
Specialization of Admissible Path-finding Heuristics

Tristan Cazenave

Laboratoire d'Intelli gence Artificielle,
Département Informatique, Université Paris 8,

2 rue de la Liberté,
93526 Saint Denis, France.
cazenave@ai.univ-paris8.fr

Abstract. Automatic program generation using logic programming can be
used to improve existing problem solving programs. An important class of
problems in AI are optimal path-finding problems. These problems are usu-
all y solved using the IDA* algorithm with an admissible heuristic. An heu-
ristic is admissible if it never overestimates the cost of solving a problem. An
admissible heuristic is better than another one if it always gives higher re-
sults, the better the heuristic, the fewer nodes are developed for solving the
problem. We propose a metalogic programming framework that speciali zes
heuristics on abstract representation of problems. The speciali zed heuristics
are improvements on the original heuristic. Some experiments in simple pat-
finding problems li ke the 9-puzzle give encouraging results.

1 Introduction

Problems li ke the 9-puzzle, the Rubik's cube [12] or Sokoban [9] are path-finding
problems. They belong to a general class of problems related to heuristic single-
agent search techniques. These problems are solved building a decision tree in order
to find the best of several alternative by searching. They are related to perception
problems, theorem proving, robot control, pattern recognition, knowledge based
systems and some combinatorial optimization problems.

Finding a solution path is easy for the puzzle and the Rubik's cube, using macro-
moves. However, finding the shortest path to the desired state is much harder. The
algorithm of choice for this kind of problems is Iterative Deepening A* (IDA*).
IDA* has to compute an admissible heuristic at each node. An heuristic is admissi-
ble if it never overestimates the distance to the desired state. The hard problem
when writing an optimal path-finding problem solver is to find a good admissible
heuristic. A commonly used heuristic is the Manhattan distance.

We propose a logic program speciali zation framework that operates on an ab-
stract domain theory in order to improve existing heuristics. This framework is
based on the Introspect system that has already been used to generate powerful
game programs using logic metaprogramming. To generate programs, Introspect

uses a theory of the problem to be solved expressed in Prolog, and some
metaknowledge on the problem used to remove useless generated programs, and to
improve the eff iciency of the useful generated programs.

The second section describes our path-finding problem solver. The third section
uncovers a way to speciali ze path-finding heuristics with Introspect and gives ex-
perimental results.

2 An Optimal Path-finding Problem Solver

We use the 9-puzzle to test our system. The goal state of the 9-puzzle is repre-
sented on the left of f igure 1. On the right of the same figure, a randomly generated
problem is given. Our problem are generated by playing 100 random moves from
the goal state. A* computes two functions at each node of its search: g and h. The g
function gives the cost of the moves already played, in the case of the 9-puzzle it is
the number of moves. The h function gives an underestimation of the cost of the
remaining moves to reach the goal state. A commonly used heuristic is the Manhat-
tan heuristic. It consists in computing for each tile the minimal number of moves
necessary to move it to its goal location, with the hypothesis that the tile can move
on other tiles.

Fig. 1. The goal state, and a randomly generated state 20 moves away from the goal state

In our example, we therefore have h=1+0+1+3+2+3+1+1=12 with the Manhattan
heuristic. At each node a function f=g+h is computed that represent the minimal
cost of the path going through that node. IDA* is an iterative deepening A* . It be-
gins with developing a tree of maximum depth 1, if the solution is not found, it
develops a tree of maximum depth 2, and so on, increasing the maximum depth after
each unsuccessful tree search. The advantage of IDA* on A* is that it uses an
amount of memory that increases linearly with the depth of the problem, whereas
A* has exponential requirements and cannot solve complex problems. Another ad-
vantage of IDA* is that information can be obtained from previous searches to
speed it up [18]. Moreover IDA* is not much more time consuming than A*, be-

1 2

4

56

3

7

8

8 2

17

5

4

6

3

cause the cost of the last tree search is usually much higher than the cost of the pre-
vious tree searches[10,11]. When using IDA*, the tree search can be cut before the
maximum depth is reached, whenever f gets greater than the maximum depth.
Therefore, an admissible heuristic that always give greater values than the Manhat-
tan heuristic is interesting, because it will enable IDA* to stop its search sooner. The
length of the real optimal path of our example is 20 and IDA* finds it in 33219
nodes using our speciali zed heuristics.

3 Specialization of an admissible heuristic

In this section we explain how the Manhattan heuristic can be speciali zed to give
higher estimations. We follow with a description of the speciali zation programs of
Introspect and we give experimental results for the 9-puzzle.

The application of speciali zation techniques to problem solving is not new. For
example, S. Minton has used Prodigy/EBL to generate control rules [14], given the
traces of Prodigy problem solving. O. Etzioni [6] further refined the methodology by
using a kind of partial evaluation that gives better results than EBL/G [15], but that
is formally equivalent [20]. Another system, Introspect uses logic metaprogramming
and partial deduction to generate control rules for many games [2,3,4,17]. However,
we are not aware of any application of these techniques on the speciali zation of
heuristics for path-finding problems.

