
Generation of Patterns with External Conditions for the Game of Go 277

GENERATION OF PATTERNS WITH EXTERNAL
CONDITIONS FOR THE GAME OF GO

T. Cazenave1

Labo IA
Saint-Denis, France

Abstract

Pattern databases are constructed to improve the search process in
game-playing programs. We have generated pattern databases for
the game of Go. The generated patterns are associated to conditions
that are external to the pattern. This method enables a pattern to
cover much more positions, but it leads to new problems for pattern
generation too. We explain how we managed to solve these problems
and provide experimental results. Moreover, we believe that patterns
associated to external conditions can be useful in other games.

1. INTRODUCTION

In this paper, we explain the generation of pattern-based knowledge associated
to external conditions for the game of Go. The approach shows promising
properties for the construction of an adequate Go-playing program. In the game
of Go, Tsume-Go is an important problem. It consists of finding whether a
group is ali ve (the opponent cannot remove the group) or dead. Finall y, patterns
have been generated too for connecting and removing stones.

In Section 2, we relate our work to similar work performed in other games,
especiall y in chess and checkers. Then we explain why associating external
conditions to patterns is useful in the game of Go. In Section 3, we present how
we manage the special pattern-based knowledge. Section 4 is devoted to the
explanation and the optimisation of the algorithm that generates the patterns.
Section 5 presents the results obtained with this approach, and Section 6
provides conclusions.

1 Labo IA, Dept Informatique, Université Paris 8, 2 Rue de la Liberté, 93526 Saint-

Denis, France. E-mail : cazenave@ai.univ-paris8.fr

T. Cazenave278

Throughout the paper, Black is our colour (the friend colour) and White the
opponent’s colour.

2. DATABASES OF PATTERNS WITH EXTERNAL CONDITIONS

2.1 Game Databases

Perfect-knowledge databases are an effective means for significantly controlli ng
and reducing search trees in many planning domains. In a given planning
domain a pattern database enumerates all possible subgoals required by any
solution, subject to constraints on the subgoal size. Extensive work on chess
endgame databases was initiated by van den Herik and Herschberg (1985), and
Thompson (1986). It was pushed further with 6-piece endgames databases by
Still er (1996) and Thompson (1996). Moreover, endgame databases enabled us
to discover new chess knowledge (Nunn, 1993) and to play some endgames
better than any human. Another well -known application is CHINOOK’ s set of
endgame databases for checkers (Lake, Schaeffer, and Lu, 1994). In single-
agent planning, pattern databases have been used successfull y to reduce the total
number of nodes searched on a standard problem set of 100 15-puzzle positions
by over a 1000-fold (Culberson and Schaeffer, 1998), and to find optimal
solutions to Rubik’s Cube (Korf, 1997). Dynamic pattern-databases construction
has been used as a real-time learning algorithm to speed up Sokoban problem
solving (Junghanns and Schaeffer, 1998). Some simple raw pattern databases
have also been computed for the game of Go (three by three eye patterns in the
centre) (Cazenave, 1996).

2.2 Go Patterns with External Conditions

Figure 1 is a position where black stones are ali ve. Figure 2 contains a group
that can li ve if Black plays first at A. If White plays first, the group cannot
make two eyes. The position is called critical.

Figure 1: Black stones are ali ve. Figure 2: A criti cal position.

Finding the status of a group (unconditionally ali ve, ali ve if friend plays first,

B

A

A

Generation of Patterns with External Conditions for the Game of Go 279

dead) and the associated moves is a called a Tsume-Go problem. To solve
Tsume-Go problems, Go players use much knowledge about eye shapes.

Figure 3: Detecting an eye. Figure 4: Eye making move.

Some eye shapes are used to foresee that an eye can be made many moves
ahead. The shape in Figure 3 is an example. It applies to detect the upper eye in
Figure 2 before this is done by a rough estimation. Other eye shapes are used to
find moves to play, like the shape in Figure 4 that advises the black move at A
making the lower eye of Figure 2.

To date, all the pattern databases used to reduce search trees contain patterns
with only raw information. Moreover, a pattern always corresponds to the
occupation of raw elements of the problem.

