
the art MCTS algorithms RAVE and PUCT.

The first part will discuss the SH algorithm in general, and report experiments in
a theoretical setup. The second part will present a theoretical foundation for a new
algorithm named SHUSS, Sequential Halving USing Scores. It will also discuss some
variations around it, and report experiments on games.

Fig. 1: The various notions of regret

With pi the mean of arm i, i∗ the optimal arm and î the chosen one,
Cumulative regret: Simple regret: Simple regret 0-1:

Rcum =
∑

r round(pi∗ − pr) R = pi∗ − pî R0−1 = 1 if i∗ ̸= î else 0

2 The Sequential Halving Algorithm

The SH algorithm is round-based. For every round, each arm is sampled the same
amount of times, and only a set fraction of the best arms are kept. This step is repeated
until there is only one arm left.

The theoretical bounds presented in [10] suggest that the same total budget should
be spent for each round, and that the fraction removed should be constant for every step
(denoted 1− λ). For a precise description, see Algorithm 1.

This version of the algorithm differs from the original one in two ways. First, by
the introduction of the parameter λ, which allows for values other than the original 1/2.
Second, the computation of the budget per round is slightly improved, to ensure that
less budget is left unspent in case of multiple issues with rounding.

Note 1. Contrary to other bandit algorithms like UCB, SH assigns a lot of the budget at
once to each arm, which has practical advantages like simpler parallelisation and less
back-and-forth in the search tree. This is especially true when λ is small (few rounds).

2.1 Restart vs Stockpile

In [10], for the theoretical computations to be rigorous, one has to assume that rounds
are independent, which means that statistics are discarded from one round to the other.

However, in order to gather more accurate statistics, it may be worth to stockpile the
statistics from the previous round, instead of restarting them for every round. In terms
of budget, this adds a factor of almost 1/(1− λ).

Note 2. Getting the factor of almost 1/(1−λ) from the first rounds implies redistribut-
ing the weight to give more of it at the beginning, but less at the end. Doing this will be
referred to as uniforming.

Sequential Halving Using Scores 3

Algorithm 1 Sequential Halving
Parameter: cutting ratio λ
Input: total budget T , set of arms S
S0 ← S, T0 ← T
R← number of rounds before |SR| = 1
for r = 0 to R− 1 do

tr ← ⌊ Tr
|Sr|·(R−r)

⌋
Tr+1 ← Tr − tr|Sr|
sample tr times each arm in Sr

Sr+1 ← Sr deprived of the fraction 1− λ of the worst arms
end for
Output: arm in SR

In theory, this may cause the following issue: if, for one round, a rather bad arm is
sampled disproportionately, these statistics will be stockpiled for the next round, which
will cause it to be kept even further; whereas restarting would decrease the probability
for that bad arm to be chosen, as it would have to be wrongly selected twice. This issue
is particularly important when λ is close to 1, as the stockpiled statistics contribute
significantly to the overall ones in that case.

A compromise can be found between the two pure approaches, as one can keep
the statistics from the previous round and give it a decaying factor d between 0 (pure
stockpile) and 1 (pure restart).

The experiments of the next section clearly show that stockpiling is always better,
even more so than choosing 0 < d ≪ 1.

Note 3. We successfully replicated the SH part of the experiments of [10], and it would
appear that they were done using stockpiling, as restarting gives significantly worse
results.

2.2 Experiments

Even if we could be more general, we focus on the case where the only possible out-
comes are 0 (loss) and 1 (win). Thus, every arms is described by its value, which is both
the probability to win and the expected value.

The performance of bandit algorithms highly depend on the distribution of the arms’
values. We consider 4 distributions of values for the n arms.

In setting (1), the optimal arm has a value of 0.5 and the others have a value of 0.4.
In setting (A), the values form an arithmetic sequence from 0.5 to 0.25.
In setting (S), the optimal arm has a value of 0.5, the worst has a value of 0.25, and

the others have values such that i/δ2i is constant, with δi the difference in value with
the optimal arm. This setting is suggested by the fact that the theoretical bounds of [10]
rely on these values, and thus the theoretical guaranty is the strongest.

In setting (N), the values are distributed according to the sigmoid of a normal distri-
bution with parameters 0.5 and σ2 = 0.01. This setting induces richer behaviours, and
we believe it to be a more realistic model of the actual distributions in games.