3.1 Some opportunities to specialize the heuristic

The idea behind the speciali zation is that some moves toward the solution increase h
instead of decreasing it. If we want to generate by logic program speciali zation the
cases when it happens, we have to define situation where it is always the case. Fig-
ure 2 gives such a situation :

Fig. 2. A confli ct between two til es

Suppose that these situation happens in the upper left corner. Tile '2' is at the goal
location of tile '1', and vice-versa. The Manhattan heuristic gives 1 for each of these
tiles, resulting in 2 for the two tiles. However, if we consider the two tiles together,
it is clear that the minimal number of moves to move them to their goal location is
greater than 2: either tile 1 is moved first, and it moves to another location than tile
2's, increasing by one the Manhattan heuristic and by one the number of moves,
either tile 2 is moved first and the same increasing holds. Therefore, we define for
these two tiles the value Dh=2, corresponding to the direct confli ct between them.

2 1

Dh is added to the result of the Manhattan heuristic in order to improve it. In a more
general way, we can define a direct confli ct between two tiles with the following
logical rule:

conflict(0,T1,T2,2):-
tile_on_location(L1,T1),
tile_on_location(L2,T2),
all_neighbors_increase_except(T1,L1,L2),
all_neighbors_increase_except(T2,L2,L1).

The signification of the argument of the head predicate are confli ct (Regression,
Tile1, Tile2, Dh), and the predicate all_neighbors_increase_except (T1,L1,L2) indi-
cates that the Manhattan heuristic increases for all the neighbors of tile T1 on loca-
tion L1, except for location L2 where it decreases.

The speciali zed heuristic consists in computing all the possible Dh for each pair
of tiles, and then in counting the maximal Dh for each tile, taking into account no
more than one Dh for each tile, so that the speciali zed heuristic is still admissible.
The resulting set of Dh is then summed, and the result is added to the h resulting
from the Manhattan heuristic.

Fig. 3. A regressed confli ct between two til es

A speciali zation of this confli ct can be obtained by unmoving an abstract move,
that keeps the heuristic admissible. We obtain the situation in figure 3, where Dh is
still 2. This speciali zation can be performed automaticall y by Introspect, which
generates the corresponding program.

3.2 Logic Program Specialization with Introspect

Introspect is a logic metaprogramming system [1] that uses unfolding to speciali ze
logic program in a similar way to other partial evaluators [19,7,13,16,8]. However,
it differs from previous systems because it uses domain dependent information so as
to guide the program generation. This domain dependent knowledge consists of
clauses of impossibilit y that examine the unfolded clauses to find inconsistencies in
them. A trivial and domain independent inconsistency is for example that an un-
folded clause contains the atom '-1>-1'. A more domain-dependent set of impossible
atoms is for example: ' number_neighbors (L,N), number_neighbors
(L,N1)' are in an unfolded clause and the conditions 'constant(N), Co n-
stant(N1), N=\=N1' are verified. Clauses of impossibilit y are used to discard
useless generated programs. Other domain dependent knowledge such as the statisti-
cal number of bindings of variables in some predicates is also used to generate eff i-

2 ? 1

cient programs. Moreover, the termination of unfolding can be tailored to a particu-
lar problem rather than using the same strategy for every program. The goal of the
program generation is to express the same knowledge in a different way so that
similar computations are shared, and that useless computations are avoided.

The domain theory used to speciali ze an admissible heuristic is particular in the
sense that it is not a theory of the real moves played in the problem. It is rather a
theory of the abstract moves that can be played. The abstract moves keep the admis-
sibilit y of the heuristic because they always underestimate the number of real moves
necessary to perform the action. In the 9-puzzle, an abstract move consists in mov-
ing a tile on any of its neighbors, providing that the neighbor does not contain the
other confli cting tile. In practice, a tile can only move on one of its neighbor if it is
empty.

The clause used to generate the program by speciali zation is a recursive one that
defines confli ct regression, P being the depth of regression of the confli ct between
T1 and T2:

conflict(P,T1,T2,Dh):-
 P1 is P-1, P1 > -1,
 abstract_moves(T1,T2,L),
 moves_increase_h_or_conflict(P1,T2,L).

The end of the unfolding process is assured because the maximum depth of regres-
sion is fixed in advance. The abstract moves are defined by clauses of the type:

abstract_moves(T1,T2,[M1,M2]):-
 tile_on_location(L1,T1),
 tile_on_location(L2,T2),

 number_neighbors(L,2),
 neighbor(L,M1), M1\==L2,
 neighbor(L,M2), M1\==M2, M2\==L2.

Once the program is unfolded, the conditions of the unfolded clauses are ordered
using domain dependent knowledge. They are then collected together in a tree of
conditions. This tree is compiled into C, so as to be linked to the problem solver.
This is one of the reasons why the approach works: instead of computing many
times the same things, the speciali zed program shares the computations in the tree of
conditions.

3.3 Results

Our test set contains 100 randomly generated 9-puzzle problems. All of them are
optimally solved with 24 moves or less. During problem solving we compute the
number of nodes developed by IDA* on each problem. The number of nodes is only
an approximation of the real eff iciency of a problem solver. However, it is inde-
pendent of a particular implementation and it gives insights on the possible im-
provements due to speciali zation on other more diff icult problems.