The latter kind of patterns does not take into account the fundamental properties
of some domains, as they occur in the game of Go. One essential property of a
string of stones is its number of liberties. However, in small patterns like the
ones depicted in Figures 3 and 4, some parts of the strings that are present in
the pattern are not represented. So, the number of liberties of the strings that
border the edge of the pattern (if this edge is not also the edge of the board)
cannot be calculated when only the pattern is given.

Figure 5: The importance of external liberties.

Figure 5 stresses the importance of the number of liberties of a string. The

A

T. Cazenave280

position at the upper left of Figure 5 has similarities with the position of Figure
2. Moreover the two raw patterns of the Figures 3 and 4 apply to this position as
well . But on the contrary of the position of Figure 2, the black group of Figure 5
is dead even if Black plays first. The sequence explaining why the upper
enclosed black region is not an eye but a half eye (eye if Black plays first) is
given by the sequence of moves following the arrows of Figure 5.

Why are the patterns in the Figures 3 and 4 appropriate for Figure 2 and not for
Figure 5? This is due to properties external to the pattern. The difference
between the two positions is that when Black answers White’s move, the upper
black string has two liberties in the first position and only one liberty in the
second one. A string with only one liberty is in Atari: the opponent can remove
it on the next move. So in the first position, White cannot remove a black eye
whereas he can in the second position.

To enable our system to handle such positions we have to add external
conditions to the elements of our pattern. Elements of a pattern are the string of
stones and the empty intersections that it contains. For strings, external
conditions associated to the elements of a pattern are conditions on the number
of liberties external to the pattern, and for the empty intersections they are
conditions on the number of liberties external to the pattern if one colour plays
there.

Figure 6: A sample set of conditions. Figure 7: Another set of
conditions.

Figure 8: A far and criti cal external li berty.

≥1 liberty

≥1 liberty

≥1 liberty

≥1 liberty if Black plays

Generation of Patterns with External Conditions for the Game of Go 281

Figure 6 gives an example of a set of conditions that has to be added to the
pattern in Figure 3, to ensure that it represents an eye whatever is the
environment of the pattern: if the upper black string has more than one external
liberty, it will have more than one liberty when White puts its stone inside and
Black answers on the upper left empty intersection as in Figure 5. So, White
will not be able to remove the string after Black’s move, and Black will keep his
eye.

However, the conditions given in Figure 6 are neither verified for Figure 2 nor
for Figure 5. But for each raw pattern there may have more than one set of
external conditions attached. For example, Figure 7 gives another set of
conditions attached to the pattern of Figure 3 that ensure a Black eye. This time
the set of conditions is verified for Figure 2 and not for Figure 5.

One could argue that the need for external conditions associated to a pattern can
be overcome by extending the pattern by taking into account its direct
environment. But this method makes use of many more patterns and covers less
cases. Figure 8 ill ustrates the large coverage of different positions the external
logical information can take into account: the direct environment of the upper
eye pattern in Figure 8 is equivalent to the one of Figure 5. However, the black
string has one more liberty in the upper right corner of Figure 8. This
information is taken into account by the logical condition and could not be
taken into account by raw patterns only. Positions involving such slight but vital
differences often appear in real games. Therefore, logical external conditions
are a convenient, eff icient and useful way to represent important knowledge.

Patterns associated to external conditions are used in many Go programs,
without them patterns are much less useful. The novelty of our approach is to
generate automaticall y this kind of patterns. We believe that the use of external
logical information associated to patterns can improve the use of pattern
databases in other domains than Go. Examples of this kind of information could
be the existence of a corridor behind an emplacement at Sokoban or the control
of a square at chess.

2.3 Computer Tsume-Go

Most Go programs have Tsume-Go problem solvers. Some other programs are
speciali zed in Tsume-Go. The best Tsume-Go problem solver is Thomas Wolf’s
GOTOOLS (Wolf, 1994). GOTOOLS is a very strong Tsume-Go problem solver. It
can solve 5-dan problems (an amateur 5-dan is roughly equivalent to a
professional 1-dan Go player). It relies heavil y on alpha-beta searching and has
numerous hand-coded and well -tuned patterns for directing the search and for

T. Cazenave282

evaluating positions. However, GOTOOLS is restricted to completely enclosed
problems that contain thirteen or less empty intersections (Wolf, 1996) and
most of the problems that are to be solved in real games are not enclosed.

