
Tristan Cazenave
LIP6, Tour 46-00 2ème étage

Université Pierre et Marie Curie, 4, place Jussieu
75252 Paris Cedex 05 France

e-mail : Tristan.Cazenave@li p6.fr

Abstract
An arti ficial system that introspects itself and
improves itself has written another system
that gives better results than systems directly
written by people that incrementall y creates
model of expertise : cogniti ve scientists, Ar-
ti ficial Intelli gence researchers and experts
of the domain it has been appli ed to. It has
been appli ed successfull y to the game of Go,
to multi -agent simulations and to other do-
mains. This is an encouraging result for re-
searchers working on modeli ng conscious-
ness, it proves that a machine model of con-
sciousness can be more eff icient in creating
complex cogniti ve models than the con-
sciousness of an expert.

1 Introduction
Using self-consciousness, human beings can have
some knowledge about their own behaviors ; this
knowledge is very useful and self-consciousness is
more developed in human beings than in any other
animals. According to [Pitrat 1990], this is the reason
why we overestimate our potential for being self-
conscious. The mechanisms of consciousness could be
much more powerful. [McCarthy 1996] gives some
mechanisms that conscious machines should have.
Introspect [Cazenave 1996b] is a system that experi-
ments some of these mechanisms for real. The system
can observe its own behavior so as to detect its own
ineff iciencies and repair them. When it detects ineff i-
ciencies, it reasons on its reasoning process so as to
understand why it has been ineff icient. Then it modi-
fies itself so as not to be ineff icient again in simil ar
situations. Introspect has mainly been used to dis-
cover knowledge in the game of Go. It has only been
given the rules of the game, by playing the game, it
has observed, understood, then modified itself and
has discovered a lot of useful expert Go knowledge. It
has found by itself more Go knowledge and more
useful Go knowledge than some of the best experts of
the game of Go associated to computer scientists that
have worked during years on the problem.
Consciousness is very diff icult to explain because we
know we are conscious, but we cannot observe how

we are conscious. My opinion is that consciousness is
the observation of a system (for example short term
memory) by another one. But we are limit ed in the
observations by the low capacity of our short term
memory. To understand itself, consciousness would
have to observe another system, and using the same
mechanism, to observe itself observing the subsystem
whil e dynamicall y changing. This kind of self self-
observation may be of limit ed interest in everyday li fe
(except for Arti ficial Intelli gence researchers and
Cogniti ve Scientists), and would need a much larger
short term memory than we have. That may be the
reason why we are unaware of how consciousness
works in our minds.
We know that we are conscious, but it is very diff i-
cult, because of our limit s, to explain what is con-
sciousness, and even to define it . In this paper, we
will study consciousness as the abilit y for a system to
observe itself, reason about itself and make appropri-
ate changes of itself so as to improve itself. Some
attempts to explain consciousness from a cogniti ve
science point of view [Dennett 1991] are interesting
for defining useful concepts and tools to understand
consciousness, but they lack of experimental founda-
tions and of scientific facts for proving their asser-
tions. We strongly beli eve that the best way to under-
stand consciousness is to buil d a model of it , to make
it run on a computer, and to incrementall y refine it by
comparing its behavior to ours (that is the way good
computer Go system are made, but we will explain
that later in the paper). This is not the easy way, but
this is the best way to prove scientific and reproduci-
ble facts about consciousness as a property of a com-
plex system [Sloman 1996].
In section 2, we explain why computer Go is a good
domain to study introspection. In section 3, we ex-
plain how Go experts and Arti ficial Intelli gence re-
searchers buil d computer models of Go players. Sec-
tion 4 describes the Introspect system, an imple-
mented model of introspection. Section 5 is oriented
toward the logic language used in our model of intro-
spection. Section 6 is about the usefulness of uncon-
sciousness. Section 7 gives the results of Introspect.
Section 8 outli nes promising areas for future work.

