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Abstract. We present an application of Multi-Agent Modal Logic K
(MMLK) to model dynamic strategy game properties. We also provide
several search algorithms to decide the model checking problem in MMLK.
In this framework, we distinguish between the solution concept of in-
terest which is represented by a class of formulas in MMLK and the
search algorithm proper. The solution concept defines the shape of the
game tree to be explored and the search algorithm determines how the
game tree is explored. As a result, several formulas class and several of
search algorithms can represent more than a dozen classical game tree
search algorithms for single agent search, two-player games, and multi-
player games. Among others, we can express the following algorithms in
this work: depth-first search, Minimax, Monte Carlo Tree Search, Proof
Number Search, Lambda Search, Paranoid Search, Best Reply Search.

1 Introduction

1.1 Motivation
Deterministic perfect information strategy games constitute a broad class of games rang-
ing from western classic chess and eastern go to modern abstract games such as hex
or multiplayer chinese checkers [22]. Single-agent search problems and perfect infor-
mation planning problems can also naturally be seen as one-player strategy games. A
question in this setting is whether some agent, can achieve a specified goal from a given
position. The other agents can either be assumed to be cooperative, or adversarial.

For example, an instance of such a question in chess is: “Can White force a capture of
the Black Queen in exactly 5 moves?” In chinese checkers, we could ask whether one
player can force a win within ten moves. Ladder detection in go and helpmate solving
in chess also belong to this framework. The latter is an example of a cooperative two
player game.

1.2 Intuition
The main idea of this article is that we should see the structure of a game and the be-
haviour of the players as two distinct parts of a game problem.

Thus, a game problem can be seen as the combination of a Game Automaton (the
structure of the game) and a solution concept represented by a modal logic formula (the
behaviour of the players).
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1.3 Contributions and Outline

Our contributions in this work are:

– We establish a relation between strategy games and the Multi-Agent Modal Logic
K (MMLK). Then, we show that many abstract properties of games such as those
mentioned in the introduction can be formally expressed as model checking prob-
lems in MMLK with an appropriate formula (Section 2).

– We describe three possible algorithms to solve the model checking problem in MMLK.
These algorithms are inspired by depth-first search, effort numbers, and Monte Carlo
playouts (Section 3).

– We show that numerous previous game tree search algorithms can be directly ex-
pressed as combinations of model checking problems and model checking algo-
rithms (Section 4).

– We demonstrate that the MMLK allows new solution concepts to be rigorously de-
fined and conveniently expressed. Moreover, many new algorithms can be derived
through new combinations of the proposed search algorithms and existing or new
solution concepts (formulas). Finally, it is a convenient formal model to prove some
kind of properties about game algorithms (Section 5).

We believe that these contributions can be of interest to a broad class of researchers.
Indeed, the games that fall under our formalism constitute a significant fragment of the
games encountered in General Game Playing [11]. We also express a generalization of
the Monte Carlo Tree Search algorithm [10] that can be used even when not looking for
a winning strategy. Finally, the unifying framework we provide makes understanding
a wide class of game tree search algorithms relatively easy, and the implementation is
straightforward.

2 Strategy Games and Modal Logic K

2.1 Game model

We now define the model we use to represent games, namely the Game Automaton (GA).
We focus on a subset of the strategy games that are studied in Game Theory. The games
we are interested in are turn-based games with perfect and complete information. Despite
these restrictions, the class of games considered is quite large, including classics such as
chess and go, but also multiplayer games such as chinese checkers, or single player
games such as sokoban.

Informally, the states of the game automaton correspond to possible positions over
the board, and a transition from a state to another state naturally refers to a move from a
position to the next.

Although the game is turn-based, we do not assume that positions are tied to a player
on turn. This is natural for some games such as go or hex. If the turn player is tightly
linked to the position, we can simply consider that the other players have no legal moves,
or we can add a pass move for the other players that will not change the position.

We do not mark final states explicitly, neither do we embed the concept of game out-
come and reward explicitly in the following definition. We rather rely on a labelling of



the states through atomic propositions. It is then possible to generate an atomic propo-
sition for each possible game outcome and label each final state with exactly one such
proposition.