An important assertion that is true for Tsume-Go, and for all goal-based search,
is the following. If a rule enables a player to detect life one move earlier and
assuming that there is an average of five possible moves at each node of the
tree, then finding all the rules that detect life one move earlier reduces the size
of the tree by a factor five. Many of our rules enable the detection of won goals
many moves ahead (sometimes 10 moves or more), so using our set of generated
rules enables us to solve much harder problems than by using a plain problem
solver.

3. REPRESENTATION OF GO PATTERNS WITH EXTERNAL
CONDITIONS

3.1 Kind of External Conditions

Number of liberties outside the patterns
Each intersection in a pattern can have three values. Each empty intersection on
the side of a pattern leads to: (a) three possibilities (no conditions, 0,1) for the
slot MaxNumberOfLibertyIfEnemy, and (b) three possibilities (no condition,
1,2) for the slot MinNumberOfLibertyIfFriend. Each string in a pattern leads to
three possibilities: (no condition, 0, 1) for the slot MaxNumberOfLiberties if it
is an enemy string, and (no condition, 1, 2) for the slot MinNumberOfLiberties
if it is a friend string. So each empty intersection on the side of the pattern leads
to nine possible choices, and each string in the pattern leads to three possible
choices.

For example the pattern in Figure 9 has two empty
intersections on its side and two strings. So the
number of possible rules that can be tested by the
pattern generator is 9×9×3×3=743 different rules.

Figure 9: 743 possible rules are generated using this pattern.

3.2 Possible Moves

Possible moves with external conditions
When checking whether a rule is a winning rule, the program has to try all
possible black moves and to find if one leads to a winning rule. The possible
black moves are putting black stones on empty intersections. If the intersection
has a MinNumberOfLibertiesIfBlackPlays condition, then it is removed and

Generation of Patterns with External Conditions for the Game of Go 283

transformed into a MinNumberOfLiberties condition for the new string
containing the played black stone. Other possible moves for Black are removing
white strings that have no liberties inside the pattern and at most one liberty
outside the pattern. If Black plays on an empty intersection in the pattern and if
a white string only has this empty intersection as liberty in the pattern and no
liberties outside, then the white string is removed from the pattern. Figure 10
gives an example of the possible moves for White.

Figure 10: Possible moves for White.

Admissible heuristics on moves
One important property of the game of Go is that a move can remove at most
one liberty of a string. Sometimes, liberties are protected and the opponent has
to make approaching moves before filling them. The minimum number of
moves to remove one liberty to a friend string is one. So, white moves other
than putting stones inside a pattern have one of the following consequences: the
move (a) decreases the number of liberties of a black string by one, (b) decreases
the number of liberties by one if Black plays on an empty intersection, (c)
removes an external condition on the maximum number of liberties of a white
string, or (d) removes an external condition on the maximum number of
liberties if White plays on an empty intersection.

>2 liberties

>2 liberties if
 Black plays

>2 liberties

>2 liberties if Black plays

>1 liberty

>2 liberties if
 Black plays

>2 liberties >2 liberties

>2 liberties if
 Black plays

>1 liberty if
 Black plays

>2 liberties

T. Cazenave284

This ensures that we generate rules that enable Black to achieve his goal
whatever White does, even if the external environment is completely favourable
to White and unfavourable to Black. So there is no need for consistency
checking or verification of the generated patterns (except maybe for finding
bugs in the generation program, but so far, this has not been done
automatically).

Independence of conditions
We hypothesise that the external conditions of the generated rules are
independent of each other. This means that the opponent can only modify one of
the conditions at each move. This pre-condition has to be verified by the
program that uses the generated rules when it matches them.
3.3 Smaller Patterns Included

Included patterns

Figure 11: Only the smaller pattern is memorised.

Patterns that contain smaller patterns concluding on the same goals are not
memorised. This reduces the number of patterns generated for large patterns
considerably since most of the large patterns that can be generated are only
small patterns with some useless conditions added. Figure 11 gives an example
of the idea. The pattern on the left has been generated as a won eye in the
centre, it is a three by three intersections pattern. The pattern on the right is a
four by three intersections pattern in the centre, but this pattern can be deduced
from the one on the left, so it will not be memorised. The selection of patterns
not containing smaller patterns reduces greatly the number of generated
patterns. However, it forces to generate pattern sizes using a partial order.