���������
	�� �������������	�������������	����������� !��"#�$�$��������	&%(')�#�*	 +,�.-/�*	 #�����0�
����	�������������	�������1

2 Computer Go and Introspection
This section describes the game of Go. It briefly de-
scribes how are made actual Go program and stresses
the interest of the game of Go for machine introspec-
tion.
Go was developed three to four mill ennia ago in
China; it is the oldest and one of the most popular
board game in the world. Like chess, it i s a determi-
nistic, perfect information, zero-sum game of strategy
between two players. In spite of the simpli city of its
rules, playing the game of Go is a very complex task.
[Robson 1983] proved that Go generali zed to NxN
boards is exponential in time and [Alli s 1994] shows
that Go is the most complex two persons complete
information game. It is impossible to make a brute
force search of all the moves in the game of Go, the
best Go playing systems rely on a knowledge inten-
sive approach. A Go expert uses a large number of
rules. Go programmers usuall y try to enter these rules
by hand in a Go program. Creating this large number
of rules requires a high level of expertise, a lot of
time and a long process of trial and error. Moreover,
even the people who are expert in Go and in Com-
puter Science find it diff icult to design these rules.
This phenomenon can be explained by the high level
of speciali zation of these rules: once the expert has
acquired them, they become subconscious and it i s
hard and painful for the expert to explain why he has
chosen to consider a move rather than another one.
He is not conscious of all the reasons why he has
chosen the right move. The diff iculty of encoding Go
knowledge is the consequence of a well known diff i-
culty of expert system development: the knowledge
engineering bottleneck. Writi ng a program that is
able to observe itself, to detect its own ineff iciencies,
to create new knowledge so as to uncover them, and
to use the new knowledge eff iciently is a nice way to
avoid this bottleneck by replacing the knowledge
extraction process with an automated learning system
based on introspection. Machine introspection and
learning enable to get rid of the painful expert
knowledge acquisiti on. Thus, computer Go is an ideal
domain to test the eff iciency of machine introspection
when faced with expert human programmers associ-
ated to professional Go players (i .e. human intro-
spection).

3 How people use introspection to
model Go players

Every Go programmer who is also a good Go player
(and they usuall y are) is faced with an introspective
problem. They use a lot of knowledge to play Go, but
they cannot tell the knowledge they use. It is even
worse, they buil d models of themselves they think to
be right, but that are in fact quite wrong. When they
write their first system, they give the system what
they think is useful Go knowledge. Then they make
the program play and are horri fied by its play and its
obvious lack of very simple Go knowledge. Those
who can psychologicall y survive such a dramatic

experience (it i s dramatic from the Go player point of
view, but it is even more dramatic from the phil o-
sophical and Socratic point of view : being faced to
one’ s inabilit y, or at least high diff iculty, of knowing
itself), begin to look at the problem with less self-
confidence. After a lot of trial and errors and three to
four complete change of their models and rewriti ng of
their program, they usuall y come to work on their
program as described in Figure 1, incrementall y re-
fining it .

Expert
Problem
Solving

Machine
Knowledge

Machine
Solution

Expert
Observation

Expert
Generalization

Go
Problem

Machine
Problem
Solving

Expert
Solution

Trace of
Machine

Reasoning

Expert
Comparison

Expert Focus
of Attention

Expert
Understanding

Expert Compilation

New Knowledge

Figure 1

This is what comes out of talks with other authors of
good Go programs. This also what comes out from
my personal observation of someone creating a com-
puter model of a Go player in my laboratory [Bouzy
1995]. As people are only conscious of their short-
term memory, they do not have access to their long-
term memory, and therefore do not have a direct ac-
cess to their knowledge. To access it they have to use
it. When the machine tries to solve a problem, it
shows the knowledge it has used to solve it . If the
machine fail s to solve it , and the expert succeed, then
the expert can decide to focus its attention on the
trace of machine reasoning so as to find the knowl-
edge that the machine does not have and give it . So,
by observing the machine reasoning, the expert finds
the differences with its own reasoning and under-
stands what is the missing knowledge. When the
expert has discovered the knowledge that is missing
to solve that particular problem, he tries to generali ze
it so that it can apply in many more situations. After
generali zing the knowledge, it transforms it into a
representation that can be eff iciently used. Then it
adds the new knowledge to the machine knowledge,
and removes the knowledge that is no longer useful
due to the incorporation of new and more general
knowledge.