4 Nicolas Fabiano and Tristan Cazenave

The results are compared to UCB, the standard MCTS bandit. It consists of, for each
step from 1 to the budget, picking the arm that maximises the empirical value, added to
a term to force exploration, of the form

c

√
log(playouts)

playoutsz
(1)

We tested various values for λ and d for SH, and compared it to various values for
the exploration constant c in UCB. We also tested the uniforming variant discussed in
Note 2. The results are shown in Fig. 2.

Rounding the number of arms left is handled as follows: always round up, except
when this would cause the amount of arms to remain constant, in which case round
down.

Each result is averaged over 10000 tests. To reduce the covariance from one setting
to another, the bandits are seeded using numpy.random.binomial. For the same index of
experiment e and the same arm i, if the value of arm i is the same in two settings, then
on the same round r their results are drawn out of the same sequence of win/loss (the
number of successes is monotonous in terms of budget).

As announced, in every setting, the best results are obtained for d = 0, showing that
in practice, stockpiling is more efficient than restarting.

The optimal λ depends on the setting. The experiments globally suggest that, for the
interesting case d = 0, λ ≈ 0.7 is often the best value, but the difference is small and the
algorithm performs well on a wide range of λ that includes the classical value λ = 0.5.
That problem is actually very complex, and some less rigorous experiments suggest
that it is better not to decrease geometrically but rather to start with large decreasing
factors and to end with smaller ones (eg 20 → 8 → 4 → 3 → 2 → 1 rather than
20 → 10 → 5 → 3 → 2 → 1).

The effect of uniforming is mixed, which suggests that there is room for practical
improvement concerning the way the budget is distributed among the rounds.

Surprisingly, the results are globally worse than UCB for n = 20, especially in
the setting (S), for which the SH algorithm is theoretically designed. Nonetheless, UCB
relies more heavily on fine-tuning of its parameter c, with no universally excellent value,
and for n = 80 SH is globally better.

3 Scores

The aim of this part will be to develop a variant of the SH algorithm that takes advantage
of some exterior knowledge, like a NN or AMAF statistics. We will consider the general
case where we have access to what we will call a score, which is a numerical evaluation
of every move, independent from the bandit evaluation.

The bandits are still assumed to give either 0 or 1, giving an empirical mean p
(i)
r ∈

[0, 1] for arm i on round r, but the scores do not necessarily belong to [0, 1].

Sequential Halving Using Scores 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

2

4

6

8

·10−2

c
.25 .35 .5 .71 1 1.41

0

2

4

6

8

·10−2

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3
·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

1

2

3
·10−2

c
.25 .35 .5 .71 1 1.41

0

1

2

3
·10−2

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

2

4

6
·10−2

c
.25 .35 .5 .71 1 1.41

0

2

4

6
·10−2

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

·10−2

λ

Si
m

pl
e

re
gr

et

.25 .35 .5 .71 1 1.41
0

2

4

·10−2

c
.25 .35 .5 .71 1 1.41

0

2

4

·10−2

c

Fig. 2: Simple regret obtained with SH in various settings. In every setting, the budget is taken
equal to T = 2048. From top to bottom, we report settings (1), (A), (S) and (N). For each setting,
the left plot corresponds to SH, and the right one corresponds to UCB. For SH, for each λ, the
bars correspond (from left to right) to d = 1, d = 0.5, d = 0.1, d = 0, and d = 0 with
uniforming. The darker bars correspond to n = 20, and the lighter ones to n = 80.

6 Nicolas Fabiano and Tristan Cazenave

3.1 Theoretical Model

We don’t know precisely how to estimate the expected simple regret: the bounds pro-
vided in [10] are far from tight in practical cases and only describe the expected simple
regret 0-1. Still, it will globally depend on P (p

(i)
r < p

(j)
r): if any two arms are often

properly ordered, then the best arms have a low probability to be among the worst 1−λ

fraction. Thus, our aim will be to find an optimal formula for some q(i)r which optimizes
P (q

(i)
r < q

(j)
r) to use instead.

Formally, let x and y (the value of the arms) be two hidden values that we want
to compare, with x − y = δ. We have access to 4 independent variables. X and Y
(the number of 1s obtained) are binomials with a same first parameter t and centered
on respectively tx and ty. X̃ and Ỹ (the scores, eg the AMAF statistics) are such that
X̃ − Ỹ = δ̃ is hopefully globally the same sign as δ.