Figure 12: A partial order of pattern sizes.

3x3
Center

4x3
Center

3x4
Center

2x2
Corner

3x2
Corner

3x2 Side 4x2 Side4x2
Corner

2x3
Corner

2x4
Corner

3x3
Corner

5x2 Side

3x3 Side 4x3 Side

Generation of Patterns with External Conditions for the Game of Go 285

The partial order is given in Figure 12. Each arrow represents a dependency
between a pattern size and another one. The main drawback is that all pattern
databases cannot be computed in parallel, we only have a partial parallelism.
For example, if we want to compute the four by three intersections on the side
eye pattern database, we must wait for the three by two, the four by two and the
three by three intersections on the side pattern databases.

Rules are used in two different ways. On one hand new patterns on won eyes or
unsettled eyes are used to detect sooner in the proof tree that an eye is made or
can be made. On the other hand, patterns that threaten to make an eye and that
give forced moves to prevent the opponent to make an eye are used to find
appropriate moves to try in the search tree.
Calculating the conditions for inside patterns
When verifying that a smaller pattern is included in a larger one, a set of
conditions for the smaller pattern has to be calculated given the larger pattern
and its own set of conditions. There is an example in Figure 13 where the empty
intersection in the centre of the 4×3 pattern becomes a border empty intersection
in the 3×3 sub-pattern. Therefore, we can add a condition that is calculable: if
White plays on this empty intersection he will have no external liberties.
Similarly, the number of liberties if Black plays on the upper empty intersection
is increased by one to take into account the liberty contained in the 4×3 pattern
that is external to the 3×3 pattern.

Figure 13: Calculating conditions for inside patterns.

Once the conditions of the subpattern are calculated, the program looks for rules
that are more general than the subpattern and its conditions. For example, if the
3×3 rule in the Figure 14 has already been deduced for the same state and the
same goal, the 4×3 rule in the Figure 13 will be discarded.

Figure 14: A 3×3 rule more general than the 4×3 rule in the Figure 13.

≥1 liberty

≥2 liberties if Black plays0 liberty if White plays

≥1 liberty

≥1 liberty if Black plays

≥1 liberty if Black plays0 liberty if White plays

T. Cazenave286

3.4 Number of Possible Patterns and Rules

In Table 1 the number of possible patterns and rules for different sizes and
locations are presented. A pattern is a rectangular shape containing only black,
white and empty intersections. A rule is a pattern associated to external
conditions. To calculate the number of possible rules, we made a program that
generated and counted all of them. All the possible rules we have counted are
valid ones and can be matched on some boards.

According to Lake et al. (1994), the number of positions for the seven-piece
checkers endgame databases is 34,779,531,480 and for the eight-piece databases
406,309,208,481. So, the number of rectangular rules that contains fewer than
fifteen intersections is much higher than the number of eight-piece endgame
positions in checkers.

Size of the
pattern

Location Total number of
possible patterns

Total number of possible rules

2×2 Corner 81 5,133

3×2 Corner 729 184,137

4×2 Corner 6,561 6,498,165

3×3 Corner 19,683 23,719,791

5×2 Corner 59,049 228,469,857

4×3 Corner 531,441 3,238,523,049

6×2 Corner 531,441 8,023,996,893

5×3 Corner 14,348,907 464,991,949,659

3×2 Side 729 541,101

4×2 Side 6,561 18,513,177

3×3 Side 19,683 191,890,599

5×2 Side 59,049 631,651,053

4×3 Side 531,441 20,752,761,345

6×2 Side 531,441 21,555,306,681

3×4 Side 531,441 68,094,804,369

5×3 Side 14,348,907 2,353,796,975,871

3×3 Centre 19,683 663,693,159

4×3 Centre 531,441 239,111,765,601

5×3 Centre 14,348,907 59,241,069,331,995

Table 1: Number of possible patterns and rules for different sizes and locations.