4 An implemented model of introspec-
tion

Figure 2 gives a general view of Introspect. When it
is compared to Figure 1, one can notice that the hu-
man part of the process has been shifted to the ma-
chine. It is now the machine that is in charge to in-
trospect itself so as to improve itself. We will briefly

describe how it i s done by succinctly explaining the
boxes and arrows of Figure 2.

Machine
Problem
Solving

Before the
move

Machine
Knowledge Machine

Solution
After the

move

Machine Self
Observation

Machine
Generalization

Go
Problem

Machine
Problem
Solving
After the

move

Anticipated
Machine
Solution

Trace of
Machine

Reasoning

Machine
Comparison

Machine
Focus of
Attention

Machine
Understanding

Machine Compilation

New Knowledge

Figure 2

A Go problem is a Go board associated to a move. Go
problems comes from books, from recorded games
between people and from the games our system has
played. When given a Go problem, Introspect does
two things. First it deduces everything it can on the
board of the problem before the move, and find a lot
of anticipated machine solutions to all the problems
associated to the board. Then it plays the move and
deduces the consequences of the moves, memorizing
its deductions into the trace of machine reasoning. It
also deduces everything he can on the board after the
move. The board after the move is deduced of the
board before the move and of the move itself, using
the rules of the game of Go represented in first order
logic. So it finds a lot of solutions to the problems
associated to the board after the move.
The system focuses its attention on the trace of its
reasoning when it has a surprise after a move. If it
did not succeed in solving a problem before the move
was played, and if it can solve it after the move was
played. Then the move enables to solve a problem,
and it did not see it . So it has to focus its attention on
the processes that enabled it to solve the problem so
as to explain to itself why the move works.
The system observes its own reasoning if nothing
interesting was found before the move, and something
happened to be interesting and true after the move.
The system can deduce that it has fail ed to forecast
something interesting. It would be good for it to fore-
cast it in simil ar situations. So it observes its deduc-
tions so as to modify itself and be able to forecast it
next time in simil ar situations.
Machine understanding is the explanation the system
gives to itself of the reasons why the move works.
The system creates the explanation by going back-
wards in the chain of deductions, replacing facts that
describe the board after the move by facts that de-
scribe the board before the move (the nonmonotonic-
ity of the domain due to the changes of the board
between each move is handled by having an expli cit
representation of time: each move is associated to a
given time). Sometimes, multi ple explanations are
possible to explain why a fact has been deduced. So

the explanation of the interest of the move is a tree.
The system cuts the tree of explanations by elimi nat-
ing the explanations that are subsumed by others at
the leaves of the tree. An interesting fact can lead to
multi ple explanations, and then to multi ple rules to
add to the system knowledge. Machine generali zation
is made by replacing some constants in the explana-
tions by variables. The constants to generali ze are
appropriately chosen by using the rules of the game
represented in first order logic. Machine compil ation
is the automatic ordering of the conditi ons of the
rules so as to minimize the time to match them [Ca-
zenave 1996a].
After machine compil ation; some new knowledge is
avail able. This new knowledge is added to the sys-
tem's knowledge. The system is also able to forget
previously learned knowledge if it becomes useless
and harmful because it takes time to unify the corre-
sponding rules when their conclusions are already
deduced by other rules. It verifies that the new rules
added is more general than some of the previously
learned rules (It does it using unifications between
first order rules), i f it i s the case, it destroys the old
specific rules. This is the way it forgets the useless
and memory consuming old knowledge. Another
forgetting mechanism is a filt er that is appli ed before
integration of rules to the system's knowledge. This
filt er is used to avoid the utilit y problem of learned
rules [Minton 1988]. The filt er consists in metarules
that tell s which rules are harmful. For example, it
systematicall y forgets the rules that conclude on a set
of forced moves which has a cardinalit y greater than
five. This is because forced moves are used at AND
nodes in the proof trees developed during games, a
AND node with more than 5 branches has good
chances to fail . The other reasons is that the bigger
the li st, the more conditi ons are to be fulfill ed, so
these rules are the ones that are the most li kely to fail
and to add match time without being appli ed. This is
why it forgets them.
Introspect is able to anticipate the consequences of
moves on some goals, to reason about its own knowl-
edge and to bootstrap: it uses the knowledge it learns
to learn other knowledge. The expansion is stopped
by using metarules that enables it to forget rules of
low utilit y. The trace of machine reasoning is
equivalent to short term memorization. Our model is
consistent with the suggestion of [Minsky 1987], in
his chapter on consciousness and memory, he states
that self-consciousness concerns our thinking about
our recent thoughts. Introspect is equivalent to the
"meta-management" layer of the overall architecture
for conscious systems described in [Sloman 1997a].
In section 6, when explaining why unconsciousness
can be useful, we will briefly describe the equivalent
of the deli berative and reactive systems in Gogol (The
Go program written by Introspect).