Definition 1. A Game Automaton is a 5-tuple G = (Π,Σ,Q, π, δ) with the following
components :

– Σ is a non-empty finite set of agents (or players)
– Π is a non-empty set of atomic propositions
– Q is a set of game states
– π : Q→ 2Π maps each state q to its labels, the set of atomic propositions that are

true in q
– δ : Q×Σ → 2Q is a transition function that maps a state and an agent to a set of

next states.

We write q a−→ q′ when q′ ∈ δ(q, a). We understand δ as: in a state q, agent a is free
to choose as the next state any q′ such that q a−→ q′.

Note that we lift the restriction that the turn order is fixed and that in a given position,
only one player can move. That is, we assume that any player can move from a given
position if asked to. This generalisation is straightforward for many games. For the other
games where moves for non-turn players cannot be conceived easily, we either add a
single pass move or simply accept that there are no legal moves for non-turn players.

We will assume for the remainder of the paper that one distinguished player is de-
noted by A and the other players (if any) are denoted by B (or B1, . . . , Bk). Assume
two distinct atomic propositionsw and l, such thatw is understood as a label of terminal
positions won by A, while l is understood as a label of terminal positions not won by
A.1

2.2 Multi-Agent Modal Logic K

Modal logic [5] is often used to reason about the knowledge of agents in a multi-agent en-
vironment. In such environments, the states in the GA are interpreted as possible worlds
and additional constraints are put on the transition relation which is interpreted through
the concepts of knowledge or belief. In this work, though, the transition relation is in-
terpreted as a legal move function, and we do not need to put additional constraints on
it. Since we do not want to reason about the epistemic capacities of our players, we use
the simplest fragment of Multi-Agent Modal Logic K (MMLK) [5].

Syntax Let Π be a finite set of state labels and Σ be finite set of agents. We define the
Multi-Agent Modal Logic K (MMLK) over Π and Σ, noted T , as follows:

Definition 2. The MMLK T is defined inductively.

∀p ∈ Π, p ∈ T
∀φ1, φ2 ∈ T,¬φ1 ∈ T, (φ1 ∧ φ2) ∈ T
∀a ∈ Σ,∀φ ∈ T,2a φ ∈ T

1 Note that the atom l is not formally needed, as it can be defined using w and δ.



That is a formula (or threat) is either an atomic proposition, the negation of a for-
mula, the conjunction of two formulas, or the modal operator 2a for a player a applied
to a formula. We read 2a φ as all moves for agent a lead to states where φ holds.

We define the following syntactic shortcuts.

– φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)
– 3a φ ≡ ¬2a ¬φ

We read 3a φ as there exists a move for agent a leading to a state where φ holds. The
precedence of 3a and 2a, for any agent a, is higher than ∨ and ∧, that is, 3a φ1∨φ2 =
(3a φ1) ∨ φ2.

Semantics For a GA G = (Π,Σ,Q, π, δ), a state q in Q, and a formula φ, we write
G, q |= φ when state q satisfies φ in game G. We omit the game G when obvious from
context. The formal definition of satisfaction is as follows.

– q |= p with p ∈ Π if p is a label of q: p ∈ π(q)
– q |= ¬φ if q 6|= φ
– q |= φ1 ∧ φ2 if q |= φ1 and q |= φ2
– q |= 2a φ if for all q′ such that q a−→ q′, we have q′ |= φ.

It can be shown that the semantics for the syntactic shortcuts defined previously
behave as expected.

Proposition 1.
– q |= φ1 ∨ φ2 if and only if q |= φ1 or q |= φ2
– q |= 3a φ if there exists an actions of agent a in q, such that the next state satisfies
φ: ∃q a−→ q′, q′ |= φ.

2.3 Formalization of some game concepts

We now proceed to define several classes of formulas to express interesting properties
about games.

Reachability A natural question that arises in one-player games is reachability. In this
setting, we are not interested in reaching a specific state, but rather in reaching any state
satisfying a given property.