Generation of Patterns with External Conditions for the Game of Go 287

4. GENERATION OF GO PATTERNS WITH EXTERNAL
CONDITIONS

4.1 Coding Patterns

Usually when generating pattern databases, only one or two bits are used per
pattern (Lake et al., 1994; Korf, 1997; Culberson and Schaeffer, 1998;
Junghanns and Schaeffer, 1998). All patterns are associated to one or two bits,
sometimes a byte so as to encode the minimal length to the winning position
(Thompson, 1986, 1996; Schaeffer, 1997). We do not use this representation.
Instead, each pattern is coded as a 32-bit unsigned integer. This representation
takes less memory because out of the total number of possible rules for each size
and each location, only a few conclude on a won or a winning state. Moreover,
different sets of conditions can be associated to a pattern. It is easier to associate
this superset to an entry in a table of patterns.
For example, if we use one bit per rule, the 5×3-in-the-centre rules for won
states would take 7,405,133,666,499 bytes, which is out of the question for
current machines. If instead we allocate a pointer on a superset of set of
conditions for each possible pattern, we get 57,395,628 bytes for the pointer
table without counting the memory for the sets of conditions. This is still too
much. If instead we record only a table of 32-bit unsigned integers per won
pattern, we only use 1317×4=5268 bytes for patterns and roughly the same
memory for associated conditions.

4.2 Simple Algorithm

A simple forward algorithm for generating rules is given in Figure 15.

do {

 NewPattern=0;

 for (Pattern=0; Pattern<NumberOfPatterns(length,height);

 Pattern++) {

 ForAllArrangementsOfExternalLiberties(Pattern,Liberties) {

 if (NewWonPattern(Pattern,Liberties)) {

 AddWonPattern(Pattern,Liberties); NewPattern=1; } } }

 for (Pattern=0; Pattern<NumberOfPatterns(length,height);

 Pattern++) {

 ForAllArrangementsOfExternalLiberties(Pattern,Liberties) {

 if (NewWinningPattern(Pattern,Liberties)) {

 AddWinningPattern(Pattern,Liberties); NewPattern=1; } } }

 }

while(NewPattern);

Figure 15: A simple forward algorithm.

T. Cazenave288

The algorithm looks at all the possible patterns and checks if they are won or
winning patterns for the desired goal. However, the algorithm cannot be used
for the sizes of the patterns we want to generate. For example, the smallest size
of pattern for making life in the centre is 5×3. There are 59,241,069,331,995
different possible rules for 5×3 patterns in the centre. Each time we want to
regress rules one move further, the algorithm has to check the huge number of
rules.

4.3 Backward Algorithm

Unmove generator
To improve the forward algorithm, we wrote an unmove generator that given a
rule provides all the rules that lead to it in one-move (Lake et al., 1994;
Thompson, 1996; Gasser, 1996). However, writing an unmove generator is a
difficult task when dealing with external conditions and different patterns sizes
and locations. It is much easier to write an unmove generator for raw patterns
without external conditions. So we improved the simple algorithm by unmoving
the raw patterns and looking at all the arrangements of external liberties for the
unmoved raw patterns (see Figure 16).

for (Pattern=0; Pattern<NumberOfPatterns(length,height); Pattern++) {

 ForAllArrangementsOfExternalLiberties(Pattern,Liberties) {

 if (NewWonPattern(Pattern,Liberties)) AddWonPattern

 (Pattern,Liberties); } }

do {

 NewPattern=0;

 for (i=0; i<NumberOfWinningPatterns; i++) {

 NewPatternsToUnmove=Unmove(Enemy,WinningPattern[i]);

 for (j=0; j<NumberOfNewPatternsToUnmove; j++) {

 Pattern=NewPatternsToUnmove [j];

 ForAllArrangementsOfExternalLiberties(Pattern,Liberties) {

 if (NewWonPattern(Pattern,Liberties)) {

 AddWonPattern(Pattern,Liberties); NewPattern=1; } } }

 for (i=0; i<NumberOfWonPatterns; i++) {

 NewPatternsToUnmove=Unmove(Friend,WonPattern[i]);

 for (j=0; j<NumberOfNewPatternsToUnmove; j++) {

 Pattern=NewPatternsToUnmove [j];

 ForAllArrangementsOfExternalLiberties(Pattern,Liberties) {

 if (NewWinningPattern(Pattern,Liberties)) {

 AddWinningPattern(Pattern,Liberties); NewPattern=1; } } } }

while(NewPattern);

Figure 16: A simple backward algorithm.