5 A language and a metalanguage for
machine Introspection

Foll owing the review paper by Barklund [Barklund
1994], a metalanguage is a language that can repre-
sent another language, call ed an object language.
Introspect uses a completely declarative logic lan-
guage. The order in which the rules of the programs
are fired does not change the final result of the pro-
gram. Introspect uses true negation, but not negation
as fail ure in its domain theory. Meanwhil e, it uses
negation as fail ure to know that some sentence is not
a consequence of some knowledge [Konoli dge 1988].
An interesting property of our metalanguage is that it
can represent itself, this is quite important if a system
wants to reason at different metalevels. Self-reference
has been studied extensively by [Perli s 1985,1988].
Other logic programming language such as Gödel
[Hill & Lloyd 1994] have representations of them-
selves. A possible extension of such types of self-
representable languages is to have a theory that rep-
resents itself, such autoepistemic theories are inter-
esting for formali zing agents upon their knowledge or
deductive capabiliti es [Konoli dge 1988]. A lot of
examples of self references can be found in [Hofstad-
ter 1979]. Autoepistemic theories are not yet used by
Introspect.
As example of some possibiliti es of Introspect, we
give a rule and a metarule taken from our appli cation
to the multi -agents simulation. Here is a rule de-
scribing the evolution of the simulation:

Vision_angle (?n 1) :- Positi on_pedestrian (?n1 ?x
?y), Dx_angle (?n ?dx), Dy_angle (?n ?dy) , equal
(?x1 add (?x ?dx)), equal (?y1 add (?y ?dy)),
Identif ication_case (?n2 ?x1 ?y1), not_equal (?n2 -
1), not_equal (?n1 ?n2).

This rule means that the emplacement that is one step
ahead of the pedestrian with angle ?n*PI/10 cannot
be occupied by the pedestrian (Vision_angle (?n 1)).
This is due to the fact that the positi on of the pedes-
trian number ?n1 is at location ?x,?y (symbols with
question marks are variables), and that a step in the
direction of angle ?n*PI/10 would make him move at
?x+?dx,?y+?dy. Unfortunately, the number (?n2) of
the emplacement at ?x+?dx,?y+?dy is not empty (not
equal to -1) and not already occupied by the pedes-
trian (not equal to ?n1).
There are sixty rules that calculate all the predicates
related to the choice of the orientation of the pedes-
trian in the simulation.
Example of a metarule about the monovaluation of a
predicate:

replace_variable (?r ?var1 ?var4) :- rule (?r),
conditi on (?r Identif ication_case (?var1 ?var2 ?var3
)), conditi on (?r Identif ication_case (?var4 ?var2
?var3)), not_the_same (?var1 ?var4).

This rule means that there is only one possible value
for each emplacement in the simulation. If the sys-

tem creates a rule that contains two diff erent vari-
ables for the same emplacement, then it replaces one
of the variables by the other one (?r is a variable
containing a rule, ?var is a metavariable containing
another variable, the metapredicate 'conditi on' looks
for all the conditi ons in rule ?r that match the given
predicate).
Metaprogramming in logic is a very useful tool for
program manipulation, but also for controlli ng logic
programs, for reasoning about knowledge, reasoning
about reasoning. All these abiliti es are very useful
when writi ng an introspective symboli c program that
improves itself by reasoning on its behavior.