Definition 3. We say that a player A can reach a state satisfying φ from a state q in
exactly n steps if q |= 3A . . .3A︸ ︷︷ ︸

n times

φ.

Winning strategy We now proceed to express the concept of having a winning strategy
in a finite number of moves in an alternating two-player game.

Definition 4. Player A has a winning strategy of depth less or equal to n in state q if
q |= WSαn

, where WSαn
is defined as

– WSα0 = WSβ0 = w
– WSαn = w ∨ (¬l ∧3AWSβn−1)
– WSβn = w ∨ (¬l ∧ 2BWSαn−1)



Ladders The concept of ladder occurs in several games, particularly go [16] and hex.
A threatening move for player A is a move such that, if it was possible for A to play a
second time in a row, then A could win. A ladder is a sequence of threatening moves by
A followed by defending moves by B, ending with A fulfilling their objective.

Definition 5. Player A has a ladder of depth less or equal to n in state s if q |= Lαn
,

where Lαn
is defined as

– Lα0 = Lβ0 = w
– Lαn = w ∨ (¬l ∧3A(w ∨ (3A w ∧ Lβn−1)))
– Lβn = w ∨ (¬l ∧ 2B Lαn−1)

For instance, Figure 1a presents a position of the game hex where the goal for each
player is to connect their border by putting stones of their color. In this position, Black
can play a successful ladder thereby connecting the left group to the bottom right border.

(a) hex position featuring a ladder for Black. (b) chess position featuring a helpmate
for Black in four moves.

Fig. 1: Game positions illustrating the concepts of ladder and helpmate.

Helpmates In a chess helpmate, the situation seems vastly favourable to player Black,
but the problemist must find a way to have the Black king checkmated. Both players
move towards this end, so it can be seen as a cooperative game. Black usually starts in
helpmate studies. See Figure 1b for an example. A helpmate in at most 2n plies can be
represented through the formula Hn where H0 = w and Hn = w ∨3B 3AHn−1.

Selfmates A selfmate, on the other hand, is a situation where Black forces White to
checkmate the Black King, while White must do their best to avoid this. Black starts
moving in a selfmate and a position with a selfmate satifies Sn for somen, where S0 = w
and Sn = w ∨3B 2A Sn−1.



3 Search paradigms

We now define several model checking algorithms. That is, we present algorithms that
allow to decide whether a state q satisfies a formula φ (q |= φ).

3.1 Depth First Threat Search

Checking whether a formula is satisfied on a state can be decided by a depth-first search
on the game tree as dictated by the semantics given in Section 2.2. Pseudo-code for the
resulting algorithm, called Depth First Threat Search (DFTS) is presented in Algorithm 1.

dfts(state q, formula φ)
switch on the shape of φ do

case p ∈ Π
return p ∈ π(q)

case φ1 ∧ φ2

return dfts(q, φ1) ∧ dfts(q, φ2)
case ¬φ1

return ¬ dfts(q, φ1)
case 2a φ1

let l = {q′, q a−→ q′};
foreach q′ in l do

if not dfts(q′, φ1) then
return false

return true
Algorithm 1: Pseudo-code for the DFTS algorithm.

3.2 Best-first Search Algorithms

We can propose several alternatives to the DFTS algorithm to check a given formula in
a given state. We present a generic framework to express best first search model check-
ing algorithms. Best-first search algorithms must maintain a partial tree in memory, the
shape of which is determined by the formula to be checked.

Nodes are mapped to a (state q, formula φ) label. A leaf is terminal if its label is
an atomic proposition p ∈ Π otherwise it is non-terminal. Each node is associated to a
unique position, but a position may be associated to multiple nodes. 2

The following static observations can be made about partial trees:

– an internal node labelled (q,¬φ) has exactly one child and it is labelled (q, φ);
– an internal node labelled (q, φ1 ∧ φ2) has exactly two children which are labelled

(q, φ1) and (q, φ2);
– an internal node labelled (q,2a φ) has as many children as there are legal transition

for a in q. Each child is labelled (q′, φ) where q′ is the corresponding state.