In the following, z can stand for x, y, or any arm.

We make the assumption that δ̃ is distributed following a normal law with parame-
ters δ̃0 and σ̃2

0 . δ̃0 has the same sign as δ, and we even have δ̃0 = δ when the score is
unbiased. This is not the case for NN, but we will see how to handle this in Section 3.5.

3.2 Optimal Combination

As a particular case of the central limit theorem, we know that (for a more quantified
statement, see for instance [7]):

Lemma 1 A binomial law of parameters t and p and a normal law of parameters tp
and tp(1− p) have almost the same distribution, provided that t is large.

This means that X − Y is (almost) distributed as a normal law of parameters tδ
and tσ2 = t(x(1 − x) + y(1 − y)), which up to normalisation can be seen as having

parameters δ̃0 and δ̃20σ
2

δ2t .
Conversely, this shows that X̃ − Ỹ gives (almost) the same information as two

binomials, with the crucial first parameter t̃ such that σ̃2
0 =

δ̃20σ
2

δ2 t̃
. This gives

t̃ =
δ̃20σ

2

δ2σ̃2
0

(2)

but with an intensity δ̃0
δ that is too large. We define

t̃′ =
δ̃0σ

2

δσ̃2
0

(3)

We showed that the problem is (almost) equivalent to maximizing the probability of
choosing the best arm among two, knowing that one has succeeded X + t̃′X̃ times out
of t+ t̃ trials, and the second Y + t̃′Ỹ times.

Thus, it is optimal to use (for δ̃20σ
2

δ2σ̃2
0

reasonably large)

Sequential Halving Using Scores 7

qz = Z + t̃′Z̃ (4)

Similar reasoning gives the same result for t reasonably large.

One could be tempted to use the Z̃ to approximate σ. However, given that the final
goal is to sort all the arms on a single scale, t̃′ has to be the same for every pair of arms.

The simplest solution is to choose a hyperparameter t̃′ that corresponds to an overall
reasonable guess. We will see how to improve that choice in some particular cases.

The resulting algorithm is presented as Algorithm 2. In it, t+r corresponds to the
total budget used in p

(i)
r : t+r = tr with restart and t+r = t0 + · · ·+ tr with stockpile.

Algorithm 2 Sequential Halving USing Scores (SHUSS)

Parameter: cutting ratio λ, t̃′

Input: total budget T , set of arms S, online scores X̃(i)
r

S0 ← S, T0 ← T
R← number of rounds before |SR| = 1
for r = 0 to R− 1 do

tr ← ⌊ Tr
|Sr|·(R−r)

⌋
Tr+1 ← Tr − tr|Sr|
sample tr times each arm in Sr , giving an empirical mean p

(i)
r to arm i out of t+r trials

q
(i)
r = p

(i)
r + t̃′

t+r
X̃

(i)
r

Sr+1 ← Sr deprived of the fraction 1− λ of the worst arms in terms of q(i)r

end for
Output: arm in SR

3.3 Selection Bias

One issue that may occur is that, after any given round, the arms that remain have their
Z̃ biased by the fact that they were among the best. Thus, even if during the first round
they are indeed normal laws, it is unclear how they look like after a few rounds.

However, this issue is very similar to the issue of stockpiling, as all arms tend to
have better stats than they theoretically should. The fact that stockpiling is so powerful
suggest that this issue is not too important, so we will neglect it.

3.4 Case of AMAF: a Better Formula for t̃′

This subsection discusses the special case where the scores are given by AMAF statis-
tics. It should be seen as a small toolbox consisting of a few ideas that can be used to
do better than taking t̃′ as a constant, based on a case study.

The AMAF (all-moves-as-first) score [1] consists in evaluating a move m for a
player p in a game state s, considering the win/loss ratio of every game where p plays

8 Nicolas Fabiano and Tristan Cazenave

m, not only in s itself but in any of its descendants in the game tree (or even its cousins,
in some variants of AMAF like GRAVE [2]).

First of all, this score is not independent from the value of the bandits. In the first
rounds of the algorithm, there are many bandits, so the AMAF scores are almost inde-
pendent from each of them, which makes it a mostly unimportant issue.