6 Unconsciousness can be useful
Introspect memorizes its mental actions so as to be
able to observe itself after. It can transform itself into
an unconscious program by compili ng itself. The
benefit of being unconscious is that it is faster be-
cause it does not have to interpret and memorize its
behavior. The drawback is that it cannot introspect
itself anymore. The unconscious program written by
Introspect is named Gogol and consists of 1 000 000
li nes of C++.
When working in the unconscious mode, Gogol can
notice that he fail ed to solve a problem, but he cannot
explain to itself why a move succeeded in solving the
problem. However Gogol can use this information to
automaticall y create new interesting problems for
Introspect (The knowledge of Gogol is the uncon-
scious equivalent of the knowledge of Introspect, so
the same moves surprise both of them).
Gogol is not completely unconscious, he uses some
self monitoring during his tree searches. He develops
AND/OR tree searches so as to solve problems in
games. Whil e developing the search trees, he dy-
namicall y looks at the shape of the tree so as to
choose the leaf to develop. He chooses the leaf of the
tree that will prove the problem with the least work,
based on the number of leaves in his subtree that still
have to be proved, this is based on Proof Number
search algorithm [Alli s 1994].
In Gogol, there is a deli berative level that contains
knowledge on search and on strategic decision. There
is also a reactive level that use compil ed knowledge
telli ng what moves to consider to solve a problem.
And finall y, the meta-management level is very small
and consists in rule that tell s which moves are sur-
prising, this level is the one that enables to call Intro-
spect when appropriate and use a much larger meta-
management level. But Introspect is not used when
Gogol plays in competiti ons because Gogol has to
answer moves of the opponents in 10 seconds.

7 Results

7.1 The tactical part of a Go program
Introspect has written the tactical part of the Gogol
Go program. The tactical part of the program is the
most important one. The program written by Intro-

spect enables Gogol to select between 0 and 5 moves
that can achieve a specific goal. The mean number of
legal moves is 250 on a Go board, it i s impossible to
search by looking at all the moves. So proving that
out of these 250 legal moves, only between 0 and 5
are useful dramaticall y reduces the complexity of the
search. When searching at depth n, instead of having
250n boards to evaluate, there are only an boards to
evaluate with 0<a<5. In the game of Go, n is often as
high as forty. The compil ation in C++ enables the
program to run 60 times faster than the logic pro-
gram. The Go program plays a move in 10 seconds on
a Pentium 133 MHz, for each move it proves about
450 tactical theorems, each theorem requires between
4 and 600 nodes in a search tree to be proved, at each
node of each tree, the C++ program written by Intro-
spect is call ed to find the useful moves to try.
Gogol competed in the international computer Go
tournament held during IJCAI97 together with 40
other participants. It finished as the best program
based on academic research, playing better that the
other programs directly written by Arti ficial Intell i-
gence researchers and Go professionals. It has out-
performed commercial systems that have required
more than 10 person*years of work.

7.2 Modelization of pedestrian in a real-
istic multi-agent simulation

Introspect has also been used to rewrite the decision
part of a pedestrian in a commercial urban simula-
tion. It has written a C++ program that is 5 to 10
times faster than the original C++ program written by
the authors of the simulation.
Our goal is to create reali stic urban simulations in-
volving pedestrians, cars, pedestrians crossings and
many others urban agents. These simulations help
architectural designers in choosing architectural con-
figurations. A problem related to this simulation is to
create agents that have reali stic behaviors and that
are also eff icient (a simulation may manage thou-
sands of agents at the same time, so modeli ng an
agent's behavior has to be rapid). Creating a reali stic
agent's behavior manuall y is hard because of the
great number of cases and interactions that can take
place. Some programmers have worked on program-
ming manuall y agents behaviors during months, but
some of the agents still had unreali stic behaviors,
leading to unreali stic simulations. Moreover, the
model was very sensiti ve to changes in an agent: a
littl e and apparently unimportant change in an agent
could transform a working simulation into an unreal-
istic one. Therefore, we have developed a program
that automaticall y improves the agents behaviors
given (1) some simple situations to avoid (a car that
run over a pedestrian, or a pedestrian that tries to
walk on another one) and (2) the rules of the simula-
tion. The rules that describes the world and the rules
describing the situations to avoid are written using
predicate logic. The program that automaticall y
writes the agents is written using metapredicates that
manipulates the predicate logic rules describing the