bfs(state q, formula φ)
let r = new node with label (q, φ);
r.info← init-leaf(r);
let n = r;
while r is not solved do

while n is not a leaf do
n← select-child(n);

extend(n);
n← backpropagate(n);

return r

extend(node n)
switch on the label of n do

case (q, p)
n.info← info-term(n);

case (q, φ1 ∧ φ2)
let n1 = new node with label (q, φ1);
let n2 = new node with label (q, φ2);
n1.info← init-leaf(n1);
n2.info← init-leaf(n2);
Add n1 and n2 as children of n;

case (q,¬φ1)
let n′ = new node with label (q, φ1);
n′.info← init-leaf(n′);
Add n′ as a child of n;

case (q,2a φ1)

let l = {q′, q a−→ q′};
foreach q′ in l do

let n′ = new node with label (q′, φ1);
n′.info← init-leaf(n′);
Add n′ as child of n;

backpropagate(node n)
let new info = update(n);
if new info = n.info ∨ n = r then

return n
else

n.info← new info;
return backpropagate(n.parent)

Algorithm 2: Pseudo-code for a best-first search algorithm.



The generic framework is described in Algorithm 2. An instance must provide a data
type for node specific information which we call node value and the following proce-
dures. The info-term defines the value of terminal leaves. The init-leaf proce-
dure is called when initialising a new leaf. The update procedure determines how the
value of an internal node evolves as a function of its label and the value of the children.
The select procedure decides which child is best to be explored next depending on
the node’s value and label and the value of each child. We present possible instances in
Sections 3.3 and 3.4.

3.3 Proof Number Threat Search (PNTS)

We present a first instance of the generic best-first search algorithm described in Sec-
tion 3.2 under the name PNTS. This algorithm uses the concept of effort numbers and is
inspired from Proof Number Search (PNS) [2, 28].

The node specific information needed for PNTS is a pair of numbers which can be
positive, equal to zero, or infinite. We call them proof number (PN) and disproof number
(DN). Basically, if a subformula φ is to be proved in a state s and n is the corresponding
node in the constructed partial tree, then the PN (resp. DN) in a node n is a lower bound
on the number of nodes to be added to the tree to be able to exhibit a proof that s |= φ
(resp. s 6|= φ). When thePN reached 0 (and theDN reaches∞), the fact has been proved
and when the PN reached∞ (and the DN reaches 0) the fact has been disproved.

The info-term and init-leaf procedures are described in Table 1, while Ta-
ble 2 and 3 describe the update and select-child procedures, respectively.

Table 1: Initial values for leaf nodes in PNTS.
Node label PN DN

info-term
(q, p) when p ∈ π(q) 0 ∞
(q, p) when p /∈ π(q) ∞ 0

init-leaf (q, φ) 1 1

Table 2: Determination of values for internal nodes in PNTS.
Node label Children PN DN

(q,¬φ) {c} DN(c) PN(c)
(q, φ1 ∧ φ2) C

∑
C PN minC DN

(q,2a φ) C
∑
C PN minC DN

2 While it is possible to store the state q associated to a node n in memory, it usually is more
efficient to store move information on edges and reconstruct q from the root position and the
path to n.



Table 3: Selection policy for PNTS.
Node label Children Chosen child

(q,¬φ) {c} c
(q, φ1 ∧ φ2) C argminC DN
(q,2a φ) C argminC DN

3.4 Monte Carlo Proof Search (MCPS)

Monte Carlo Tree Search (MCTS) [9, 8] is a recent game tree search technique based on
multi-armed bandit problems [4]. MCTS has enabled a huge leap forward in the playing
level of artificial go players. MCTS has been extended to prove wins and losses under
the name MCTS Solver [31] and it can be seen as the origin of the algorithm presented
in this section which we call MCPS.

