
The rectangular seeds of Domineering, Atari-Go
and Breakthrough

Tristan Cazenave∗, Jialin Liu†, Olivier Teytaud†
∗ LAMSADE, Université Paris-Dauphine, Paris, France
† TAO, Inria, Univ. Paris-Sud, UMR CNRS 8623, France

Abstract—Recently, a methodology has been proposed for
boosting the computational intelligence of randomized game-
playing programs. We modify this methodology by working on
rectangular, rather than square, matrices; and we apply it to
the Domineering game. At CIG 2015, We propose a demo in the
case of Go. Hence, players on site can contribute to the scientific
validation by playing (in a double blind manner) against both
the original algorithm and its boosted version.

I. ALGORITHMS

Given a stochastic AI, we can check its performance against
a baseline program (possibly itself) as we vary the random
seed. I.e. we can generate K different random seeds, and for
each of these seeds play Kt games against the baseline. We can
then plot the winning rates, sort, and compare the variations
to the standard deviations. Results are presented in Fig. 1 and
show for several games that the seed has a significant impact.
The methodologies presented in this paper are based on this
phenomenon.

Several works were dedicated to combining several AIs in
the past. [2] combines several different AIs. [1] uses Nash
methods for combining several opening books. [3] proposed
to construct several AIs from a single stochastic one and to
combine them by the BestSeed and Nash methods detailed
below.

This section presents an overview of two methods proposed
in [3] for building a boosted algorithm, from a set of seeds:
the Nash-approach and the BestSeed-approach. We also define,

Domineering 5x5 Domineering 9x9

Fig. 1: Impact of the seed on the success rate. For the nth

value, we consider the nth worst seed for Black and the nth

seed for White, and display their average scores against all
opponent seeds. The label on the y-axis shows the standard
deviation of these averages; we see that there are good seeds
(far above the 50 % success rate, by approx. 12x the standard
deviation).

for comparison, the uniform portfolio, which is just a uniform
sampling of the considered random seeds, as detailed later; it
is not stronger than the original AI.

A. Creating a probability distribution on random seeds

Typically, a stochastic computer program uses a random
seed. The random seed ω is randomly drawn (using the clock,
usually) and then a pseudo-random sequence is generated.
Therefore, a stochastic program is in fact a random variable,
distributed over deterministic program. AI is our game playing
artificial intelligence; it is stochastic. AI(ω) is a deterministic
version; ω is a seed, which is randomly drawn in the original
AI . We can easily generate plenty of ω and therefore one
stochastic AI becomes several deterministic AIs, termed AI1,
. . . , AIK .

Let us assume then one of the players plays as Black and
the other plays as White. We can do the same construction as
above for the AI playing as Black and for the AI playing as
White. We get AI1,. . . ,AIK for Black, and AI ′1, . . . , AI ′Kt

for White. From now on, we present the algorithm for Black
- still, for this, we need the AI ′ as well. The algorithm for
enhancing the AI as White is similar. Let us define Mi,j = 1
when AIi (playing as Black) wins against AI ′j (playing as
White). Otherwise, Mi,j = 0. Also, let us define M ′i,j = 1
when AI ′i (playing as White) wins against AIj (playing as
Black) - we have M ′i,j = 1−Mj,i.

• M (used for the learning for Black) is the matrix of Mi,j

for 1 ≤ i ≤ K and 1 ≤ j ≤ Kt.
• M ′ (used for the learning for White) is the matrix of M ′i,j

for 1 ≤ i ≤ K and 1 ≤ j ≤ Kt.

If Kt ≤ K, M and M ′ have Kt ×Kt entries in common (up
to transformation M ′i,j = 1−Mj,i); therefore building M and
M ′ needs the result of 2K ×Kt −K2

t game results.
Given M , the BestSeed approach consists in selecting one

seed. We just pick up i∗ such that
∑Kt

j=1 Mi∗,j is maximal.
Our BestSeed approach for Black will use random seed i∗; it
is a deterministic program. For the Nash approach, we select
a probability distribution on seeds. We compute (p, q), a Nash
equilibrium of M . The Nash approach for Black will use seed
i with probability pi. The Nash approach provides a stochastic
policy, usually stronger than the original policy [3].

We now summarize the two approaches, in Algorithm 1.



Algorithm 1 Approach for boosting a game stochastic game
AI.

1: Input: a stochastic AI playing as Black, a stochastic AI ′ playing
as White.

2: Output: a boosted AI termed BAI playing as Black, a boosted
AI BAI ′ playing as White.

3: Build Mi,j = 1 if AIi (Black) wins against AI ′j (White) for
i ∈ {1, . . . ,K} and j ∈ {1, . . . ,Kt}.