Generation of Patterns with External Conditions for the Game of Go 289

4.4 Memorizing the Last Iteration

The next optimisation is not to unmove all the patterns but to unmove only the
last deduced patterns. This leads to a substantial speed-up for large pattern
sizes, as a large number of rules are generated. This optimisation is mentioned
in Lake et al. (1994). Instead of unmoving all the winning rules, we only
unmove the winning rules found during the last iteration. We do the same for
the won rules. This significantly reduces the number of rules to unmove at each
step.

4.5 Order of Test and Cut

Another important optimisation relies on the property that the program does not
have to do all the tests in the ForAllArrangementsOfExternalLiberties
loop. If we begin to test the arrangements with the most favourable ones for
Black, then as soon as one arrangement does not lead to a new rule, we can stop
looking for an arrangement less favourable for Black: they would not lead to
new rules either.

The optimisation works particularly well when looking for won states, since one
white move is sufficient to disprove the won state. As soon as this move is
found, the loop is stopped, even if it is the first arrangement tested: the most
favourable for Black. It happens many times that a white unmove leads to no
won state, because all white moves have to be disproved for the state to be won.
It happens very rarely that a black unmove does not lead to a winning state.

Type of rules Time without constraints
optimisation

Time with constraints
optimisation

4×2 eyes on the side
of the board

7 min. 1 min.

3×3 eyes on the side
of the board

1 hour 41 min. 13 min.

5×2 eyes on the side
of the board

9 hours 10 min. 55 min.

Table 2: Impact of constraints optimisation.

Some tests, on a slow workstation, that evaluate the impact of constraints
optimisation are given in Table 2.

4.6 Rule-Coverage Reductions

If the number of empty intersections on the side of the pattern is strictly greater

T. Cazenave290

than four, the program only keeps intersections at the corner of the pattern. This
is a domain-dependent coverage reduction, which enables to keep the number of
possible conditions associated to a pattern low, while keeping a large number of
interesting rules. For example, in the pattern of Figure 17, only the empty
intersections in the corners will be associated to conditions.

Figure 17: An example of rule-coverage reduction.

5. RESULTS

5.1 Eyes on the Side

Table 3 gives for each pattern size the number of generated rules for eyes on the
side. The number of generated rules is remarkably low in comparison with the
number of possible rules. This is due to the fact that many conditions must be
fulfilled to make an eye. However, these numbers are quite high in comparison
with the number of rules used by other Go programs that use hand-written
pattern databases. Figure 18 gives a won eye on the side rule generated by the
system.

Figure 18: A won eye on the side rule.

≥1 liberties

≥1 liberties

Generation of Patterns with External Conditions for the Game of Go 291

Size of the pattern Location Number of won rules Number of winning rules
3×2 Side 11 108
4×2 Side 171 1,081
3×3 Side 727 5,570
5×2 Side 1,661 5,952
4×3 Side 38,909 146,272
3×4 Side 14,966 62,329
6×2 Side 18,194 31,500

Table 3: Number of generated rules for eyes on the side.

5.2 Life in the Corner

Life in the corner of the board is a tricky part of the game of Go. Many patterns
gives birth to living strings, and some of them need quite deep and accurate
reading for proving life. Table 4 provides some figures on this issue.

Size of the pattern Location Number of won rules Number of winning rules
4×2 Corner 15 164
3×3 Corner 75 977
5×2 Corner 151 1,172
4×3 Corner 10,305 72,014
6×2 Corner 2,916 19,490
5×3 Corner 93,301 483,519

Table 4: Number of generated rules for life in the corner.
Figure 19 shows some generated rules where Black can live in one move
(winning rules).

Figure 19: Rules where Black can live in one move.

5.3 Life on the Side

To make life, one needs two eyes, so there are many less life rules than eye rules
for the same pattern size. Table 5 provides some numbers.