In the last rounds, however, it is highly correlated with the stats of some, if not all,
bandits. In some games, one could imagine that some properties of the moves generate
important biases, for instance if the move m can only appear after few of the remaining
moves considered. We will see a general way to address this problem, but this could be
more tricky for some particular games and we recommend caution.

The most interesting aspect about AMAF in this context is that the score becomes
more and more accurate as evaluations are performed. Thus, taking t̃′ as a constant
throughout the algorithm is not adequate. Instead, one can model the distribution of δ̃
as based on the following:

– the fact that AMAF is a heuristic causes an error distributed as a normal law of
variance σ2

heu, centered somewhere between δ and the local average value;
– the fact that the AMAF stats are only gathered on a finite number sr of moves on

round r causes an error distributed as a binomial law, which is almost (see Lemma
1) and after normalization a centered normal law of variance σ2

stat/sr.

Provided that σ2
heu is small (i.e. the heuristic makes sense in the application context),

and the values of the arms are not too extreme, σ and σstat are almost equal.
Equation 3 applied with this variance gives

t̃′r =
δ̃0
δ

σ2

σ2
heu + σ2

stat/sr
≈ δ̃0

δ

1

σ2
heu/σ

2 + 1/sr
(5)

This time, there are 2 hyperparameters to choose values for.
δ̃0
δ describes how much AMAF flattens the stats, and can easily be measured exper-

imentally. It may be relevant to make it depend on the number of arms left and on the
variant of AMAF used.

σheu/σ describes how accurate the heuristic is, compared to the accuracy provided
by binomial stats. Giving this hyperparameter a relatively high value also ensures that,
in the last rounds where sr is large, the value of t̃′r stops increasing, which addresses
the previously mentioned issue of correlation.

Note that this reasoning works only if, on each round, sr is globally the same for
every arm (or if, for every arm, 1/sr ≪ σ2

heu/σ
2), as we need a common value of t̃′r.

3.5 Case of Prior Score: Pruning

In this subsection, we assume that the X̃i are known a priori (before any evaluation is
performed). This can be applied to some extent in cases where some score is known a
priori but refined during the algorithm, like GRAVE. We start with a general discussion,
before dealing with the specific case of neural networks (NN) applied to MCTS.

Sequential Halving Using Scores 9

Even before the algorithm begins, some arms have no chance of being chosen at the
end, for instance if X̃i is smaller than the median (for λ = 1/2) minus 1/t̃′0.

In addition to these trivial pruning operations, it is often worth pruning more arms,
as the budget saved will compensate for the risk taken.

As we saw in a previous section, the prior can be interpreted as though we had
already spent some amount t̃ of budget on each arm before round 0, which we will
consider to be a round labelled −1. The philosophy of SH (exploited in the performance
proof in [10]) is that, when bandits are pruned up to number nr with a budget tr, the
product πr := nr · tr is equal to some π that does not depend on r. Thus, it is natural
to prune up to arm n−1, where n−1 is chosen so that π−1 = π.

For a precise computation, we neglect the rounding issues when dividing by λ. We
also make the computations as if we were not stockpiling (note that using the score on
the subsequent rounds can be seen as stockpiling when it is purely a prior).

Then
π−1 = n−1 · t̃ (6)

π = π0 = λn−1 ·
T

log1/λ(n−1) · n−1
(7)

n−1 log1/λ(n−1) =
λT

t̃
(8)

For NN in MCTS, all the previous theoretical foundation has to be slightly adapted,
given that bandits don’t give 0 or 1 but the value of the leaf evaluated by the NN instead.

More importantly, the score is given by the policy of the root. It is meant to be
monotonic with the value, but the way it uses a softmax layer makes the rest of our
model about its distribution fail. Thus, the safest way to use it is for pruning, and then
the remaining arms are explored using a basic SH that does not use the policy.

The previous formula for n−1 should hold for the same reasons. Now, the value of
t̃ describes how much budget is needed for the exploration to be as good as the policy.
As the budget is typically distributed among the rest of the tree by an algorithm like
PUCT, designed to be good asymptotically but not for small values, t̃ is typically quite
large. In addition, given that the policy is not stockpiled, it is better to overestimate the
value of t̃ to make use of the policy as much as possible.