simulation. The metarules are in charge of writi ng all
the possible rules that can lead to a situation to avoid
in the next steps of the simulation. This enables the
agents using these rules to be more reali stic. The
advantage of creating them automaticall y is to have a
lot of reli able, eff icient and quickly designed rules.
The creation of all the rules is made by replacing
some predicates in the rules that describe the situa-
tions to avoid, with their definiti ons contained in the
rules of the simulation. Our approach to automatic
agent improvement is eff icient and can be used in
other contexts.
Simulating reali stic agents behaviors is time con-
suming, especiall y in simulations containing thou-
sands of agents. Another problem is that making
agents more compli cated and more reali stic makes
the maintaining of the program harder, and also
makes changes in the program diff icult to handle.
The solution we found to overcome these two prob-
lems is to automaticall y create eff icient and reali stic
agents from a declarative description of their behav-
iors. The goal of the method that our system opti-
mizes is to find the move of each pedestrian in the
simulation. It is call ed very often and it i s a time
consuming method.
Given the rules presented, our system wrote a C++
method that is much faster than the original method.
The rapidity of the synthesized program is one ad-
vantage over the traditi onal programming approach.
Another advantage is that it is easier to modify the
behavior of an agent when it i s written in a declara-
tive logic language than when it i s directly written in
C++. The main reason for the success of this ap-
proach is that hand-coded programs have to be
maintainable and simple so that the programmer can
understand them, whereas our system does not have
this limit ation. The clarity of an hand-made program
is sometime at the price of its eff iciency. Our system
writes long and unclear (for humans) programs, but
they are faster than hand-coded programs because all
the speciali zations that can be made have been made.
Thus, our approach enables to write faster agents
simulations, and also enables to modify agents be-
haviors in an easier way than by directly modifying
the C++ code of the agent. It would be interesting to
li nk this appli cation to other work on synthesis of
agents [Petta & al. 1997] [Sloman 1997b].

7.3 A model with a lot of applications
Introspect has been used in many domains (games,
pedestrian simulation and management) and has dis-
covered, by introspection, knowledge that is more
eff icient than the knowledge given by experts. The
methods used in Introspect, creating eff icient pro-
gram by self-observation can be appli ed in many
different domains.

8 Future work
Applying the system to itself has partiall y being done
and has given encouraging results. Learning to learn
[Schmidhuber 1994] and its parall el in our system :

being conscious of its own consciousness is an excit-
ing area of development of our approach. Our current
research is about speciali zing and changing the rep-
resentation of the rules of the game by reflecting on
the eff iciency of its introspective learning.
In [Trappl & al. 1997], inductive machine learning
and Case-based Reasoning are considered for pre-
venting the outbreak of wars or for ending them. We
beli eve that negotiations and compromises between
countries can be modeled as an abstract game. Using
our learning system for this game seems a promising
appli cation. Our system is a kind of deductive learn-
ing system, so it would complete well the scope of
machine learning methods used on this problem. We
want to generali ze our approach by applying it to
many other domains. The prevention of war domain,
and the synthetic agent domain seem to be promising
domains of appli cation of introspective learning
methods.
In [Sloman 1997a], some characteristics that con-
scious systems should have are described, we tried to
analyze Introspect using these characteristics. What
Introspect does : learn things, takes decisions, make
plans, consider options, compare things, makes infer-
ences, notice processes and relationships, classify
things, forget things, feels puzzled, switching atten-
tion, can get happy/unhappy or envious (when play-
ing Go). What Introspect does not (yet): having new
sensory experiences, becoming angry or reli eved,
rehearsing arguments, reminiscing, forming attach-
ment, acquire new tastes, having a new impulse to act
or think in a certain way.

9 Conclusion
Introspect is a (meta)system that buil ds better than
human systems in complex and well defined domains.
Introspect is a first step in the direction of having a
more general model of consciousness and learning. It
has the merit of being a running system that demon-
strate the usefulness and feasibilit y of a kind of ma-
chine self-consciousness. Its great success is to be
able to create by introspection, and given the rules of
the game, a Go program that is better than some
commercial Go program that have required more than
10 person*years of human consciousness and work.
Moreover, it i s a general system that has given simi-
lar results in other domains. Creating implemented
models of consciousness is a promising way of rap-
idly increasing the intelli gence of machines. This
work is also a step towards integrating phil osophical
concepts and AI programs [Sloman 1995].