The basic idea in MCPS is to evaluate whether a state s satisfies a formula via probes
in the tree below s. A probe, or Monte Carlo playout, is a random subtree of the tree
below s whose structure is given by the formula to be checked in s. In the original MCTS
algorithm, the structure of playouts is always a path. We lift this constraint here as we
want to model check elaborate formulas about states. A probe is said to be success-
ful if the formulas at the leaves are satisfied in the corresponding states. Determining
whether a new probe generated on the fly is successful can be done as demonstrated in
Algorithm 3.

probe(state q, formula φ)
switch on the shape of φ do

case p ∈ Π
return p ∈ π(q)

case φ1 ∧ φ2

return probe(q, φ1) ∧ probe(q, φ2)
case ¬φ1

return ¬ probe(q, φ1)
case 2a φ1

let q′ be a random state such that q a−→ q′;
return probe(q′, φ1)

Algorithm 3: Pseudo-code for a Monte-Carlo Probe.

Like MCTS, MCPS explores the GA in a best first way by using aggregates of in-
formation given by the playouts. For each node n, we need to know the total number of
probes rooted below n (denoted by N) and the number of successful probes among them
(denoted by R). We are then faced with an exploration-exploitation dilemma between
running probes in nodes which have not been explored much (N is small) and running
probes in nodes which seem successful (high R

N ratio). This concern is addressed using
the UCB formula [4].



Similarly to MCTS Solver, we will add another label to the value of nodes called
P. P represents the proof status and allows to avoid solved subtrees. P can take three
values: >, ⊥, or ?. These values respectively mean that the corresponding subformula
was proved, disproved, or neither proved nor disproved for this node.

We describe the info-term, init-leaf, update, and select-child pro-
cedures in Table 4, Table 5, and Table 6.

Table 4: Initialisation for leaf values in MCPS for a node n.
Node label P R N

info-term
(q, p) where p ∈ π(q) > 1 1
(q, p) where p /∈ π(n) ⊥ 0 1

init-leaf (q, φ) ? probe(q, φ) 1

Table 5: Determination of values for internal nodes in MCPS.
Node label Children P R N

(q,¬φ) {c} ¬P(c) N(c)− R(c) N(c)
(q, φ1 ∧ φ2) C

∧
C P

∑
C R

∑
C N

(q,2a φ) C
∧
C P

∑
C R

∑
C N

Table 6: Selection policy for MCPS in a node n.
Node label Children Chosen child

(q,¬φ) {c} c

(q, φ1 ∧ φ2) C argmaxC,P(c)=?
N−R

N
+

√
2 log N(n)

N

(q,2a φ) C argmaxC,P(c)=?
N−R

N
+

√
2 log N(n)

N

4 Simulation of existing game tree algorithms

By defining appropriate formulas classes, we can simulate many existing algorithms by
solving model checking problems in MMLK with specific search algorithms.

Definition 6. Let φ be a formula, S be a model checking algorithm and A be a specific
game algorithm. We say that (φ, S) simulatesA if for every game, for every state q where



A can be applied, we have the following: solving q |= φ with S will explore exactly the
same states in the same order and return the same result as algorithmA applied to initial
state q.

Table 7 presents how combining the formulas defined later in this section with the
model checking algorithms defined in Section 3 allows to simulate many important al-
gorithms. For instance, using the DFTS algorithm to model-check an APSn formula on
a hex position represented as a state of a GA is exactly the same as running the Abstract
Proof Search algorithm on that position.

Table 7: Different algorithms expressed as a combination of a formula class and a search
paradigm.

Formula Search Paradigm

DFTS PNTS MCPS

πn Depth-first search Single-player MCTS [21]
WSαn αβ [14] PNS [2] MCTS Solver [31]
PAn Paranoid [26] Paranoid PNS [19] Multi-player MCTS [17]
LSd,n Lambda-search [27] Lambda-PNS [33]1

BRSn Best Reply Search [20]
APSn Abstract proof search [6]
1 We actually need to change the update rule for the PN in internal φ1 ∧ φ2 nodes in PNTS

from
∑
C PN to maxC PN.

4.1 One-player games

Many one-player games, the so-called puzzles, involve finding a path to a terminal state.
Ideally this path should be the shortest possible. Examples of such puzzles include the
15-puzzle and rubik’s cube.