≥1 liberties

≥1 liberties
 if Black plays

≥1 liberties

0 liberties if
White plays

T. Cazenave292

Size of the pattern Location Number of won rules Number of winning rules
5×2 Side 25 264
4×3 Side 444 5,940
6×2 Side 298 2,808
5×3 Side 30,174 262,541

Table 5: Number of generated rules for won li fe on the side.

5.4 Other Goals

Rules were generated for the following goals: make an eye, li ve, connect two
strings, connect a string to an empty intersection, connect two empty
intersections, remove a string from the board. For each of these goals, large
numbers of rules were generated for each of the three possible locations on the
board, leading to substantial improvements in the problem-solving abiliti es of
our Go program.

5.5 Using Generated Rules to Solve Problems

To evaluate the impact of new pattern-based search knowledge on the problem-
solving performance in Tsume-Go, we used problems from two beginners’
books (Kano, 1985a, 1985b). The first book is for beginners and the second for
advanced beginners. We used two books of different levels of strength to
compare the influence of knowledge on easy problems and harder problems, and
to see if our experiment scales well . The first book contains 90 Tsume-Go
problems, and the second book 127.

We used proof-number (pn) search (Alli s, van der Meulen, and van den Herik,
1994) for our Tsume-Go problems for various reasons. The first reason is that in
depth-first search as used in GOTOOLS for completely enclosed problems (Wolf,
1996), good heuristics are available to order moves. For example, the last move
of a winning opponent is a good candidate for the loser to try. So the program
can learn from terminal leaves of the search tree; therefore depth-first search is
appropriate, because it reaches the terminal leaves earlier. It is the contrary for
open problems where a wrong move involving a ladder (a ladder is a subgoal of
the game consisting in removing some stones of the board) across the board is
tried first. The first subtree search may last very long or even forever; the
correct blocking move may never be learned and the problem never be solved.
So, a best-first search li ke the one used in pn search is more appropriate for the
open Tsume-Go problems our system tries to solve.

The second reason is that we generate control knowledge in the sense that we

Generation of Patterns with External Conditions for the Game of Go 293

generate patterns that advise a small number of moves out of the large number
of possible moves (meanly 250), but we do not generate ordering knowledge for
the selected moves. Correctly ordering the moves to try is very important for the
eff icient use of the alpha-beta algorithm, and more generall y for depth-first
search algorithms. The advantage of pn search is that the correct ordering of
moves is less important because the interest of each subtree is dynamicall y
evaluated and reconsidered at each move taking into account the information on
the shape of the search tree given by the last move.

In this experiment we counted the eight patterns that are equivalent by rotations
and symmetries as different patterns. Each rotated and symmetrized pattern is a
different item in our database. As we have seen in Section 2, each pattern can
have different sets of external conditions attached to it. We counted each
different set of conditions as one rule. So one raw pattern having multiple sets
of conditions counts for more than one rule.

Figure 20: Level increases with generated patterns

In Figure 20, the horizontal axis represents the number of rules used to control
and stop the search. The vertical axis represents the number of problems solved
by this amount of rules on beginners’ problems.

100%

80%

60%

40%

20%

100 000 200 000 300 000 400 000

% of solved problems

T. Cazenave294

Figure 21: Overhead due to the generated patterns

In Figure 21, the horizontal axis represents the number of patterns used to
control and stop the search. The vertical axis represents the time used to search
the problems. In order to solve a Tsume-Go problem, our system must recognise
the groups of stones on the board. So, much search is performed before solving
the Tsume-Go problem at hand: all the subproblems concerning the connection
and the capture of stones have to be solved first to build the groups. The system
calculated the total time used for building groups and solving Tsume-Go
problems. This gives a realistic evaluation of the overhead due to the Tsume-Go
solver.

Figure 22: Increase in level on more difficult problems
In Figure 22, the horizontal axis represents the number of rules used to control
and stop the search. The vertical axis represents the number of problems solved

500s

400s

300s

200s

100s

100 000 200 000 300 000 400 000

Time (s)

100%

80%

60%

40%

20%

100 000 200 000 300 000 400 000

% of solved problems

Generation of Patterns with External Conditions for the Game of Go 295

by this amount of patterns on advanced beginners’ problems.