The first number is the number of nodes using only the Manhattan heuristic, the
second one using the direct confli ct heuristic and the third one using both the direct
and the regressed confli ct heuristic.

0

1000000

2000000

3000000

4000000

5000000

6000000

N

o
d

es

Nodes 5237441 2448508 1887999

1 2 3

Fig. 4. Number of nodes developed by IDA* with increasing regressions

On the 9-puzzle it of no use to regress the confli ct heuristic further because of
some particularities of the problem. However, on the 15-puzzle, the heuristic can be
speciali zed one step further, and on more complex problem like Sokoban, it can be
regressed much more.

4 Conclusion

We have presented a technique that uses a kind of logic program generation to
speciali ze admissible heuristics for path-finding problems.

It is of interest to apply this technique to more complex path-finding problems
such as the Rubik's cube or Sokoban. This approach can be compared to other
knowledge generation approaches li ke retrograde analysis of patterns [5]. The ad-
vantage of the representation of heuristics by a program is that abstract knowledge
of the domain can be easil y represented. This abstract information might be more
powerful than usual pattern-based representation in that it enables flexible and non-
local properties to be matched together (for example two stones separated by a long
tunnel in Sokoban form a deadlock that does not fit in a pattern).

Another practical issue is the comparison of the cost of the computation of an
elaborate heuristic that cuts down a lot of nodes, and the cost of a much cheaper
heuristic that cuts less nodes but solves the problems in less time. This comparison
is usually problem dependent. On some simple problems where a cheap and eff i-

cient heuristic already exists, it may not be of practical interest to generate elaborate
heuristics, whereas on more complex and diff icult problems a very speciali zed heu-
ristic may well give excellent results.

5 References

1. Barklund J.: Metaprogramming in Logic. UPMAIL Technical Report N° 80, Uppsala,
Sweden, 1994.

2. Cazenave, T.: Système d’Apprentissage par Auto-Observation. Appli cation au Jeu de Go.
Ph.D. diss., University Paris 6, 1996.

3. Cazenave T.: Metaprogramming Forced Moves. Proceedings ECAI98, pp 645-649,
Brigthon, 1998.

4. Cazenave T.: Controlled Partial Deduction of Declarative Logic Programs. ACM Com-
puting Surveys, vol. 30, no 3es, 1998.

5. Culberson J.C., Schaeffer J.: Pattern Databases. Computational Intelli gence, 1998.
6. Etzioni, O.: A structural theory of explanation-based learning. Artificial Intelli gence 60

(1), pp. 93-139, 1993.
7. Gallagher J.: Speciali zation of Logic Programs. Proceedings of the ACM SIGPLAN

Symposium on PEPM’93, Ed. David Schmidt, ACM Press, Copenhagen, Danemark,
1993.

8. Hill P. M. and Lloyd J. W.: The Gödel Programming Language. MIT Press, Cambridge,
Mass., 1994.

9. Junghanns A.: Pushing the Limits : New Developments in Single-Agent Search. PhD
thesis. University of Alberta, 1999.

10. Korf R. E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelli gence, vol. 27, no 1, pp. 97-109, 1985.

11. Korf R. E.: Optimal path-finding algorithms. Search in Artificial Intelli gence, L. Kanal
and V. Kumar eds. New-York: Springer Verlag, 1988.

12. Korf, R.: Finding optimal solutions to Rubik's Cube using pattern databases. AAA I-97,
pp. 700-705, 1997.

13. Lloyd J. W. and Shepherdson J. C.: Partial Evaluation in Logic Programming. J. Logic
Programming, vol. 11 pp. 217-242., 1991.

14. Minton S., Carbonell J., Knoblock C., Kuokka D., Etzioni O., Gil Y.: Explanation-Based
Learning : A Problem Solving Perspective. Artificial Intelli gence 40, 1989.

15. Mitchell , T. M.; Keller, R. M. and Kedar-Kabelli S. T.: Explanation-based Generali za-
tion : A unifying view. Machine Learning 1 (1), 1986.

16. Pettorossi, A. and Proietti, M.: A Comparative Revisitation of Some Program Transfor-
mation Techniques. Partial Evaluation, International Seminar, Dagstuhl Castle, Germany
LNCS 1110, pp. 355-385, Springer 1996.

17. Pitrat, J.: Games: The Next Challenge. ICCA journal, vol. 21, No. 3, September 1998,
pp.147-156, 1998.

18. Reinefeld, A.; Marsland T. A.: Enhanced Iterative-Deepening Search. IEEE Transactions
on Pattern Analysis and Machine Intelli gence, vol. 16, No. 7, July 1994, pp.701-710,
1994.

19. Tamaki H. and Sato T.: Unfold/Fold Transformations of Logic Programs. Proc. 2nd Intl.
Logic Programming Conf., Uppsala Univ., 1984.

20. Van Harmelen F. and Bundy A.: Explanation based generali sation = partial evaluation.
Artificial Intelli gence 36:401-412, 1988.