Recall that we defined a class of formulas for reachability in exactly n steps in Defi-
nition 3. Similarly we define now a class of formulas representing the existence of a path
to a winning terminal state within n moves.

Definition 7. We say that agent A has a winning path from a state q if q satisfies πn
where πn is defined as π0 = w and πn = w ∨3A πn−1 if n > 0.

4.2 Two-player games

We already defined the winning strategy formulas WSαn
and WSβn

in Definition 4. We
will now express a few other interesting formulas that can be satisfied in game states in
two player games.



λ-Trees λ-trees have been introduced [27] as a generalisation of ladders as seen in Sec-
tion 2.3. We will refrain from describing the intuition behind λ-trees here and will be
satisfied with giving the formal corresponding property as they only constitute an exam-
ple of the applicability of our framework.

Definition 8. A state q has an λ-tree of order d and maximal depth n for player A if
q |= LSαd,n

, where LSαd,n
is defined as follows.

– LSα0,n = LSαd,0 = LSβ0,n = LSβd,0 = w
– LSαd,n = w ∨3A(¬l ∧ LSαd−1,n−1 ∧LSβd,n−1)
– LSβd,n = w ∨ 2B(¬l ∧ LSαd,n−1)

λ-trees are a generalisation of ladders as defined in Definition 5 since a ladder is a
λ-tree of order d = 1.

Abstract proof trees Abstract proof trees were introduced to address some perceived
practical limitations of α−β when facing a huge number of moves. They have been used
to solve games such as phutball or atari-go. We limit ourselves here to describing how
we can specify in MMLK that a state is root to an an abstract proof tree. Again, we refer
the reader to the literature for the intuition about abstract proof trees and their original
definition [6].

Definition 9. A state q has an abstract proof tree of order n for playerA if q |= APSαn
,

where APSαn
is defined as follows.

– APSα0 = APSβ0 = w
– APSαn = w ∨3A(¬l ∧APSαn−1 ∧APSβn−1)
– APSβn = w ∨ 2B(¬l ∧APSαn−1)

Other concepts Many other interesting concepts can be similarly implemented via a
class of appropriate formulas. Notably minimax search with iterative deepening, the
Null-move assumption, and Dual Lambda-search [25] can be related to model checking
some MMLK formulas with DFTS.

4.3 Multiplayer games

Paranoid Algorithm The Paranoid Hypothesis was developed to allow for more α − β
style safe pruning in multi-player games [26]. It transforms the original k + 1-player
into a two-player game A versus B. In the new game, the player B takes the place of
B1, . . . , Bk andB is trying to prevent playerA from reaching a won position. Assuming
the original turn order is fixed and is A,B1, . . . , Bk, A,B1, . . . , we can reproduce a
similar idea in MMLK.

Definition 10. Player A has a paranoid win of depth n in a state q if q |= PAαn
, where

PAαn is defined as follows.

– PAα0 = PAβi
0
= w

– PAαn = w ∨3A(¬l ∧ PAβ1
n−1

)

– PAβk
n
= w ∨ 2Bk (¬l ∧ PAαn−1)

– PAβi
n
= w ∨ 2Bi(¬l ∧ PA

βi+1
n−1

) for 1 ≤ i < k



Best Reply Search Best Reply Search (BRS) [20] is a new search algorithm for multi-
player games. It consists of performing a minimax search where only one opponent is
allowed to play after A. For instance a principal variation in a BRS search with k = 3
opponents could involve the following turn orderA,B2, A,B1, A,B1, A,B3, A, . . . in-
stead of the regular A,B1, B2, B3, A,B1, B2, B3, . . . .

The rationale behind BRS is that the number of moves studied for the player in turn
in any variation should only depend on the depth of the search and not on the number
of opponents. This leads to an artificial player selecting moves exhibiting longer term
planning. This performs well in games where skipping a move does not influence the
global position too much, such as chinese checkers.

Definition 11. Player A has a best-reply search win of depth n in a state q if q |=
BRSαn , where BRSαn is defined as follows.