6. CONCLUSION

We have demonstrated the importance of pattern databases equipped with
external conditions for computer Go. Moreover, we have shown the importance
of logical information in patterns that take into account external properties of
the pattern. In summary, we have described the representations and the
algorithms used to generate such patterns. The experimental results show that
the number of simple problems solved increases well with the number of
generated patterns. The additional time used by the playing program to solve
problems it could not solve (and not even see as problems) before generating the
patterns, is reasonable and involves no time problem for tournament and
competiti ve play. In fact, the mean number of nodes and the mean time used to
solve a given problem decreases as the number of pattern increases. When
tested on harder problems, the experiments scale well and show a similar
increase of the number of problems solved with the number of patterns. Some
games played by our system during tournament play show that its pattern
databases and search algorithm give it a better understanding of Tsume-Go than
the best Go-playing systems on some positions. These experimental results are
an encouragement to continue working on pattern databases associated to
external logical information in Go and to test this approach in other games and
single-agent search domains.

7. REFERENCES

Alli s, L.V., van der Meulen, M., and Herik, H.J. (1994). Proof-Number Search.
Artifi cial Intelli gence, Vol. 66, No.1, pp. 91-124. ISSN 0004-3702.

Cazenave, T. (1996). Automatic Acquisition of Tactical Go Rules. Game
Programming Workshop in Japan ‘96, Hakone, Japan.

Culberson, J.C., Schaeffer, J. (1998). Pattern Databases. Computational
Intelli gence, Vol. 14, No. 3, pp. 318-334. ISSN 0824-7935.

Gasser, R. (1996). Solving Nine Men’s Morris. Games of No Chances (ed. R.J.
Nowakowski), Vol. 29, MSRI Publications, Cambridge, MA. ISBN 0-5216-
4652-9.

Herik, H.J. van den and Herschberg, I.S. (1985). The Construction of an
Omniscient Endgame Database. ICCA Journal, Vol. 8, No. 2, pp. 66-87. ISSN
0920-234X.

T. Cazenave296

Junghanns, A. and Schaeffer, J. (1998). Single-Agent Search in the Presence of
Deadlock. Proceedings of the 17th National Conference on Artifi cial
Intelli gence (AAA I-98), pp. 419-424.

Kano, Y. (1985a). Graded Go Problems for Beginners. Volume One. The Nihon
Ki-in. ISBN 4-8182-0228-2. C2376.

Kano, Y. (1985b). Graded Go Problems for Beginners. Volume Two. The Nihon
Ki-in. ISBN 4-9065-7447-5.

Korf, R. (1997). Finding Optimal Solutions to Rubik’s Cube Using Pattern
Databases. Proceedings of the 16th National Conference on Artifi cial
Intelli gence (AAA I-97), pp. 700-705.

Lake, R., Schaeffer, J. and Lu, P. (1994). Solving Large Retrograde-Analysis
Problems Using a Network of Workstations. Advances in Computer Chess 7
(eds. H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk), pp. 135-
162. University of Limburg, Maastricht, The Netherlands. ISBN 90-6216-1014.

Nunn, J. (1993). Extracting Information from Endgame Databases. ICCA
Journal, Vol. 16, No. 4, pp. 191-200. ISSN 0920-234X.

Schaeffer, J. (1997). One Jump Ahead: Challenging Human Supremacy at
Checkers. Springer-Verlag, New York, NY. ISBN 0-387-94930-5.

Still er, L. (1996). Multili near Algebra and Chess Endgames. Games of No
Chances (ed. R.J. Nowakowski), Vol. 29, MSRI Publications, Cambridge, MA.
ISBN 0-5216-4652-9.

Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA
Journal Vol. 9, No. 3, pp. 131-139. ISSN 0920-234X.

Thompson, K. (1996). 6-Piece Endgames. ICCA Journal, Vol. 19, No. 4, pp.
215-226. ISSN 0920-234X.

Wolf, T. (1994). The Program GoTools and its Computer-Generated Tsume-Go
Database. First Game Programming Workshop in Japan, Hakone, Japan.

Wolf, T. (1996). About Problems in Generali zing a Tsume-Go Program to Open
Positions. Game Programming Workshop in Japan’96, Hakone, Japan.