4: Build M ′
i,j = 1 if AI ′i (White) wins against AIj (Black) for

i ∈ {1, . . . ,K} and j ∈ {1, . . . ,Kt}.
5: if BestSeed // deterministic boosted AI then
6: BAI is AIi where i maximises

∑Kt
j=1 Mi,j .

7: BAI ′ is AI ′i where i maximises
∑Kt

j=1 M
′
i,j .

8: end if
9: if Nash // stochastic boosted AI then

10: Compute (p, q) a Nash equilibrium of M .
11: BAI is AIi with probability pi
12: Compute (p′, q′) a Nash equilibrium of M ′.
13: BAI ′ is AI ′j with probability p′i
14: end if
15: if Uniform // stochastic AI then
16: BAI is AIi with probability 1/K.
17: BAI ′ is AI ′j with probability 1/K.
18: end if

II. EXPERIMENTS

We provide experiments on the Domineering board game.
In all our experiments, we use a MCTS implementation.
Domineering is a two-player game with very simple rules:
each player in turn puts a tile on empty locations in the board.
The game starts with an empty board. The first player who can
not play loses the game. Usually, one of the player has vertical
2x1 tiles, and the other has horizontal 1x2 tiles. We consider
the following criteria for our boosted AI playing both as Black
and White:
• Generate K ′ seeds, randomly, for Black and K ′ seeds,

randomly, for White.
• Consider the worst success rate SR of our boosted AI

playing as White against these K ′ strategies for Black.
Consider the worst success rate SR of our boosted AI
playing as Black against these K ′ strategies for White.

• Our success rate is the average of these two success rates.
This is a strong challenge for K ′ large; since we consider
separately White and Black, we have indeed K ′2 opponent
strategies (each of the K ′ seeds for Black and each of the
K ′ seeds for White) and consider the worst success rate. We
will define this opponent as a K ′-exploiter.For K ′ = 1, this
opponent is playing exactly as the original AI: this is the
success rate against a randomly drawn seed. A score ≥ 50%
against K ′ = 1 means that we have outperformed the original
AI, i.e. boosting has succeeded; but it is satisfactory to have
also a better success rate, against K ′ > 1, than the original
AI.

In order to validate the method, we take care that our
algorithm is tested with a proper cross-validation: the opponent
uses seeds which have never been used during the learning of
the portfolio. This is done for all our experiments, BestSeed,
Uniform, or Nash. For this reason, there is no bias in our

Fig. 2: Results for domineering, with the BestSeed and the
Nash approach, against the baseline (K ′ = 1) and the exploiter
(K ′ > 1). Kt = 900 in all experiments.

results. All results are averaged over 100 runs. Results for
Domineering are presented in Fig. 2. In short, BestSeed
performs well against the original algorithm (corresponding to
K ′ = 1), but its performance against the exploiter (K ′ > 1) is
very weak. On the other hand, the Nash version outperforms
the original algorithm both in terms of success rate against
K ′ = 1 (in all cases) and against K ′ > 1 in most cases
(i.e. curves on the middle column in Fig. 2 are better than
those on the right column) - however, for breakthrough in
large size the results were (very) slightly detrimental for
K ′ > 1, i.e. the “exploiter” could learn strategies against it.
Our results (winning rate of the boosted algorithm against the
non-boosted baseline) are roughly for BestSeed: 86%, 71.5%,
65.5% for Domineering in 5x5, 7x7 and 9x9 respectively.
From Fig. 1, we can guess that larger values of K would
provide better results. We might see these results as a very
simple and effective tool for building an opening book with
no development effort, no human expertise, no storage of
database. The online computational overhead of the methods
used in this paper is negligible, as both for BestSeed and Nash
it is just determining the random seed at the beginning of
the algorithm. The boosted AIs significantly outperform the
baselines. This does not require any source code development.

REFERENCES

[1] R. Gaudel, J.-B. Hoock, J. Pérez, N. Sokolovska, and O. Teytaud. A
Principled Method for Exploiting Opening Books. In International
Conference on Computers and Games, pages 136–144, Kanazawa, Japon,
2010.

[2] V. Nagarajan, L. S. Marcolino, and M. Tambe. Every team deserves
a second chance: Identifying when things go wrong (student abstract
version). In 29th Conference on Artificial Intelligence (AAAI 2015), Texas,
USA, 2015.

[3] D. L. Saint-Pierre and O. Teytaud. Nash and the Bandit Approach
for Adversarial Portfolios. In CIG 2014 - Computational Intelligence
in Games, Computational Intelligence in Games, pages 1–7, Dortmund,
Germany, Aug. 2014. IEEE, IEEE.