References
[Alli s 1994] - L. V. Alli s. Searching for Solutions in

Games and Artifi cial Intelli gence, Ph.D. Thesis,
Vri je Universitat Amsterdam, Maastricht, 1994.

[Barklund 1994] - J. Barklund. Metaprogramming in
Logic. Encyclopedia of Computer Science and
Technology, eds. All en Kent & James G. Willi ams,
Marcell Dekker, New York, 1994.

[Bouzy 1995] - B. Bouzy. Modéli sation Cogniti ve du
Joueur de Go. Ph.D. Thesis, Université Pierre et
Marie Curie, Paris 6, 1995.

[Cazenave 1996a] - T. Cazenave. Automatic Ordering
of Predicates by Metarules. Metareasoning and
Metaprogramming in Logic Workshop, Bonn, 1996.

[Cazenave 1996b] - T. Cazenave. Système d'Appren-
tissage par Auto-Observation. Appli cation au Jeu
de Go. Ph.D. Thesis, Université Pierre et Marie Cu-
rie, Paris 6, 1996.

[Dennett 1991] - D. C. Dennett. Consciousness ex-
plained. Penguin Press, All en Lane, 1991.

[Hill and Lloyd 1994] - P. M. Hill , J. W. Lloyd. The
Gödel Programming Language. MIT Press, Cam-
bridge, Mass., 1994.

[Hosdtadter 1979] - D. Hofstadter. Gödel, Escher,
Bach : an Eternal Golden Braid. The Harvester
Press, Hassocks, 1979.

[Konoli dge 1988] - K. Konoli dge. Reasoning by In-
trospection. in: P. Maes and D. Nardi (eds.), Meta-
Level Architectures and Reflection, North-Holl and,
Amsterdam, 1988.

[McCarthy 1996] - J. McCarthy. Making Robots Con-
scious of their Mental States, in Muggleton S.,
editor, Machine Intelli gence 15, Oxford University
Press, 1996.

[Minton 1988] - S. Minton. Quantitative results con-
cerning the utilit y of Explanation-Based Learning,
AAA I88, p. 564-569, 1988.

[Minsky 1987] - M. L. Minsky. The Society of Mind,
Willi am Heinemann Ltd., London, 1987.

[Perli s. 1985] - D. Perli s. Languages with Self-
References I: Foundations, Arti ficial Intelli gence,
25:301-322, 1985.

[Perli s. 1988] - D. Perli s. Languages with Self-
References II: Knowledge, Beli ef and Modalit y,
Arti ficial Intelli gence, 34:179-212, 1988.

[Petta & al. 1997] - P. Petta, R. Trappl. Why to Cre-
ate Personaliti es for Synthetic Actors, in : Trappl
R., Petta P. (eds) Creating Personaliti es for Syn-
thetic Actors, 1997.

[Pitrat 1990] - J. Pitrat. Métaconnaissance, Editi ons
Hermes, Paris 1990.

[Robson 1983] - J. M. Robson. The Complexity of Go
- Proceedings IFIP - pp. 413-417 - 1983.

[Schmidhuber 1994] - J. Schmidhuber . On Learning
how to Learn Learning Strategies, TR FKI-198-94,
Technische Universität München, 1994.

[Sloman 1995] - A. Sloman. A Phil osophical En-
counter, IJCAI 1995, Montreal, 1995.

[Sloman 1996] - A. Sloman. Functionali sm, News-
group sci.psychology.consciousness, 22 Feb. 1996.

[Sloman 1997a] - A. Sloman. The Evolution of
What?, http://www.cs.bham.ac.uk/~axs, 1997.

[Sloman 1997b] - A. Sloman. What sort of Control
System is Able to Have a Personalit y ?, in : Trappl
R., Petta P. (eds) Creating Personaliti es for Syn-
thetic Actors, 1997.

[Trappl & al. 1997] - R. Trappl, J. Fürnkranz, J.
Petrak, J. Bercovitch. Machine Learning and Case-
based Reasoning : Their Potential Role in Pre-
venting the Outbreaks of Wars or in Ending Them,
OEFAI-TR-97-10, 1997.