– BRSα0 = BRSβ0 = w
– BRSαn = w ∨3A(¬l ∧ BRSβn−1)

– BRSβn = w ∨ ∧ki=1 2Bi(¬l ∧ BRSαn−1)

5 Creation of new game tree algorithms

We now turn to show how MMLK Model Checking framework can be used to develop
new research in game tree search. As such, the goal of this section is not to put forward
a single well performing algorithm, nor to prove strong theorems with elaborate proofs,
but rather to demonstrate that the MMLK Model Checking is an appropriate tool for
designing and reasoning about new game tree search algorithms.

Progress Tree Search It occurs in many two-player games that at some point near the end
of the game, one player has a winning sequence of nmoves that is relatively independent
of the opponent’s moves. For instance Figure 2 presents a hex position won for Black
and a chess position won for White. In both cases, the opponent’s moves cannot even
delay the end of the game.

To capture this intuition, we define a solution concept we name progress tree. The
idea giving its name to the concept of progress trees is that we want the player to focus
on those moves that brings them closer to a winning state, and discard the moves that
are out of the winning path.

Definition 12. PlayerA has a progress tree of depth 2n+1 in a state q if q |= PTα2n+1 ,
where PTα2n+1

is defined as follows.

– PTβ0 = w
– PTα2n+1 = w ∨3A(¬l ∧ πn ∧PTβ2n)
– PTβ2n = w ∨ (¬l ∧ 2B PTα2n−1)

We can check states for progress trees using any of the model checking algorithms
presented in Section 3, effectively giving rise to three new specialised algorithms. Note
that if a player has a progress tree of depth 2n + 1 in some state, then they also have a
winning strategy of depth 2n + 1 from that state (see Proposition 2). Therefore, if we



(a) hex position featuring a progress tree of depth
7 for Black.

(b) chess endgame featuring a progress
tree of depth 11 for White.

Fig. 2: Positions illustrating the concepts of progress tree.

prove that a player has a progress tree in some position, then we can deduce that have a
winning strategy.

We tested a naive implementation of the DFTS model checking algorithms on the
position in Figure 2 to check for progress trees and winning strategies. The principal
variations consists for White in moving the pawn up to the last row and move the resulting
queen to the bottom-right hand corner to deliver checkmate. To study how the solving
difficulty increases with respect to the size of the formula to be checked, we model
checked every position on a principal variation and present the results in Table 8.

We can see that proving that a progress tree exists becomes significantly faster than
proving an arbitrary winning strategy as the size of the problem increases. We can also
notice that the overhead of checking for a path at each α node of the search is more than
compensated by the early pruning of moves not contributing to the winning strategy.

Examining new combinations We have seen in Section 3 that we could obtain previously
known algorithms by combining model checking algorithms with solution concepts. On
the one hand, some solution concepts such a winning strategy and paranoid win, were
combined with the three possible search paradigms in previous work. On the other hand,
other solution concepts such as best-reply search win were only investigated within the
depth-first paradigm.

It is perfectly possible to model check a best-reply search win using the MCPS algo-
rithm, for instance, leading to a new Monte Carlo Best Reply Search algorithm. Similarly
model checking abstract proof trees with PNTS would lead to a new Proof Number based
Abstract Proof Search (PNAPS) algorithm. Preliminary experiments in hex without any
specific domain knowledge added seem to indicate that PNAPS does not seem to perform
as well as Abstract Proof Search, though.

Finally, most of the empty cells in Table 7 can be considered as new algorithms
waiting for an optimised implementation and a careful evaluation.



Table 8: Search statistics for a DFTS on positions along a principal variation of the chess
problem in Figure 2b.

MC
problem Time (s) Number of queries

atomic listmoves play

PTα5 0.1 6040 328 5897
WSα5 0.2 11172 624 5587

PTα7 1.4 99269 5312 98696
WSα7 3.5 194429 10621 97217

PTα9 23.6 1674454 88047 1668752
WSα9 63.8 3382102 181442 1691055

PTα11 260.4 25183612 1297975 25106324
WSα11 953.6 52209939 2759895 26104986

Expressing properties of the algorithms We now demonstrate that using the MMLK
model checking framework for game tree search makes some formal reasoning straight-
forward. Again, the goal of this section is not to demonstrate strong theorems with elab-
orate proofs but rather show that the framework is convenient for expressing certain
properties and helps reasoning on them.