3.6 Experiments with AMAF

First, we test SHUSS using the score AMAF, to compare it with RAVE [8, 9].
The latter uses the AMAF score as follows: the value of the arm, to which the

exploration term is added, is taken equal to

(1− βz)Z + βzZ̃ (9)

with tz the number of playouts starting with z, sz the number of playouts containing z
and

βz =
sz

sz + tz + bias× sz × tz
(10)

10 Nicolas Fabiano and Tristan Cazenave

Table 1: Percentage of games won by Hybrid-SHUSS (using AMAF and RAVE) against RAVE,
in various games.
T = 10000 ; bias = 10−7 ; λ = 1/2 ; 500 matches.

Game \ t̃′ 0 128 256 512 1024 2048 4096 8192 16384 ∞
Atarigo 7x7 44.2 47.2 49.6 50.2 50.0 49.6 45.2 47.8 46.4 45.2
Atarigo 9x9 35.6 41.4 40.0 38.2 41.0 41.2 43.4 41.4 36.4 40.2
Ataxx 8x8 30.2 33.6 35.2 34.2 42.0 46.2 55.0 62.4 62.0 71.8
Breakthrough 8x8 54.0 57.8 56.8 56.0 56.6 55.2 53.8 51.0 55.0 52.4
Domineering 8x8 41.4 47.8 44.8 49.0 46.2 47.2 46.2 45.6 43.0 42.4
Go 7x7 45.2 49.2 46.2 53.8 58.6 50.2 42.6 33.2 31.0 15.8
Go 9x9 43.4 53.2 58.2 52.2 50.8 43.8 35.6 26.4 19.0 12.2
Hex 11x11 15.8 43.0 43.4 51.4 48.4 50.2 46.4 46.6 43.4 42.6
Knightthrough 8x8 61.0 61.6 65.0 63.8 62.2 60.2 54.2 54.4 56.2 52.8
NoAtaxx 8x8 91.0 87.4 76.8 72.0 62.8 55.2 53.8 44.6 45.8 43.2
NoBreakthrough 8x8 37.8 40.8 44.0 46.2 51.4 44.2 46.4 44.0 50.0 46.6
NoDomineering 8x8 40.4 45.6 49.4 46.0 48.4 50.0 47.6 47.4 45.0 47.6
NoGo 7x7 38.8 40.8 45.6 44.0 50.8 47.6 50.8 49.4 47.6 51.8
NoGo 9x9 30.0 37.8 38.8 40.0 41.0 42.0 42.8 45.0 45.8 37.4
NoHex 11x11 46.4 48.0 48.6 49.0 49.2 48.6 48.6 49.2 48.8 49.2
NoKnightthrough 8x8 29.0 36.8 38.8 39.6 47.8 46.2 46.0 45.2 48.2 47.6
Average 42.76 48.25 48.83 49.10 50.45 48.60 47.40 45.85 45.23 43.68

Table 2: Percentage of games won by Hybrid-SHUSS (using a NN and PUCT) against PUCT, for
the game of Go.
c = 0.2 ; λ = 1/2 ; 400 matches.

T \ n−1 3 4 5 6 7 8 9
32 31.00 46.00 43.50 26.50 20.50
64 57.75 60.00 57.00 71.50 38.75
128 39.75 46.50 54.50 39.75 41.25
256 55.25 71.50 60.75
512 25.50 60.00 47.25
1024 60.75 67.75 55.50

[12] demonstrates how to combine the SH algorithm with UCT in the Hybrid-
MCTS algorithm: SH is used only at the root, and the rest of the tree expansion uses
UCB. We followed this idea, by combining SHUSS at the root with RAVE for the rest
of the tree, in an algorithm naturally named Hybrid-SHUSS.

Table 1 reports the results of 500 matches (250 as White and 250 as Black) between
Hybrid-SHUSS and RAVE, for many classical games. Both algorithms use a budget
(number of playouts) per move equal to 10000. RAVE uses the classical parameter
bias = 10−7, both in the inner parts of Hybrid-SHUSS and its opponent. SHUSS uses
the classical parameter λ = 1/2.

Different values of t̃′ are experimented with (to keep things simple, t̃′ is a constant).
The extreme case t̃′ = 0 is the usual SH algorithm without AMAF (it is only used to

Sequential Halving Using Scores 11

break ties), and t̃′ = ∞ is relying purely on AMAF, with the same weight regardless of
whether or not the move is first.

In most games, SHUSS performs better than both pure SH and pure AMAF.
The optimal value of t̃′ depends on the game, but using 1024 gives a reasonably

good performance for every game with this budget.

3.7 Experiments with a Neural Network

We then test SHUSS with a prior given by a NN in the game of Go.
The state of the art NNs in the game of Go use two heads, one for the policy and

one for the value. The MCTS algorithm used in current computer Go programs since
AlphaGo is PUCT. It uses the NN score as follows : the exploration term is replaced by

c× Z̃ ×
√
t

1 + tz
(11)

with Z̃ the policy, t the budget already used for this node and tz the budget already used
for this node on move z.

We use as a NN a simple MobileNet of 16 blocks, a trunk of 64 and 384 planes in
the bottleneck block [4, 5]. MobileNets give better results than usual residual networks
for the game of Go.

As explained in section 3.5, in SHUSS, the policy is used to prune at the root, and
the remaining algorithm is SH at the root and PUCT for the remaining of the tree, in a
similar Hybrid fashion.

Experiments showed that PUCT performs best against Hybrid-SHUSS for c = 0.2.
Table 2 report the results of 400 matches of Hybrid-SHUSS against PUCT for various
budgets and n−1, and we see that with the Hybrid-SHUSS outperforms PUCT for large
enough budgets.

Concerning the relationship between T and the optimal n−1, it seems to be loga-
rithmic, while it was theoretically expected to be closer to being linear. Regardless, the
size of the game of Go forced us to stick to rather small budgets, for which this part of
the theory may not apply yet as it is asymptotic.

4 Conclusion

In the first section, we discussed the SH algorithm in general.
We discussed two ways of using the budget, restarting and stockpiling, with the

latter being much better experimentally.
We also showed that a cutting parameter λ ≈ 0.7 for SH is experimentally slightly

better than the classical λ = 0.5, but that globally the algorithm is very robust for a
wide range of λ. Nonetheless, it appears that some more flexible budget attribution or
cuts may be better.

In the second section, we presented our new algorithm Sequential Halving USing
Scores (SHUSS).

12 Nicolas Fabiano and Tristan Cazenave

A theoretical model suggests a very simple way to combine the score with the bandit
statistics, while still leaving plenty of room for improvement depending on the precise
nature of the score.

Work still remains to be done to handle scores that are very asymmetrical among
the arms in terms of quality.

We associated SHUSS with AMAF statistics and RAVE under the root play in a
variety of different games against RAVE with the same parameters. The results are
mixed, and depend on the game.

We also made SH, pruning using the policy with PUCT under the root node, play
Go against PUCT with the same parameters. SH with pruning outperforms PUCT for
well chosen numbers of moves kept, but it is quite sensitive to this value and it is unclear
how to choose it in general.

Acknowledgment

This work was supported in part by the French government under the management of
the Agence Nationale de la Recherche as part of the “Investissements d’avenir” pro-
gram, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

References

1. Bouzy, B., Helmstetter, B.: Monte-Carlo Go developments. In: ACG. pp. 159–174 (2003)
2. Cazenave, T.: Generalized rapid action value estimation. In: IJCAI. pp. 754–760 (2015)
3. Cazenave, T.: Sequential halving applied to trees. IEEE TCIAIG 7(1), 102–105 (2015)
4. Cazenave, T.: Improving model and search for computer Go. In: IEEE CoG (2021)
5. Cazenave, T.: Mobile networks for computer Go. IEEE Transactions on Games (2021)
6. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo Tree Search. In: Com-

puters and Games. pp. 72–83 (2006)
7. Feller, W.: On the normal approximation to the binomial distribution. In: Selected Papers I,

pp. 655–665. Springer (2015)
8. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: ICML. pp. 273–

280 (2007)
9. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in computer

Go. Artif. Intell. 175(11), 1856–1875 (2011)
10. Karnin, Z.S., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed bandits. In:

ICML. pp. 1238–1246 (2013)
11. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: ECML. pp. 282–293

(2006)
12. Pepels, T., Cazenave, T., Winands, M.H.M., Lanctot, M.: Minimizing simple and cumulative

regret in monte-carlo tree search. In: CGW 2014. pp. 1–15. Springer (2014)
13. Pepels, T., Cazenave, T., Winands, M.H.: Sequential halving for partially observable games.

In: CGW 2015, pp. 16–29. Springer (2015)
14. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature
529(7587), 484–489 (jan 2016)

	Sequential Halving Using Scores