It is easy to prove by induction on the depth that lambda trees, abstract proof trees,
and progress trees are all refinements of winning strategies.

Proposition 2. For all order d and depth n, we have LSαd,n
⇒ WSαn

, APSαn
⇒

WSαn
, and PTαn

⇒WSαn
.

Therefore, whenever we succeed in proving that a position features, say, a lambda
tree, then we know it also has a winning strategy for the same player: ∀q, q |= LSαd,n

→
q |= WSαn .

On the other hand, in many games, it is possible to have a position featuring a winning
strategy but no lambda tree, abstract proof tree, or even progress tree. Before studying the
other direction further, we need to rule out games featuring zugzwangs, that is, positions
in which a player would rather pass and let an opponent make the next move.

Definition 13. A φ-zugzwang for player A against players B1, . . . , Bk is a state q such
that q |= ¬φ∧ (2B1 φ∨ · · · ∨2Bk φ). A game is zugzwang-free for a set of formulas Φ
and player A against players B1, . . . , Bk if for every state q, and every formula φ ∈ Φ,
q is not a φ-zugzwang for A against B1, . . . , Bk.

The usual understanding of zugzwang is in two player games with φ a winning strat-
egy formula or a formula representing forcing some material gain in chess.

We can now use this definition to show that in games zugzwang-free for winning
strategies, such as hex or connect-6, an abstract proof tree and a progress tree are equiv-
alent to a winning strategy of the same depth.

Proposition 3. Consider a two-player game zugzwang-free for winning strategies. For
any depth n and any state q, q |= APSαn ↔ q |= PTαn ↔ q |= WSαn .



6 Conclusion and discussion

We have defined a general way to express the shape of a search tree using MMLK. We
have shown it is possible to use different search strategies to search the tree shape. This
combination of a tree shape and of a search strategy yields a variety of search algorithms
that can be modelled in the same framework. This makes it easy to combine strategies
and shapes to test known algorithms as well to define new ones.

We have shown that the Multi-Agent Modal Logic K was a convenient tool to express
various kind of threats in a game independant way. Victor Allis provided one of the
earliest study of the concept of threats in his Threat space search algorithm used to
solve gomoku [1].

Previous work by Schaeffer et al. was also concerned with providing a unifying view
of heuristic search and the optimizations tricks that appeared in both single-agent search
and two-player game search [23].

Another trend of related previous work is connecting modal logic and game the-
ory [29, 32, 15]. In this area, the focus is on the concept of Nash equilibria, extensive
form games, and coalition formation. As a result, more powerful logic than the restricted
MMLK are used [3, 30, 12]. Studying how the model checking algorithms presented in
this article can be extended for these settings is an interesting path for future work.

The model used in this article differs from the one used in General Game Playing
(GGP) called Multi-Agent Environment (MAE) [24]. In an MAE, a transition correspond to
a joint-action. That is, each player decide a move simultaneously and the combinaison
of these moves determines the next state. In a GA, as used in this article, the moves
are always sequential. It is possible to simulate sequential moves in an MAE by using
pass moves for the non acting agents, however this ties the turn player into the game
representation. As a result, testing for solution concepts where the player to move in a
given position is variable is not possible with an MAE. For instance, it is not possible
to formally test for the existence of a ladder in a GGP representation of the game of go
because we need to compute the successors of a given position after a white move and
alternatively after a black move.

Effective handling of transpositions is another interesting topic for future work. It
is already nontrivial in PNS [13] and MCTS [18], but it is an even richer subject in this
model checking setting as we might want to prove different facts about a given position
in the same search.

Table 7 reveals many interesting previously untested possible combinations of for-
mula classes and search algorithms. Implementing and optimising one specific new com-
bination for a particular game could lead to insightful practical results. For instance, it
is quite possible that a Monte Carlo version of Best Reply Search would be successful
in multiplayer go [7].
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